SUNIST单粒子模拟系统开发及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单粒子运动研究对于理解环形等离子体物理有重要意义。通常采用的导心方法由于简化了回旋运动,而在某些条件下(例如具有大尺度的回旋运动或者回旋轨道被破坏时)的应用受到限制。论文采用洛伦兹模拟方法开发了环形等离子体单粒子模拟系统,研究了SUNIST球形托卡马克中的单粒子运动,并为SUNIST上的阿尔芬波电流驱动研究提供了运行参数空间的参考。
     在粒子运动的洛伦兹模拟中,时间步长直接影响到计算的准确性和效率,但以往的研究都是通过经验选定合适的步长。论文通过对Boris算法和Runge-Kutta算法的比较,发现Boris算法在环形位形下并不是一个高效的选择,而且以往使用的Boris算法时间步长选择标准在复杂磁场中将导致错误的运动轨道。论文给出了一种通用的时间步长选择方法。以单粒子运动程序为基础,论文开发了一套具有良好管理性能和用户界面的单粒子模拟系统。
     论文研究了SUNIST典型放电条件下的氢离子运动轨道。研究发现,如果不考虑波纹度的影响,SUNIST粒子运动具有和传统托卡马克下相似的特点。这是因为SUNIST较低的电流(< 50 KA)造成极向场即使在弱场侧仍远小于环向场,而且较低的温度(< 100 eV)使得轨道效应不明显。但是,如果电流提高至150 kA,粒子将出现瘦香蕉轨道和局部捕获轨道。另外, SUNIST紧凑的设计导致其具有高达±20%的环向场波纹度。考虑波纹度的影响,磁矩不再是一个绝热不变量,导致弱场侧复杂的粒子运动轨道。不过,在目前的参数下,波纹度造成的离子损失并不严重。但当温度提高到1keV时,离子约束变差,轨道损失增加,而SUNIST高的波纹度导致的随机波纹扩散进一步加剧了离子损失。
     阿尔芬波电流驱动是SUNIST即将开展的探索性实验。论文对SUNIST中的捕获电子比例和回弹频率进行了模拟研究,并和标准模型磁场下的解析结果进行了对比。研究发现,在设计的阿尔芬波共振位置处电子捕获比例非常高,有可能研究阿尔芬波电流驱动中的捕获电子效应。通过比较回弹频率和有效碰撞频率的相对大小,论文给出了SUNIST装置中捕获电子有效存在的运行参数区间,为未来的阿尔芬波电流驱动实验提供了有价值的参考。
Single particle motion has an important role in understanding toroidal plasma physics. The guiding center method, where the gyro-motion is averaged, is not valid in some cases, for example, when the gyro-radius is large enough or when the orbit of gyro-motion is distorted. In this dissertation, a single particle simulation system was developed by employing the Lorentz method. Using this code, the behavior of single particle motion in the SUNIST spherical tokamak is investigated and, especially, results are applied to analyze the experimental conditions for Alfven wave current driving in the SUNIST.
     Computation methods are considered throughout in the dissertation. In particle simulation by the Lorentz method, time step is a very important parameter to be chosen, which concerns the validity as well as the efficiency of computation. However, in previous codes, the time steps are chosen empirically. Boris method and Runge-Kutta method are compared both in the slab and toroidal geometry and it is found that Boris method is not a good choice in simulating toroidal plasma. Moreover, the criterion of time step for Boris method obtained previously leads to wrong orbits in complicated fields. Finally, a general method of choosing the time step is given in the dissertation. Based on the single particle code programmed, a comprehensive simulation system is developed which provides effective database management and a friendly interface.
     Employing the code, the single particle motion of hydrogen ion is investigated for the SUNIST. At typical discharge parameters, regardless of the ripple of the toroidal field, particle orbits have similar behaviors as in conventional tokamaks, and, therefore, can be approximately described by analytical results from the guiding center method in the standard model magnetic field. It is partially because the poloidal field is less than the toroidal field even outside the torus due to relative low plasma current (<50 kA) in typical discharge at SUNIST, and partially because the plasma temperature is so low (< 100 eV) that the finite orbit effect is not significant. If the plasma current increases to 150 kA, magnetic islands will appear in the low field side and then thin banana orbits and local trapped orbits will appear as well as known in other spherical tokamaks. Another notable point is that there is a large ripple (±20%) of the toroidal field in the low field side of the SUNIST due to its compact design. Due to the ripple effect, magnetic moment is not a good adiabatic invariant any longer. The ripple results in some complex orbits of particle, such as ripple-trapped-particles which are limited in very small toroidal range. The ripple of the field also induces the enhancement of ion loss, although ion ripple loss at the SUNIST is not serious at current discharge parameters (ion temperature < 100 eV). However, when ion temperature increases to 1 keV, ion orbit loss become substantial and the stochastic ripple banana diffusion enhances the ion loss dramatically.
     Alfven wave current drive experiment is scheduled at the SUNIST. The ratio of trapped electrons and their bounce frequency are simulated at experimental parameters. The simulation results are compared to the analytical results from the guiding center method in the standard model magnetic field as well. It is found that, at the expected Alfven resonance layer, the trapped ratio of electrons is very high, so it might be a good platform to investigate the role of trapped electrons in Alfven wave current drive. By comparing the average bounce frequency to the effective collision frequency, the regime where electrons are effectively trapped and not distorted by collisions is identified, which is determined by plasma parameters such as density, temperature and plasma current. These results provide scenarios for the Alfven wave current drive experiment at the SUNIST.
引文
[1] Belikov V S, Yakovenko Y V. Classification of particle orbits in high-beta spherical tokamaks. Physics of Plasmas, 2001, 8(10):4501-4508.
    [2] Rome J A, Peng Y-K M. The topology of tokamak orbits. Nuclear Fusion, 1979, 19:1193-1205.
    [3] Theodore G. Northrop J A R. Extensions of guiding center motion to higher order. Physics of fluids, 1978, 21(3):384-389.
    [4]张杰,罗家融,王少杰.中型tokamak中快离子的约束.物理学报, 2006, 55(03):1077-1082.
    [5]邬良能,俞国扬,蒋丽珍, et al.托卡马克中高能粒子的初始轨道及其损失研究.中国计量学院学报, 2004, 15(2):0134-0138.
    [6] Stringer T E. Radial profile of alpha -particle heating in a Tokamak. Plasma Phys., 1974, 16:651-659.
    [7] Spitzer J, Ono M, Peng M. Engineering design of the National Spherical Tokamak Experiment. Fusion Technology, 1996, 30(3):1337-1341.
    [8] Yavorskij V A, Darrow D, Goloborod'ko V Y, et al. Fast ion non-adiabaticity in spherical tokamaks. Nucl. Fusion, 2002, 42: 1210-1215.
    [9] Solano E R. Fast ion orbits in spherical tokamaks. Phys. Plasmas, 1996, 3(4):1187-1188.
    [10] Felt J, Barnes C W, Chrien R E, et al. PPPL Lorentz orbit code. Rev. Sci. Instrum, 1990, 61(10): 3262-3264.
    [11] Isobe M, Darrow D S, Kondo T, et al. Escaping fast ion diagnostics in compact helical system heliotron/torsatron. 1999:827-830.
    [12] Mikkelsen D R, White R B, Akers R J, et al. Energetic particle orbits in the National Spherical Tokamak Experiment. Phys. Plasmas, 1997, 4(10):3667-3675.
    [13] Akers R J, Appel L C, Carolan P G, et al. Neutral beam heating in the START spherical tokamak. Nucl. Fusion, 2002, 42:122-135.
    [14] Morris R N, Fowler R H, Rome J A, et al. Advanced toroidal facility neutral beam injection. Optimization of beam alignment and aperturing. Fusion Technology, 1987, 12(2):281-292.
    [15] Hanatani K, Penningsfeld F-P. Resonant superbanana and resonant banana losses of injected fast ions in Heliotron E and Wendelstein VII-A: effects of the radial electric field. Nucl. Fusion 1992, 32(10):1769-1788.
    [16] Isobe M, Sasao M, Okamura S, et al. Experimental investigation of the ripple induced losses of perpendicularly injected beam ions in the low aspect ratio helical system CHS. Nuclear Fusion, 2001, 41(9):1273-1281.
    [17] R.Balescu著,陆全康,徐锡申译.等离子体中的输运过程第二卷:新经典输运理论.北京:首都师范大学出版社, 1996:370-409.
    [18] Carlsson J. Breakdown of adiabatic invariance in spherical tokamaks. Physics of Plasmas, 2001, 8(11):4725-4728.
    [19] Yavorskij V A, Darrow D, Goloborod’ko V Y, et al. Variations of the Magnetic Moment of Fast Ions in Spherical Tori. TH/P3-20.
    [20] Yavorskij V A, Darrow D, Goloborod’ko V Y, et al. FAST ION TRANSPORT PROCESSES IN SPHERICAL TOKAMAKS INDUCED BY NON-CONSERVATION OF THE MAGNETIC MOMENT. ECA, 2001, 25A:1865-1868.
    [21] Heidbrink W W, Strachan J D. Tokamak ion temperature and poloidal field diagnostics using 3-MeV protons. Rev.Sci.Instrum, 1985, 56(4):501-518.
    [22]黄诚昆.托卡马克粒子轨道模拟与分析[硕士学位论文].北京:清华大学工程物理系,2000.
    [23]曾立,何也熙, SUNIST组.球形托卡马克装置SUNIST的建立.原子能科学技术, 2004, 38(6):501-506.
    [24]何也熙,王龙,曾立, et al. SUNIST球形托卡马克的研究进展.核科学与工程, 2003, 23(4):343-347.
    [25] Yoshinaga T U M, Tanaka H, et al. A current profile model for magnetic analysis of the start-up phase of toroidal plasmas driven by electron cyclotron heating and current drive. Nuclear Fusion, 2007, 47(3):210-216.
    [26] Raman R J T R, Nelson B A, et al. Demonstration of Plasma Startup by Coaxial Helicity Injection. Physical Review Letters, 2003, 90(7):075005.
    [27] Ejiri A O T, Tsujimura J, et al. ECH and HHFW start-up experiments on the TST-2 spherical tokamak. Fusion Science and Technology, 2007, 51(2T):168-170.
    [28] Raman R N B A, Bell M G, et al. Efficient Generation of Closed Magnetic Flux Surfaces in a Large Spherical Tokamak Using Coaxial Helicity Injection. Physical Review Letters, 2006, 97(17):175002.
    [29] Han G Y X, Yang X, et al. Electron cyclotron wave current startup experiment on the CT-6 B tokamak. Nuclear Fusion, 1998, 38(2):287-292.
    [30] Jarbog T R. Formation and steady-state sustainment of a tokamak by coaxial helicity injection. Fusion Technology, 1989, 15(1):7-11.
    [31] Maekawa T T H, Uchida M, et al. Formation of low aspect ratio torus equilibria by ECH in the LATE device. Plasma Science and Technology, 2006, 8(1):95-98.
    [32] Maekawa T, Terumichi Y, Tanaka H, et al. Formation of spherical tokamak equilibria by ECH in the LATE device. Nuclear Fusion, 2005, 45(11):1439-1445.
    [33] Uchida M M T, Tanaka H, et al. Formation of ST Plasmas by ECH on LATE. Plasma Science & Technology, 2004, 6(4):2364-2366.
    [34] Shiraiwa S H K, Hasegawa M, et al. Heating by an Electron Bernstein Wave in a Spherical Tokamak Plasma via Mode Conversion. Physical Review Letters, 2006, 96(18):185003.
    [35] Takase Y E A, Kasuya N, et al. Initial results from the TST-2 spherical tokamak. Nuclear Fusion, 2001, 41(11):1543-1550.
    [36] Forest C B H Y S, Ono M, et al. Internally generated currents in a small-aspect-ratio tokamak geometry. Physical Review Letters, 1992, 68(24):3559-3562.
    [37] Yoshinaga T, KawanoB S, DonoB K, et al. Non-Inductive Current Start-up Experiment by ECH in the CPD Device. 13th International Workshop on Spherical Torus. Fukuoka,Japan, 2007.
    [38] Raman R, Jarboe T R. Overview of Solenoid-free Plasma Startup In NSTX and HIT-II Using Transient CHI. 13th International Workshop on Spherical Torus. Fukuoka, Japan, 2007.
    [39] Osamu M, Yuichi T, Akira E, et al. Plasma Current Start-up by ECW and Vertical Field in the TST-2 Spherical Tokamak. Journal of Plasma and Fusion Research, 2004, 80(7):549-550.
    [40] Takase Y, Ejiri A, Shiraiwa S, et al. Plasma current start-up experiments without the central solenoid in the TST-2 spherical tokamak. Nuclear Fusion, 2006, 46(8):S598-S602.
    [41] Gryaznevich M, Shevchenko V, Sykes A. Plasma formation in START and MAST spherical tokamaks. Nuclear Fusion, 2006, 46(8):S573-S583.
    [42] He Y X, Zhang L, Xie L F, et al. Preliminary Experiment of Non-Inductive Plasma Current Startup in SUNIST Spherical Tokamak. Plasma Science and Technology, 2006, 8(1):84-86.
    [43] Hirose A, Dreval M, Elgriw S, et al. Recent Results from the STOR-M Tokamak. 17th IAEA Technical Meeting on Research Using Small Fusion Devices. Lisbon,Portugal, 2007:14-23.
    [44] Ejiri A, Takase Y, Kasahara H, et al. RF start-up and sustainment experiments on the TST-2@K spherical tokamak. Nuclear Fusion, 2006, 46(7):709-713.
    [45] Yoshinaga T, Uchida M, Tanaka H, et al. Spontaneous formation of closed-field torus equilibrium via current jump observed in an electron-cyclotron-heated plasma. Physical Review Letters, 2006, 96(12):125005.
    [46] YOSHINAGA T, UCHIDA M, TANAKA H, et al. Spontaneous Formation of Low-Aspect-Ratio Torus Equilibria by ECH under Steady Vertical Field. Journal of Plasma and Fusion Research, 2005, 81(5):333-334.
    [47] Igami H, Tanaka H, Maekawa T. A survey of mode-conversion transparency windows between external electromagnetic waves and electron Bernstein waves for various plasma slab boundaries. Plasma Physics and Controlled Fusion, 2006, 48(5):573-598.
    [48]谭熠. SUNIST球形托卡马克上非感应电流启动与维持实验研究[博士学位论文].北京:清华大学工程物理系, 2008.
    [49] Lloyd B. Recent results from MAST & future plans. Joint Meeting of the 4th IAEA Technical Meeting on Spherical Tori and the 14th International Workshop on Spherical Torus. Frascati,Italy, 2008.
    [50] Kaita R, Majeski R, Menard J, et al. High frequency fast wave results from the CDX-U spherical torus. 17th IAEA Fusion Energy Conference. Yokohama,Japan, 1998.
    [51] Stutman D, Finkenthal M, Soukhanovskii V, et al. Spectroscopic evidence for high harmonic fast wave heating in the CDX-U spherical torus. Plasma Physics and Controlled Fusion, 1999, 41:867-879.
    [52] Takase Y E A, Iijima D, et al. HHFW Experiments on the TST-2 Spherical Tokamak. 43rd Annual Meeting of the APS Division of Plasma Physics. California,USA, 2001.
    [53] Takase Y, Ejiri A, Kainaga S, et al. High Harmonic Fast Wave Experiments on TST-2. 12th International Workshop on Spherical Torus. Chengdu,China, 2006.
    [54] Ono M. NSTX Recent Results and Plans. The 13th International Workshop on Spherical Tori. Fukuoka, Japan, 2007.
    [55] Intrator T, Probert P, Wukitch S, et al. Alfven wave current drive in the Phaedrus-T tokamak. Physics of Plasmas, 1995, 2(6):2263-2271.
    [56] Wukitch S, Vukovic M, Breun R, et al. Experimental Evidence of Low Frequency Current Drive in the Phaedrus-T Tokamak. Physical Review Letters, 1995, 74(12):2240.
    [57] Elfimov A G. Alfven wave heating and current drive. Physics of Plasmas, 2001, 8(5):2050-2056.
    [58] Amarante-Segundo G, Elfimov A G, Galvao R M O, et al. Calculations of Alfven wave driving forces, plasma flow, and current drive in the Tokamak Chauffage Alfven wave experiment in Brazil (TCABR). Physics of Plasmas, 2001, 8(1):210-215.
    [59] Ruchko L F, Lerche E A, Galvao R M O, et al. The analysis of alfven wave current drive and plasma heating in TCABR tokamak. Brazilian Journal of Physics, 2002, 32(1):57-64.
    [60] Bickerton R J, Connor J W, Taylor J B. DIFFUSION-DRIVEN PLASMA CURRENTS AND BOOTSTRAP TOKAMAK. Journal Name: Nature (London). Phys. Sci. 229: 110-12(25 Jan 1971).; Other Information: Orig. Receipt Date: 31-DEC-71; Bib. Info. Source: UK (United Kingdom (sent to DOE from)), 1971:Medium: X.
    [61] OHKAWA T. Plasma current drive by injection of photons with helicity. Comments on Plasma Physics and Controlled Fusion, 1989, 12(3):165-169.
    [62] Ware A A. Pinch Effect for Trapped Particles in a Tokamak. Physical Review Letters, 1970, 25(1):15.
    [63] Puri S, Wilhelm R. Kinetic-Alfven-wave current drive in elongated-cross-section plasmas. 1989:458-461.
    [64] Tsypin V S, Nascimento I C, Galv?o R M O, et al. On a bootstrap-like mechanism of radio frequency wave current drive in tokamaks. Phys.Plasmas, 2000, 7(3):1060-1063.
    [65] Gao Z, Fisch N J, Qin H. Nonlinear ponderomotive force by low frequency waves and nonresonant current drive. Physics of Plasmas, 2006, 13(11):112307.
    [66] Gao Z, Fisch N J, Qin H, et al. Nonlinear nonresonant forces by radio-frequency waves in plasmas. Physics of Plasmas, 2007, 14(8):084502.
    [67]邱孝明,丁宁.阿尔芬波加热低β托卡马克等离子体的数值分析.核聚变与等离子体物理, 1988, 8(3):154-162.
    [68]黄林,丁宁,邱孝明.阿尔芬波加热研究的进展.核聚变与等离子体物理, 1991, 11(2):65-76.
    [69] Tsypin V S, Galvao R M O, Nascimento I C, et al. Role of trapped and circulating particles in inducing current drive and radial electric field by Alfven waves in tokamaks. Journal of Plasma Physics, 2002, 67(05):301-308.
    [70]李永东,何峰,刘纯亮.等离子体模拟改进电磁粒子网格算法.西安交通大学学报, 2002, 36(10):1000-1003.
    [71]李永东,刘纯亮,张殿辉, et al.等离子体粒子模拟带电粒子推进算法校正.核技术, 2005, 28(4):269-272.
    [72]银燕,常文蔚.等离子体粒子模拟中的改进型Borris旋动粒子方法.国防科技大学学报, 2003, 25(6):84-86.
    [73] Drobot A T. Computer applications in plasma science and engineering. New York: Springer-Verlag, 1991:10-15.
    [74]傅竹风,胡友秋. .空间等离子体数值模拟.安徽:安徽科学技术出版社, 1995:468-477.
    [75] Birdsall C K, Langdon A B. Plasma Physics via Computer Simulation. New York: McGraw-Hill, 1985:55-62.
    [76]李庆扬,关治,白峰杉.数值计算原理.北京:清华大学出版社, 2000:356-402.
    [77]李庆扬,王能超,易大义.数值分析(第4版).北京:清华大学出版社,施普林格出版社, 2001:336-352.
    [78]林成森.数值计算方法下册(第二版).北京:科学出版社, 2005:212-245.
    [79]吕同富,康兆敏,方秀男.数值计算方法.北京:清华大学出版社, 2008:266-303.
    [80] Smolsky M V. Long Time-Step Particle Pushing in Drift Approximation without Orbit Averaging. Journal of Computational Physics, 1998, 145(1):41-60.
    [81] Parker S E B, C. K. Numerical error in electron orbits with largeωceΔt. Journal of Computational Physics, 1991, 97(1):91-102.
    [82]李俐玲. VB与Matlab相结合混合编程方法的研究.绵阳师范学院学报, 2004, 23(5):26-27.
    [83]李永曦,陶伟莲,关立行.在VB 6.0中调用MATLAB程序.微机发展, 2004, 14(1):88-89.
    [84]欧金成,林德杰,彭备战.通过VB调用MATLAB实现图形和界面的结合.计算机工程与设计, 2002, 23(12):64-66.
    [85]岳玉芳,尤忠生,张玉双.基于COM的VB与Matlab混合编程.计算机工程与设计, 2005, 26(1):61-62.
    [86]鲁佩云. ADO对象模型和用VB实现其应用的两种方式.计算机工程与设计, 2005, 26(07):1946-1949.
    [87]解璞,苏群星,郭利.利用ADO技术实现对数据库的操纵.计算机工程与设计, 2003, 24(03):49-54.
    [88] Gefen著,张少华译. VB.NET应用教程--Web与桌面应用程序开发.北京:清华大学出版社, 2005:255-282.
    [89] Thearon著,闫英,曹蓉蓉译. VB.NET数据库入门经典第2版.北京: :清华大学出版社, 2006:25-33.
    [90] Anderson O A, Furth H P. IMPERFECT AXISYMMETRY IN THE TOKAMAK CONFIGURATION. Nuclear Fusion, 1972, 12(2):207-13.
    [91] Davidson J N. Effect of toroidal field ripple on particle and energy transport in a Tokamak. Nuclear Fusion, 1976, 16:731-742.
    [92] Tobita K, Tani K, Nishitani T, et al. Fast ion losses due to toroidal field ripple in JT-60U. Nucl. Fusion 1994 34(8):1097-1109.
    [93]霍裕昆,吴选红,邵其鋆, et al.聚变α粒子对第一壁辐照损伤的蒙特-卡罗研究(I)轰击第一壁的α粒子能谱.物理学报, 1991, 40(8):1236-1243.
    [94] Boivin R L, Zweben S J. Midplane measurements of charged fusion product diffusion in the Tokamak Fusion Test Reactor. Physics of Fluids B: Plasma Physics, 1993, 5(5):1559-1566.
    [95] BOIVIN R L, ZWEBEN S J, WHITE R b. STUDY OF STOCHASTIC TOROIDAL RIPPLE LOSSES OF CHARGED FUSION PRODUCTS AT THE MIDPLANE OF TFTR. Nuclear Fusion, 1993, 33(3):449-465.
    [96] IKEDA Y, TOBITA K, HAMAMATSU K, et al. RIPPLE ENHANCED BANANA DRIFT LOSS AT THE OUTBOARD WALL DURING ICRF/NBI HEATING IN JT-60U. NUCLEAR FUSION, 1996, 36(6):759-767.
    [97] REDI m h, BUDNY R V, DARROW D S, et al. MODELLING TF RIPPLE LOSS OF ALPHA PARTICLES IN TFTR DT EXPERIMENTS. Nuclear Fusion, 1995, 35(12):1509-1516.
    [98] TOBITA K, TANI K, KUSAMA Y, et al. RIPPLE INDUCED FAST ION LOSS AND RELATED EFFECTS IN JT-60U. Nuclear Fusion, 1995, 35(12):1585-1591.
    [99] Tobita K, Tani K, Y.Neyatani, et al. Ripple-Trapped Loss of Neutral-Beam-Injected Fast Ions in JT-60U. Physical Review Letters, 1992, 69(21):3060-3063.
    [100] Yoshida M, Koide Y, Takenaga H, et al. Effects of ripple loss of fast ions on toroidal rotation in JT-60U. INSTITUTE OF PHYSICS PUBLISHING, 2006, 48:1673-1681.
    [101] ZWEBEN S J, DARROW D S, BATHA S H, et al. EFFECTS OF q(r) ON THE ALPHA PARTICLE RIPPLE LOSS IN TFTR. Nuclear Fusion, 1998, 38(5):739-760.
    [102] Yavorskij V A, Schoepf K, Andrushchenko Z N, et al. Analytical models of axisymmetric toroidal magnetic fields with non-circular flux surfaces. Plasma Physics and Controlled Fusion, 2001, 43:249-269.
    [103] Tan Y, Gao Z, He Y. Analysis and design of the Alfven wave antenna system for the SUNIST spherical tokamak. Fusion Engineering and Design, In Press, Corrected Proof.
    [104] [日]宫本健郎著,金尚宪译.热核聚变等离子体物理学.北京:科学出版社, 1981:57-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700