激光冲击钛合金改善疲劳寿命的模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光冲击强化技术是一种利用高功率短脉冲激光与材料相互作用过程中产生的高压冲击应力波的力效应来改善金属机械性能的一种表面改性技术,可使材料产生塑性变形、残余压应力、以及高密度位错等,能有效地提高了材料疲劳强度。在航天、汽车等现代制造领域具有广阔前景。
     本文从激光冲击波诱导残余应力场的机理出发,对激光冲击强化钛合金残余应力场进行了实验研究和数值模拟,并研究了残余应力场对小孔件疲劳性能的影响以及疲劳寿命预测方法,取得如下研究成果。
     根据弹塑性动力学理论,探讨了激光冲击波的产生和传播机理,残余应力场的形成和估算方法。
     以ANSYS/LS-DYNA为平台,建立了激光冲击强化钛合金的三维和准二维有限元分析模型,阐述了激光冲击强化数值模拟的有限元理论基础,讨论了建模过程中的几个关键问题,获得了冲击后残余应力场的分布。针对激光功率密度对残余应力场的影响进行了数值模拟研究,模拟结果表明:在激光功率密度超过一定阈值后,最大残余压应力出现在表层之下,且随着功率密度增加,表面残余压应力不断降低直至出现残余拉应力。
     阐述了局部应力应变法的原理,应力集中与疲劳强度因子k_f的概念。收集并分析2024铝合金,7050铝合金的激光冲击与疲劳实验,讨论了激光冲击对缺口疲劳的影响。结果表明:激光冲击后,冲击区表面质量对疲劳寿命改善效果影响很大,尤其是表面粗糙度的影响。粗糙度明显改善时,寿命可提高6~9倍,无明显改善时,只能提高2~3倍。对于同样冲击效果的试件,不同的疲劳载荷水平会影响到寿命增幅。当疲劳加载水平高时,寿命提高幅度会变小,这可能与残余应力松弛有关。激光冲击改变屈服强度和弹性模量并引起晶粒细化,均对疲劳裂纹的扩展有很好的抑制作用。
     建立缺口件有限元模型,对激光冲击前后的钛合金小孔件模型进行了疲劳加载模拟与寿命预测,分别使用平面应变下缺口根部应力结果和非平面应变下缺口根部中间位置应力结果预测疲劳寿命,前者得到的寿命预测值要高于后者,冲击后的寿命是冲击前的1.9~3.3倍。
Laser shock processing is a new surface modification technology, which makes use of the mechanical effect of high pressure shockwave generating in the process of interaction between metal materials and high power density,short pulse.It causes metal materials to yield and plastically deform,thereby the surface layer develops dislocation of high density,twins and high level compressive residual stress.Those prolong the fatigue life of metal materials greatly.LSP has extensive applied foreground in some modern manufacturing such as aerospace industry,automotive engineering and so on.
     According to the theory of residual stress field formation by laser shock wave,Laser shock processing of TC4 Ti alloy was researched by the methods of experiments and simulations.The effection of residual stress field to fatigue life of center-hole specimen as well as the prediction methods of which were researched.The achievements were:
     According to the theory of plastic-elasticity dynamics,the basic theory of the shock wave generation and propagates in material as well as the formation mechanism and evaluation method of residual stress field was described.
     Based on ANSYS/LS-DYNA software,the 3D FEA and semi-2D FEA analysis models were founded,considering the finite element theory. Some key problems were discussed and the distribution of the residual stress field generated by LSP was obtained.The effects of laser shock power density was simulated which indicated that the peak surface residual compressive stress increased as the power density increased when the laser power density was below a fixed value,and then decreased,even to tension residual stress.At the same time,the maximum compressive residual stress appeared below the surface was increasing all the time.
     The local stress-strain method was described by focusing the stress concentration and the fatigue notch factor k_f The laser shock processing experiments and fatigue experiments of 2024 Al alloy and 7050 Al alloy were collected and discussed.The results indicated that the qualification of the shocked region make a big effect to fatigue life improving, especially the roughness.Fatigue life can be increased by 6~9 times under good-improved roughness and 2~3 times under the normal roughness.The amplification of fatigue life will be increase when the fatigue loads level down.The improvements of yield stress and elastic modual induced by laser shock processing make good effords to prevent the crack propagation.
     Fatigue load simulation and life prediction was done for center-hole specimen of Ti alloy with and without LSP.The fatigue lives gained by the stress results at the middle position of the notch root in the case of no plane strain are shorter than which gained by the stress results in the case of plane strain.The fatigue lives are increased about 1.9~3.3 times.
引文
[1]邬华芝,高德平,郭海丁.概率疲劳破坏寿命特性研究综述[J].湖北工学院学报.2002,17(4):18-22.
    [2]张永康.激光加工技术[M].北京:化学工业出版社,2004.
    [3]花银群.金属材料的激光复合强化机理研究[D].博士学位论文.镇江:江苏大学,2003.
    [4]武敬伟,花银群,陈瑞芳.激光冲击强化对金属纤维组织及其机械性能的影响[J].新技术新工艺.2007(6):55-56.
    [5]White,R.M.Elastic Wave Generation by Electron Bombardment or Electromagnetic Wave Absorption[J].Journal of Applied Physics.1963(34):2123-2124.
    [6]B.P.Fair and B.A.Wdcox,et al.Laser shock-induced microstructural and mechanical property changes in 7075 aluminum[J].Journal of Applied physics.1972 43(9):3893-3896.
    [7]A.H.Clauer,B.P.Fairland,B.A.Wlicox.Pulsed laser induce deformation in an Fe-3 Wt Pct Si alloy[J].Metallurgical Transactioms A.1977(8A):119-125.
    [8]A.H.Clauer,B.P.Fairland,B.A.Wlicox.Laser shock Hardening of Weld zones in alloys[J].Metallurgical Transactioms.1977(8A):1871-1977.
    [9]B.P.Fairland,A.H.Clauer.Use of laser generated shocked to improve the poperties of metals and alloys[J].1976(86):116-119.
    [10]Falrand B P.Quantitative Assessment of Laser-Induced Stress Waves Generated atConfiened Surfaces[J].App.Phys.Lett.1974(25):431-433.
    [11]Fairand B P,Ford S C.Investigation of Laser Shock Processing-Executive Summary [R].Technical Report AFWAL-TR-80-3001.1980.
    [12]ClauerAH,Fairand B P.Interaction of laser - induced stress waves withmetals[A].Applications of laser in Materials Processing[C].Washington:AmericanSociety for Metals,1979.291-395.
    [13]P.Peyre,R.Fabbro,L Berthe,C.Dubouchet.Laser shock processing of materials,Physical Processing Involved and Examples of Applications[J].Journal of Laser Application,1996(8):135-141.
    [14]Jean-Eric Masse,Gerard Barreau.Laser generation of stress waves in metal[J].Surface and Coating Technology,1995(70):231-235.
    [15]R.Fabbro,B.Faral,et al.Physics of Fluids,1985(28):3414-3416.
    [16]Eliezer S,Gitter L,Krumbein A D,et al.Laser driven shock waves studies in singleand double-layered slab targets[R].Isreal Atomic Energy Commission,YavneSoreq Nuclear Research center,1983.
    [17]Salman D,Gilath I,Maman,et al.Spallation and dynamic fracture as an effect oflaser-induced shock waves in Carbon Based Composite Materials[R].Isreal AtomicEnergy Commission,Yavne Soreq Nnclear Research center,1989.
    [18]Fabbro R,Fournier J,Ballard P,et al.Physics Study of Laser Induced Plasma in Confined Geometry[J].Journal of Applied Physics.1990,68(2):755-784.
    [19]Peyer P,Fabbro R.Laser Shock Processing:A Review of The Physics and Application[J].Optical and Quantum Electronics.1995(27):1213-1219.
    [20]邹世坤.激光冲击处理技术的最新发展[J].新技术新工艺.2005(4):44-46.
    [21]邹世坤.激光冲击处理在航空工业中的应用[J].航空制造技术.2006(5):36-38.
    [22]张永康.激光冲击强化产业化关键问题及应用前景[J].激光与光电子学进展2007,44(3):74-77
    [23]林翠,刘枫,赵晴,等.TC4钛合金腐蚀加工速度和表面质量影响因素研究[J].航空材料学报.2008,28(5):50-54.
    [24]毛小南.发展中的钛新技术[J].中国金属通报.2008(47):35-37.
    [25]刘莹,曲周德,王本贤.钛合金TC4的研究开发与应用[J].兵器材料科学与工程.2005,28(5):47-50.
    [26]任旭东,张永康,周建忠,等.激光冲击工艺对钛合金疲劳寿命的影响[J].中国有色金属学报.2007,17(9):1486-1489.
    [27]许正功,陈宗帖,黄龙发.表面形变强化技术的研究现状[J].装备制造技术.2007(4):69-71.
    [28]张明,王珉,左敦稳.抗疲劳制造技术的研究现状与发展趋势[J].机械设计与制造.2002(2):100-101.
    [29]王智祥,林立杰.表面强化新技术在模具制造领域中的应用与进展[J].模具工业.2004(7):52-56.
    [30]卫中山,王珉,左敦稳,等.钛合金的微动疲劳及其防护[J].材料科学与工程学报.2003,21(2):293-297.
    [31]徐妙华,梁天骄,张杰.利用韧致辐射诊断激光等离子体相互作用产生的超热电子[J].物理学报.2006,55(5):2357-2363.
    [32]唐通鸣,章文辉,张永康.提高金属材料疲劳寿命的新技术[J].电加工.1999(1):33-37.
    [33]任旭东,张永康,周建忠,等.激光冲击加工表面涂层厚度的优选[J].金属热处理.2006,31(7):61-64.
    [34]Ready J F.Effects Due to Absorption of Laser Radiation[J].J.Appl.Phys.1965,36(2): 462-468.
    [35]郭乃国.激光冲击40Cr钢及其残余应力场数值模拟[D1.硕士学位论文.镇江:江苏大学.2006.
    [36]马晓青.冲击动力学[M].北京:北京理工大学出版社.1992.
    [37]周南,乔登江,等.脉冲束辐照材料动力学[M].北京:国防工业出版社,2002.
    [38]倪敏雄,周建忠,杨超君,等.激光冲击处理的残余应力场形成机理及影响因素分析[J].应用激光.2006 26(2):73-77.
    [39]彭薇薇.激光喷丸强化不锈钢焊接头抗应力腐蚀研究[D].硕士学位论文.南京工业大学.2006.
    [40]曾攀.有限元分析及应用[M].北京:清华大学出版社.2004.
    [41]王冒力成.有限元法[M].北京:清华大学出版社,2003.
    [42]K.Ding,LYe.FEM simulation of two side laser shock peening of thin sections of Ti-6Al-4V alloy[J].Surface Engineering.2003,19(2):127-132.
    [43]Kan Ding,Lin Ye.Three-dimensional dynamic finite dement analysis of multiple laser shock peening processes[J].Surface Engineering 2003 19(5):351-358.
    [44]胡永祥,姚振强.激光冲击强化有限元仿真时间步长选择方法[J].上海交通大学学报.2006.10:1743-1747.
    [45]范勇.7050航空铝合金结构材料激光冲击强化处理研究[D].硕士学位论文.中国科学技术大学.2003
    [46]武敬伟.激光冲击Fe-Ni合金残余应力场的数值模拟[D].硕士学位论文.江苏大学.2007
    [47]Peyre,R.Fabbro et al.Laser shock processing of aluminum alloys application to high cycle fatigue behavior[J].Materials Science and Engineering.1996(A210) 102-113.
    [48]P.Peyre,R.Fabbro,Laser shock processing:a review of the physics and applications[J],Opt.Quant.Electron.1995(27):1213-1229.
    [49]段志勇.激光冲击波及激光冲击处理技术研究[D].硕士学位论文.中国科学技术大学,2000.
    [50]Kan Ding,Lin Ye.Simulation of multiple laser shock peening of a 35CD4 steel alloy[J].Journal of Materials Processing Technology 2006(178):162-169.
    [51]王声波,范勇,吴鸿兴,等.7050航空铝合金结构材料激光冲击强化处理研究[J].中国激光,2004,33(1):125-128
    [52]范勇,王声波,吴鸿兴等.7050航空铝合金激光冲击强化残余压应力的研究[J]。应用激光,2003,23(1):5-8.
    [53]赵名泮.应变疲劳分析手册[M].北京:科学出版社.1987.
    [54]陈传尧.疲劳与断裂IMl.华中科技大学出版社.2002.
    [55]Yves Verreman,Nathalie Limodin.Fatigue notch factor and short crack propagation[J].Engineering Fracture Mechanics.2008(75):1320-1335.
    [56]胡志忠,曹淑珍.金属材料应力集中系数预测[J].中国科学A辑,1991(23):83-91.
    [57]吴启鹤,叶笃毅,金属材料疲劳缺口系数Kf预测方法的研究[J],南京建筑工程学院学报,1995 2(33):33-38.
    [58]颜明皋.工程材料实用手册(第二版)[M].北京:中国标准出版社.2001.
    [59]N.E.Dowling,W.R.Brose,W.K.Wilson,Fatigue Complex Loading[J].SAE.1977(6):55-84.
    [60]沃道瓦托夫ΦΦ,维依科B Π,契尔南AA[苏].激光在工艺中的应用[M].朱裕栋译.北京:机械工业出版社,1980.
    [61]赵国宏.缺口件多轴局部应变分析与随机疲劳寿命预测[D].硕士学位论文.浙江大学.2006.
    [62]张永康,张斌,余承业,等.激光冲击提高航空铝合金疲劳寿命机理的研究[J].航空工业技术.1994(3):17-19.
    [63]张志健.喷丸件表象疲劳极限及喷丸工艺优化研究[D].燕山大学.2003.
    [64]H.Wohlfahrt.Practical Aspects of the Application of Shot Peening to Improve the Fatigue Behavior of Metals and Structural Components[J].Proc.Of ICSP-Ⅲ,Garmisch-Partenkichen (FRG),1987(5):63-584.
    [65]王珉.抗疲劳制造原理与技术[M].南京:江苏科学技术出版社.1999.
    [66]王仁智,汝继来,李向斌,等.疲劳裂纹萌生的微细观过程与内部疲劳极限理论[J].金属热处理学报.1995.16(4)::26-34.
    [67]雷卡林H H,乌格洛夫AA,科科拉A H[苏].材料的激光加工[M].王绍水译.北京:科学出版社,1982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700