激光冲击改善钛合金疲劳裂纹扩展特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光冲击强化技术是一种利用高功率短脉冲激光与材料相互作
     用产生高压冲击应力波的力效应来改善金属机械性能的表面改性技
     术。它可使材料产生塑性变形、残余压应力、晶粒细化以及高密度位
     错等,能有效地提高材料疲劳强度,在航天、汽车等现代制造领域具
     有广阔前景。本文从激光冲击波诱导残余应力场的机理出发,对激光搭接冲击
     强化钛合金进行了实验研究和数值模拟,并研究了激光冲击对疲劳裂
     纹扩展的抑制机理以及残余应力场对紧凑拉伸试件(CT试件)疲劳
     裂纹扩展特性的影响,取得了如下研究成果:根据弹塑性动力学理论,探讨了激光冲击波的产生和传播机理,
     残余应力场的形成和估算方法。以ANSYS/LS-DYNA为平台,建立了激光搭接冲击强化钛合金
     有限元分析模型,阐述了激光搭接冲击强化数值模拟的有限元理论
     基础,讨论了模型建立、网格划分过程中的关键问题,获得了冲击后
     残余应力场的分布。针对搭接率、激光功率密度及脉宽对残余应力场
     的影响进行了数值模拟研究,模拟结果表明:增加搭接率、功率密度
     和激光脉宽,不但可以增加表面残余压应力,而且可以增加残余压应
     力层深度L_P;但当脉宽增加到一定值时,搭接区表面残余压应力达
     到最大值,继续增加会导致搭接区表面残余压应力的降低;搭接率增加到一定程度时,继续增加会导致残余压应力层深度的降低。
     阐述了激光冲击改善疲劳裂纹扩展特性的基本原理,进行了TC4钛合金的激光冲击与疲劳裂纹扩展实验,讨论了激光冲击对CT试件疲劳裂纹扩展的影响。实验数据表明:激光冲击对疲劳裂纹的扩展起到了很大的抑制作用,激光冲击后试件的疲劳寿命为冲击前的1.38倍,疲劳裂纹的扩展速率为冲击前的78%。
     建立CT件有限元模型,对激光冲击前后的钛合金CT件模型进行了疲劳裂纹扩展的模拟,分别模拟了峰值压力和搭接率对疲劳裂纹扩展的影响,结果显示冲击后的寿命是冲击前的1.46~3.03倍,疲劳裂纹扩展速率为冲击前的0.95~0.127倍。
Laser shock processing is a new surface modification technology, which makes use of the mechanical effect of high pressure shockwave generating in the process of interaction between metal materials and high power density, short pulse. It causes metal materials to yield and plastically deform, thereby the surface layer develops dislocation of high density, twins and high level compressive residual stress. Those prolong the fatigue life of metal materials greatly. LSP has extensive applied foreground in some modern manufacturing such as aerospace industry, automotive engineering and so on.
     According to the theory of residual stress field formation by laser shock wave, Laser overlapping shock processing of TC4 alloy was researched by the methods of experiments and simulations. The mechanism of laser shock to restrain the growth fatigue crack and the effect of Residual stress field on the properties of CT specimen fatigue crack growth were researched. The achievements were:
     According to the theory of plastic-elasticity dynamics, the basic theory of the shock wave generation and propagates in material as well as the formation mechanism and evaluation method of residual stress field was described.
     Based on ANSYS/LS-DYNA software, the laser overlapping shock FEA analysis models were founded, considering the finite element theory. Some key problems in Model and meshing were discussed and the distribution of the residual stress field generated by LSP was obtained. The impact on the residual stress field by overlapping rate,the laser power density and the pulse width were researched by numerical simulation, the results show that:Increasing the overlapping rate, power density and laser pulse not only increased the surface residual stress and increased the depth of residual compressive stress, but when the pulse width has reached a certain value, the surface residual stress of overlapping area achieved maximum, continue to increase the overlapping rate will lead to the reduction of surface residual stress; when overlapping rate has got to a certain value, continue to increase it will lead to the reduction of the depth of residual compressive stress.
     The improved mechanism of LSP on the characteristics fatigue crack growth were expounded, the experiments of LSP on TC4 titanium alloy and fatigue crack propagation were did on, the impact of LSP on CT specimen fatigue crack growth were discussed. The experimental data show that:the LSP has a significant inhibitory effect on the fatigue crack growth, after LSP, the fatigue life of CT specimen was 1.38 times of that of before and the fatigue crack growth rate was 78% of that before.
     The CT FEA model was founded, the fatigue crack growth of TC4 CT specimen before and after LSP was simulated, the expect on fatigue crack growth of peak pressure and the overlapping rates were simulated, the results show that:the fatigue life of after LSP was 1.46~3.03 times of that of before, and the fatigue crack growth rate was 0.95~0.127 of that of before.
引文
[1]杨广里等.断裂力学及应用[M].北京:中国铁道出版社,1990
    [2]张永康.激光加工技术[M].北京:化学工业出版社,2004
    [3]肖爱民,杨继昌,张永康.激光冲击强化原理应用及概述[J].电加工与模具2000(6):7-10
    [4]李伟,李应红,何卫锋,李启鹏.激光冲击强化技术的发展和应用[J].综合评述.200845(12):15-19
    [5]花银群.金属材料的激光复合强化机理研究[D].博士学位论文.镇江:江苏大学,2003
    [6]武敬伟,花银群,陈瑞芳.激光冲击强化对金属纤维组织及其机械性能的影响[J].新技术新工艺.2007(6):55~56
    [7]White, R. M. Elastic Wave Generation by Electron Bombardment or Electromagnetic Wave Absorption [J] Journal of Applied Physics.1963(34):2123~2124
    [8]B.P.Fair and B.A. Wilcox, et al. Laser shock-induced microstructural and mechanical property changes in 7075 aluminum [J]. Journal of Applied physics.197243(9):3893~3896
    [9]A.H.Clauer, B.P.Fairland, B.A. Wlicox. Pulsed laser induce deformation in an Fe-3 Wt Pct Si alloy [J]. Metallurgical Transactions A.1977(8A):119~125
    [10]A.H.Clauer, B.P.Fairland, B.A. Wlicox. Laser shock Hardening of Weld zones in alloys [J]. Metallurgical Transactioms.1977 (8A):1871~1977
    [11]B.P.Fairland, A.H.Clauer. Use of laser generated shocked to improve the poperties of metals and alloys [J].1976 (86):116~119
    [10]Fairand B P. Quantitative Assessment of Laser-Induced Stress Waves Generated atConfiened Surfaces[J]. App. Phys. Lett.1974(25):431~433
    [11]Fairand B P, Ford S C. Investigation of Laser Shock Processing-Executive Summary [R]. Technical Report AFWAL-TR-80-3001.1980
    [12]Shepard, Michael John. Laser shock processing induced residual compression for improved damage tolerant design. University of Dayton[Ph.D].2004
    [13]Clauer A H, Fairand B P. Interaction of laser-induced stress waves with metals [A]. Applications of laser in Materials Processing[C]. Washington:American Society for M etals,1979.291~395
    [14]P. Peyre, R. Fabbro, L Berthe, C. Dubouchet. Laser shock processing of materials, Physical Processing Involved and Examples of Applications [J]. Journal of Laser Application, 1996(8):135~141
    [15]Jean-Eric Masse, Gerard Barreau. Laser generation of stress waves in metal [J]. Surface and Coating Technology,1995(70):231-235
    [16]R. Fabbro, B. Faral, et al. Physics of Fluids,1985(28):3414~3416. [16] Eliezer S, Gitter L, Krumbein A D, et al. Laser driven shock waves studies in single and double-layered slab targets[R]. Isreal Atomic Energy Commission, YavneSoreq Nuclear Research center,1983
    [17]Eliezer S. Gitter L, Krumbein A D, et al. Laser driven shock waves studies in singleand double-layered slab targets[R]. Isreal Atomic Energy Commission, YavneSoreq Nuclear Research center,1983
    [18]Salman D, Gilath I, Maman, et al. Spallation and dynamic fracture as an effect of laser-induced shock waves in Carbon Based Composite Materials[R]. Isreal Atomic Energy Commission, Yavne Soreq Nuclear Research center.1989
    [19]Fabbro R, Fournier J, Ballard P, et al. Physics Study of Laser Induced Plasma in Confined Geometry [J]. Journal of Applied Physics.1990,68(2):755~784
    [20]Peyer P, Fabbro R. Laser Shock Processing:A Review of The Physics and Application [J]. Optical and Quantum Electronics.1995(27):1213~1219
    [21]邹世坤.激光冲击处理技术的最新发展[J].新技术新工艺.2005(4):44~46
    [22]邹世坤.激光冲击处理在航空工业中的应用[J].航空制造技术.2006(5):36~38
    [23]张永康.激光冲击强化产业化关键问题及应用前景[J].激光与光电子学进展2007,44(3):74~77
    [24]John J.Ruschau, Reji John,Steven R,Thompson,Theodre Nicholas,Fatigue crack nucleation and growth rate behavior of laser shock peening titanium[J].International Journal of Fatigue,1999,21:199-200
    [25]A.King,A.Steuwer,C,woodward.Effects of fatigue and fretting on residual stresses introduced by laser shock peening[J].Materials and Engineering,2006,4.35-36:12-18
    [26]Omar Hatamlch, Jed Lyons, Royce Forman. Laser shock and shot peening effects on fatigue crack in friction stir welded 7075-T7351 aluminum alloy joints[J]. International Jounral of Fatigue,2007,29:421-434
    [27]S.Suresh.材料的疲劳[M].王中光等译.北京:国防工业出版社,1995
    [28]雷卡林H H,乌格洛夫AA,科科拉AH[苏].材料的激光加工[M].王绍水译.北京:科学出版社,1982
    [29]沃道瓦托夫ΦΦ,维依科B~Ⅱ,契尔南AA[苏].激光在工艺中的应用
    [30]唐通鸣,章文辉,张永康.提高金属材料疲劳寿命的新技术[J].电加工.1999(1):33-37.
    [31]王广龙.金属板料激光冲击成形研究.硕士学位论文.镇江:江苏大学,2005
    [32]洪昕.激光冲击波与冲击强化技术.硕士学位论文.合肥:中国科学技术大学,2000
    [33]K.Ding, L. Ye. FEM simulation of two side laser shock peening of thin sections of Ti-6A1-4V alloy [J]. Surface Engineering.2003,19(2):127~132
    [34]倪敏雄,周建忠,杨超君,等.激光冲击处理的残余应力场形成机理及影响因素分析[J].应用激光.200626(2):73~77
    [35]桑毅.激光冲击钛合金改善疲劳寿命的模拟与实验研究.硕士学位论文.镇江:江苏大学,2009
    [36]彭薇薇.激光喷丸强化不锈钢焊接头抗应力腐蚀研究[D].硕士学位论文.南京工业大学.2006
    [37]曾攀.有限元分析及应用[M].北京:清华大学出版社,2004
    [38]鲁金忠,张永康,孔德军,等.激光冲击强化对TC4电子束焊缝机械性能的影响[J].江苏大学学报:自然科学版,2006,27(3):207-210
    [39]胡永祥.激光冲击处理工艺过程数值建模与冲击效应研究.博十学位论文.上海:上海交通大学,2008
    [40]FAN Y, WANG Y, VUKELIC S, et al. Wave-solid interactions in laser-shock-induced deformation processes [J]. Journal of Applied Physics,2005,98(10):104904-104915
    [41]K.Ding, L. Ye. FEM simulation of two side laser shock peening of thin sections of Ti-6A1-4V alloy [J]. Surface Engineering.2003,19(2):127~132
    [42]Kan Ding, Lin Ye. Three-dimensional dynamic finite element analysis of multiple laser shock peening processes[J]. Surface Engineering 2003 19 (5):351~358
    [43]明永祥,姚振强.激光冲击强化有限元仿真时间步长选择方法[J].上海交通大学学报.2006.10-1743~1747
    [44]范勇.7050航空铝合金结构材料激光冲击强化处理研究[D].硕十学位论文.中国科学技术大学.2003
    [45]武敬伟.激光冲击Fe-Ni合金残余应力场的数值模拟[D].硕十学位论文.江苏大学.2007
    [46]Peyre, R. Fabbro et al, Laser shock processing of aluminum alloys application to high cycle fatigue behavior [J]. Materials Science and Engineering.1996 (A210) 102~113
    [47]P. Peyre, R. Fabbro, Laser shock processing:a review of the physics and applications [J], Opt. Quant. Electron.1995(27):1213~1229
    [48]Kan Ding, Lin Ye. Simulation of multiple laser shock peening of a 35CD4 steel alloy [J].of Materials Processing Technology 2006(178):162~169
    [49]任旭东,张永康,周建忠.激光冲击对金属板料裂纹的影响模型[J].中国机械工程.2008(19)3:358~360
    [50]周立春.激光冲击诱导残余应力下裂纹扩展的数值仿真及实验分析[D].硕十学位论文.江苏大学.2009
    [51]Wells,AA.Application of fracture mechanics at beyond general yielding [J].British Welding Journal[J],1963,(10):563-570
    [52]Burdekin,Stone. The crack opening displacement approach to fracture mechanics in yielding[J],Journal of Strain Analysis,1966,(l):145-153
    [53]H. Wohlfahrt. Practical Aspects of the Application of Shot Peening to Improve the fatigue Behaviour of Metals and Structural Components[J]. Proc. Of ICSP-Ⅲ, Garmisch-Partenkichen (FRG),1987(5):63~584
    [54]王珉.抗疲劳制造原理与技术[M].南京:江苏科学技术出版社,1999
    [55]刘绍伦,欧阳辉,丁传富.GB/T 6398—2000《金属材料疲劳裂纹扩展速率试验方法》
    [56]James.M,Swenson.D FRANC2D/L:A Crack Propagation Simulator for Plane layered Structures[M].Version 1.5 User's Guide, Cornell University,2002
    [57]Cope. D,West. D, Luzar. J, Miller. G, Corrosion damage assessment framework:corrosion fatigue effects on structural integrity [R].Technical Report D500-13008-1,The Boeing Defense and Space Group,1998
    [58]王冒力成.有限元法[M].北京:清华大学出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700