超宽带生物雷达成像及生命信号检测关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物雷达是用来探测未知区域中生命体地理信息和生命信息的一种仪器,其应用领域包括灾害救援、医疗监护、城市安保与反恐等。生命体的地理信息是指生命体在未知区域中的空间位置;生命体的生命信息是指呼吸、心跳等生命信息。
     生物雷达通过计算机层析技术获得未知区域的水平断层图像,在图像中可以确定生命体的地理信息,应用时往往需要穿透障碍物,障碍物在雷达回波信号中表现为很强的直达波,影响图像中对目标的分辨。采用雷达检测人体的呼吸、心跳等微动信息,常利用微多普勒效应,其难点在于在强噪声中对微弱信号的检测。已有的研究成果不能完全解决直达波去除和呼吸、心跳信息检测问题,应用具有一定局限性。因此,在生物雷达回波信号的处理和系统参数方面做深入的研究,对提高其性能具有重要意义。本文针对以上问题开展研究,主要内容如下:
     (1)超宽带步进变频连续波雷达近场成像算法研究。首先介绍了近场成像的概念,针对超宽带步进变频连续波生物雷达,建立了其正问题数学模型。然后对生物雷达成像中的合成孔径技术进行了介绍,并研究一种应用于超宽带步进变频连续波雷达的频率-波数域成像算法原理,通过仿真分析了该算法的成像性能。
     (2)生物雷达直达波抑制方法研究。首先理论分析了直达波对于生物雷达成像的影响,并通过仿真进行了验证。针对传统去除直达波信号方法的不足或者局限性,本文提出了基于奇异值分解和复数FastICA两种去除直达波的方法。奇异值分解方法利用回波数据中直达波分量占主要成分的特性,在一定程度上克服了传统对消法在去除直达波的同时也削弱了目标信号幅度的缺点,提高了处理后的信噪比,并且算法快速;复数FastICA方法是从回波信号的数据结构入手,利用了直达波信号与目标信号的高阶统计量信息,把信号分解为多个相互独立的信号分量,使各个分量之间非高斯性最强,此方法运算量较大,但是直达波抑制效果较好。最后,通过实验对这两种方法进行了验证,并提出了目标信号/噪声能量比的定义,通过目标信号/噪声能量比和信干比两项指标将对消法、奇异值分解方法和复数FastICA方法进行了对比。
     (3)生命体微多普勒信息检测方法研究。针对传统采用单频连续波发射信号检测生命体微多普勒信息方法抑制噪声能力较弱,不能检测多个目标的微多普勒信息,以及不能在检测的同时对目标定位的不足,本文提出了采用超宽带步进变频连续波信号的生物雷达,并提出了一种距离域滤波的方法检测生命体为多普勒信息。首先针对超宽带步进变频连续波生物雷达检测生命体呼吸信号进行了数学建模,并针对不同呼吸频率时目标距离域一维成像进行仿真,通过对仿真结果的分析,得到在呼吸频率为1Hz以下,呼吸信号几乎附着在目标距离域一维像当中,并且做了距离域一维像截取的仿真实验,得到在距离域一维像两边一定范围内做截取不会丢失呼吸信号的结论。根据以上结论,本文提出了通过距离域滤波方法来消除噪声和干扰,实现检测生命体呼吸频率的目的。通过实验对上述方法进行了验证。单人试验中,呼吸频率能很好的被检测出来;双人实验中,由于多径干扰的存在,使得检测误差增大,甚至会检测不到呼吸频率。针对背景噪声较强,影响对目标距离域一维像的判断这种情况,本文采用距离域峰值跟踪方法,在强背景噪声的情况下对生命体在距离向进行定位并检测出其呼吸频率。
     (4)测量系统参数与呼吸频率检测中采样时间累计长度的研究。在测量系统中,天线参数各频点的不一致性、发射信号的步进频率间隔以及接收端中频滤波器带宽的设置对于测量的影响较大,本文通过对测量环境的分析以及理论推导,提出了相量差法去除天线的不一致性,以及步进频率间隔和中频滤波器带宽的合理设置。之后本文分析了采样时间累积长度对呼吸频率检测的影响,结合前面的实验结果,提出了合理的采样时间累积长度。在测量系统参数和采样时间累积长度确定后,本文对基于距离域滤波方法检测呼吸频率的误差和分辨力进行了分析。
Biological radar is an instrument which is used to detect the geographic informationand life information of life body in an unknown area. Its applications include disaster relief,medical application, security application and fight against terrorism and other occasions.The geographic information of life body is the spatial location of life body in an unknownarea. The life information of life body is respiratory rate, heartbeat rate and otherparameters.
     Biological radar obtain horizontal tomography image of the unknown region throughcomputer tomography, and the geographic information of life body can be determined inimage. Biological radar often needs to penetrate obstruction. The obstacle is manifested asa strong direct wave in the echo signal of radar, which affect to distinguish the target in theimage. Micro-Doppler effect is often used when using radar to detect human breathing,heartbeat and other micro-information. The difficulty is that weak signal is needed to bedetected in strong noise. Existing research results can not completely solve the problem ofdirect wave removal and the detection of breathing rate and heartbeat rate, so theapplication of it has certain limitation. Therefore, in-depth study in the echo signalprocessing and system parameters of biological is great significance to improve itsperformance. Doing research for the above problem in this paper, the main content is asfollows:
     (1)The research for near-field imaging algorithm of ultra-wideband steppedfrequency continuous radar. Firstly, the concept of near-field imaging is introduced. Themathematical model of the forward problem is established for ultra-wideband steppedfrequency continuous wave biological radar. Then synthetic aperture technology in biological radar imaging is introduced, The application of frequency-wavenumber domainimaging algorithm used in ultra-wideband stepped frequency continuous radar is studied,and the imaging performance of the algorithm is analyzed by simulation.
     (2)The research for direct wave suppression method of biological radar. Firstly, theeffect of direct wave to the imaging of biological radar is analyzed by theory. Fordeficiencies or limitations of traditional method used in the removal of direct signal, thesingular value decomposition method and complex FastICA method for removing directwave is proposed in this paper. The characteristic that the direct wave component accountsfor the main component in echo data is used in the singular value decomposition method.This method overcomes the shortcoming of the traditional Interference Canceling methodthat the amplitude of target signal is weakened after removing the direct signal. The signalto noise ratio of image is improved, and algorithm is fast. The complex FastICA method isproceed from the data structure of the echo signal.It is based on the higher order statisticscharacteristic of signal, and can decompose the signal into multiple independent signalcomponents, makes the strongest non-Gaussian among the various components of thesignal. Finally, the feasibility and effectiveness of the singular value decompositionmethod and the complex FastICA method is veritied in the experiment. The definition ofsignal to interference ratio of energy is proposed in this paper, and the comparement isdone among of Interference Canceling method, singular value decomposition method andcomplex FastICA method using two evaluations of signal to interference ratio of energyand signal to interference ratio.
     (3)The research for micro-Doppler information detection method of life body. Forthe deficiencies of detecting life body micro-Doppler information methods usingtraditional single-frequency continuous-wave emission signal, which is that the noisesuppression capability is weak, micro-Doppler information of multiple targets can not bedetected and the location of target can not be obtained when detecting micro-Dopplerinformation, ultra-wideband stepped frequency continuous wave emission signals anddistance domain filtering method is proposed in this paper for detecting life body micro-Doppler information. Firstly, the mathematical modeling of life body breathingsignal detection for ultra-wideband stepped frequency continuous wave biological radar isdone. Simulation is done for one-dimensional imaging of target in distance domain ofdifferent respiratory rate. Through the analysis of simulation results, the respiratory signalis almost attached to one-dimensional imaging of distance domain when the respiratoryrate is less than 1Hz. The simulation of interception in the one-dimensional imaging ofdistance domain is done, and the conclusion is obtained that the respiratory signal is notlost when doing interception at a certain distance of both sides for one-dimensionalimaging of distance domain. Based on the above conclusions, a distance domain filteringmethod is proposed in this paper for eliminating the noise and interference, and achievingthe detection purpose of breathing frequency of life body. The method described above isverified by experiment. In single body experiment, the respiratory rate can be detected. Indouble body experiment, the detection error increases due to the presence of multipathinterference, and even the respiratory rate detection fails. For strong background noise,which affects the judgement for one-dimensional distance domain imaging of target, adistance domain peak tracking method is used in this paper. This method can locate the lifebody and detect its respiratory rate in the case of strong background noise.
     (4)The research for measurement system parameters and sampling time cumulativelength of respiratory rate detection. In the measurement system, the parametersinconsistency of each frequency point of the antenna, the stepping frequency interval of thetransmitted signal and the IF filter bandwidth settings of the receiver affect measurementgreatly. In this paper, through the analysis of measurement environment and theoreticalderivation, the phasor difference method is proposed for removing the inconsistency ofantenna, and reasonable set of step frequency interval and the IF filter bandwidth.Then thispaper analyzes the effect of sampling time cumulative length for the detection ofrespiratory rate.Combined with the previous experimental results, a reasonable samplingtime cumulative length is proposed. Finally, the error and resolution of the respiratory rate detection based on the distance domain filtering method are analyzed after themeasurement system parameters and the sampling time cumulative length is determined.
引文
[1]陈宇杰,王健琪,路国华.非接触式生命信息检测技术的综述.医疗卫生装备, 2006, 27(3):32-33.
    [2] Droitcour A D, Boric-Lubecke O, Libecke V M, et al. 0.25μm CMOS and BiCOMS singal-chipdirect-conversion doppler radars for renote sensing of vital signals. IEEE International Conferenceon Solid-State Circuits, San Francisco, CA , USA, 2002: 348-350.
    [3]王焱源.射击运动员疲劳状态非接触式检测技术试验研究.体育科学, 2007, 27(8): 76-78.
    [4]刘永星,王健琪,荆西京等.基于超宽谱生物雷达微弱生命信号的非接触监测系统.医疗卫生装备, 2011, 32(5): 19-23.
    [5]张杨,焦腾,荆西京等.生物雷达技术的研究现状与新进展.信息化研究, 2010, 36(10): 6-13.
    [6] Li C Z, Xiao Y M, Lin J S. Design guidelines for radio frequency non-contact vital signal detection.IEEE EMBS Conference, Lyon, 2007: 1651-1654.
    [7] Morgan D R, Zierdt M G. Novel signal processing techniques for Doppler radar cardiopulmonarysensing. Signal Processing, 2009, 89(1):45-66.
    [8]张杨,王健琪,荆西京等.基于自适应滤波的生物雷达干扰抑制方法.仪器仪表学报, 2009,30(4): 807-811.
    [9]江峰.军用夜视技术及其对抗措施.红外, 2008, 29(7): 32-36.
    [10] American Science and Engineering, Inc. X-ray imaging for On-The-Body contraband detection.16thAnnual Security Technology Symposium & Exhibition, 2000.
    [11]牟健民,孟桂兰,张玉民.经X线影响对人体及其内部结构几何定量分析方法的研究.中国医学设备, 2009, 6(11): 4-7.
    [12]徐雯琪,王绪本.地震灾害搜救技术现状与发展趋势.防灾减灾工程学报, 2005, 25(1): 81-85.
    [13]简兴祥,王绪本,周熙囊等.一种基于时差的地震救助生命定位方法.物探化探计算技术,2003, 25(4): 354-357.
    [14] Edgcombe P. Latest advances in through-wall radar sensing for security applications. SensorReview, 2001, 28(3): 205-211.
    [15] Gaugue A C. Overview of current technologies for through-the-wall-surveillance. The InternationalSociety for Optical Engineering of SPIE - Proceedings , Bruges, Belgium, 2005, 5989:433-443.
    [16] He F, Zhu G F, Huang X T, et al. Preliminary results of ultra-wideband through-the-walllife-detecting radar. IEEE National Radar Conference - Proceedings, Washington, DC, 2010:1327-1330.
    [17] Caro C G, Bloice J A. Contactless apnoea detector based on radar. The Lancet, 1971,298(7731):959-961.
    [18] Franks C I, Brown B H, Johnston D M. Contactless respiration monitoring of infants. Medical andBiological Engineering and Computing, 1976, 14(3):306-312.
    [19] Franks C I, Watson J B, Brown B H, et al. Respiratory patterns and risk of sudden unexpecteddeath in infancy. Archives of Disease in Childhood, 1980, 55(8):595-599.
    [20] Misra D, Chen K M. Responses of electric-field probes near a cylindrical model of the human body.Microwave Theory and Techniques, 1985, 33(6):447-452.
    [21] Chen K M, Chuang H R. Measurement of heart and breathing signals of human subjects throughbarriers with microwave life-detection systems. Proceedings of the Annual InternationalConference of the Engineering in Medicine and Biology Society, New Orleans, LA, USA, 1988,3:1279-1280.
    [22] Chuang H R, Chen Y F, Chen K M. Microprocessor-controlled automatic clutter-cancellationcircuits for microwave systems to sense physiological movements remotely through the rubble.Instrumentation and Measurement Technology Conference, San Jose, CA, USA, 1990: 177-181.
    [23] Chuang H R, Chen Y F, Chen K M. Automatic clutter-canceler for microwave life-detectionsystems. IEEE Transaction on Instrumentation and Measurement, 1991, 40(4):747-750.
    [24] Greneker E F. Radar flashlight for through-the-wall detection of humans. Proceedings of the SPIE -Targets and Backgrounds: Characterization and Representation IV. 1998, 3375:280-285.
    [25] Greneker E F. Radar sensing of heartbeat and respiration at a distance with security applications.Proceedings of SPIE, Radar Sensor Technology. Orlando, Florida, 1997, 3066:22-27.
    [26] Yoshio Y, Masashi M, Masakazu S. Synthetic aperture FM-CW radar applied to the detection ofobjects buried in snowpack.. IEEE Transactions on Geoscience and Remote Sensing. 1994,32(1):11-18.
    [27] Lee J W, Lai A K Y. FDTD analysis of indoor radio propagation. Proceedings of Asia PacificMicrowave Conference, Atlanta, GA, USA, 1998: 1664-1667.
    [28] Borek S E, Clarke B J, Costianes P J. Through-the-wall surveillance for homeland security and lawenforcement. Proceedings of the SPIE - The International Society for Optical Engineering, 2005,5778(1):175-185.
    [29] David D, Ferris J, Nicholas C C. A survey of current technologies for through-the-wall surveillance.Sensors, C3I, Information, and Training Technologies for Law Enforcement of SPIE- Proceedings.Boston, MA, USA, 1998, 3577:62-72.
    [30] Agrawal A, Fougere B, Oravakandy M, et al. Design, construction and testing of a microwaveradar system for through-wall surveillance. MSc Thesis, University of Manitoba, Canada, 2004.
    [31] Chang C. Localization and Object-tracking in an Ultra Wide-band Sensor Network. Master Thesis,EECS Department, UC Berkeley. 2004.
    [32] Yazhou W. Three-dimensional through wall imaging using an UWB SAR. Antennas andPropagation Sociaty International Symposium, Torondo, Canada, 2010: 1-4.
    [33] Barrie G. Ultra-wideband synthetic aperture imaging - data and image processing. (DRDC OttawaTM 2003-0 1 5), Defense R&D Canada—Ottawa.
    [34] Gauthier S M, Chamma W. Through-the-wall surveillance. (DRDC Ottawa TM 2002. 108),Defense R&D Canada—Ottawa.
    [35] Boutros J, Barrie G. Ultra-wideband synthetic aperture radar imaging: effect of off-track motion onresolution, (DRDC Ottawa TM 2003-177), Defense R&D Canada—Ottawa.
    [36] Barrie G. Through-wall synthetic aperture radar (TWSAR) 3D imaging algorithm design, (DRDCOttawa TM 2004-224), Defense R&D Canada-Ottawa.
    [37] Barrie G. UWB impulse radar characterization and processing techniques. (DRDC Ottawa TM2004-224), Defense R&D Canada-Ottawa.
    [38] Falconer D, Steadman K, Watters D. Through the wall differential radar. Command, Control,Communications, and Intelligence Systems for Law Enforcement of SPIE - Proceedings, Boston,MA, USA, 1997, 2938:147-151.
    [39] Camero-Tech Ltd.Tactical through-wall imaging solutions. http://www.camero-tech.com
    [40] Bugaev A S. Through wall sensing of human breathing and heart beating by monochromatic radar.Tenth International Conference on Ground Penetrating Radar. Delft, The Netherlands, 2004:291-294.
    [41] Greneker G. Very low cost stand-off suicide bomber detection system using human gait analysis toscreen potential bomb carrying individuals. The International Society for Optical Engineering ofSPIE - Proceeding. Orlando, FL, USA, 2005, 5788:45-56.
    [42] Otero M. Application of a continuous wave radar for human gait recognition. Signal Processing,Sensor Fusion, and Target Recognition XIV of SPIE - Proceeding. Orlando, FL, USA, 2005,5809:538-548.
    [43] Gurbuz S Z, Melvin W L. Detection and identification of human targets in radar data. SignalProcessing, Sensor Fusion, and Target Recognition XVI of SPIE - Proceeding. Orlando, FL, USA,2007, 6567(1):1-11.
    [44] Chaleb A, Vignaud L, Nicolas J M. Micro-doppler analysis of pedestrians in ISAR imaging. IEEERadar Conference. Rome, 2008: 1-5.
    [45] Smith G E, Woodbridge K, Baker C J. Micro-doppler signature classification. IEEE InternationalConference on Radar. Shanghai, China, 2006.
    [46] Thayaparan T, Abrol S, Riseborough E, et al. Analysis of radar micro-doppler signatures fromexperimental helicopter and human data. Radar Sonar & Navigation. 2007, 1(4):289-299.
    [47] Chen V C. Analysis of radar micro-doppler signature with time-frequency transforms. IEEEProceeding-Workshop on Statistical and Array. Pocono Manor, PA, 2000: 463-466.
    [48] Chen V C. Micro-doppler effect of micro motion dynamics: a review. Independent ComponentAnalyses, Wavelets, and Neural Networks of SPIE - Proceeding. Orlando, FL, USA, 2003,5102:240-249.
    [49]陈行勇,黎湘,姜斌.基于微多普勒信息的空中目标识别.现代雷达. 2006, 28(10): 30-33.
    [50]刘进,马梁,王雪松等.微多普勒的参数化估计方法.信号处理. 2009, 25(11): 1759-1765.
    [51]孟升卫,黄琼,吴世有等.超宽带穿墙雷达动目标跟踪成像算法研究.仪器仪表学报. 2010,31(3): 500-506.
    [52]晋良念,欧阳缮.超宽带穿墙探测雷达TH-UWB脉冲串信号分析.电路与系统学报. 2009,14(5): 26-30.
    [53]王扬,朱振乾,陈明.穿墙生命探测系统干扰抑制方法的研究与实现.电子测量技术. 2009,32(9): 34-37.
    [54]郭山红,孙锦涛,谢仁宏.穿墙生命探测回波信号分析.南京理工大学学报(自然科学版).2008, 32(5): 594-598.
    [55]王宏,周正欧,孔令讲等.超宽带噪声穿墙雷达成像与实验研究.现代雷达. 2010, 32(6):46-48.
    [56]张红旗.穿墙目标探测的Burg算法.信号与信号处理. 2009, 39(10): 22-24.
    [57]宋美丽,周亮,罗迎等.线性调频步进信号雷达目标微多普勒效应分析.空军工程大学学报(自然科学版). 2009, 10(6): 41-45.
    [58]苏婷婷,孔令讲,杨建宇等.基于多谐波微多普勒信号分析的目标摄动参数提取方法.电子与信息学报. 2008, 30(11): 2646-2649.
    [59]孙照强,鲁耀兵,李宝柱等.宽带信号及其特征的微多普勒提取技术研究.系统工程与电子技术. 2008, 30(11): 2040-2044.
    [60]罗迎,池龙,张群等.用慢时间域积分法实现雷达目标微多普勒信息的提取.电子与信息学报. 2008, 30(9): 2055-2059.
    [61]施西野,郭汝江,李明.雷达微多普勒信息提取和目标识别研究现状.信息化研究. 2009,35(7): 8-11.
    [62] Wang J Q, Zheng C X, Lu G H, et al, A New Method for Identifying the Life Parameters via Radar.EURASIP Journal on Advances in Signal Processing. 2007, 2007(1):1-8.
    [63] Wang J Q, Zheng C X, Jing X J, et al. Study on a non-contact life parameter detection system usingmillimeter wave. Space Medicine and Medical Engineering. 2004, 17(3):157-161.
    [64] Lv H, Lu G H, Jing X J, et al. A new ultra-wideband radar for detecting survivors buried underearthquake rubbles. Microwave and Optical Technology Letters. 2010, 52(11):2621–2624.
    [65] Jiao M K, Lu G H, Jing X J. A Novel Radar Sensor for the Non-Contact Detection of SpeechSignals. Sensors. 2010, 10(5):4622-4633.
    [66] Lu G H, Yang F, Tian Y. Contact-free measurement of heart rate variability via a microwavesensor. Sensors. 2009, 9(12): 9572-9581.
    [67] Li S, Wang J Q, Niu M. Millimeter wave conduct speech enhancement based on auditory maskingproperties, Microwave and Optical Technology Letters. 2008, 50(8):2109–2114.
    [68] Li S, Wang J Q, Niu M. The enhsncement of millimeter wave conduct speech based on perceptualweighting. Progress in Electromagnetics Research B. 2008, 9:199–214.
    [69]王湘新,湖南省消防总队参与的“警用超宽带生命探测仪样机研制”项目通过公安部消防局项目验收. http://www.hn119.gov.cn/article/show.asp?id=109753
    [70]王宏, Narayanan R M,周正欧.基于改进EEMD的穿墙雷达动目标微多普勒特性分析.电子与信息学报. 2010, 32(6): 1355-1360.
    [71]李晋,皮亦鸣,杨晓波.太赫兹频段目标微多普勒信号特征分析.电子测量与仪器学报. 2009,23(10): 25-30.
    [72]张翼,朱玉鹏,刘峥.基于微多普勒信息的人体上肢运动参数估计.宇航计测技术. 2009,29(3): 20-25.
    [73]张翼,邱兆坤,朱玉鹏.基于微多普勒信息的人体步态参数估计.信号处理. 2010, 26(6):917-922.
    [74]吴世有,黄琼,陈洁.基于超宽带穿墙雷达的目标定位识别算法.电子与信息学报. 2010,32(11): 2624-2629.
    [75] Noel Bruce. Ultrawideband radar: processing of the first Los Alamos synposium. USA: CRC press,boca raton edition, 1991.
    [76]马骏声. NMD-GBR雷达的测量能力及其性能参数.航天电子对抗. 2002, (5): 1-8.
    [77]马骏声. NMD GBR-P雷达信号模拟器的技术功能.航天电子对抗. 2002, (4): 1-7.
    [78]刘爱国,吴桂生.超宽带雷达的四抗性研究.舰船电子对抗. 2005, 28(5): 18-20.
    [79]李江源,王建国,杨建宇等.超宽带雷达的低截获性分析.雷达科学与技术. 2005, 3(5):266-270.
    [80] Geng N, Carin L. Ultrawideband, short-pulse scattering from a dielectric body of revolution buriedin a lossy, dispersive layered medium. IEEE Transactions on Antennas and Propagation. 1999,47(4): 610-619.
    [81] Morgan M A. Time-domain impulse scattering measurements. IEEE Transactions. antennas andpropagation. 1994, 42(6): 840-846.
    [82] Vickers R S, Gonzalez V H, Ficklin R W. Results from a VHF impulse synthetic aperture radar.The International Society for Optical Engineering of SPIE - Proceeding, Porto, Portugal, 1992,1631:219-225.
    [83] vitebskiy S, Carin L, Ressler M, et al. Ultra-wideband, short-pulse ground-penetrating radar: theoryand measurement. IEEE Transaction on Geoscience and Remote Sensing. 1997, 35(5):762-772.
    [84] Astanin L, Kostylev A. Radar target characteristics: measurement and application. USA: CRCPress, 1994.
    [85] Walter G C, Ron S G, Ronald M M, et al. Spotlight synthetic aperture radar signal processingalgorithms. Artech Print on Demand, london, 1995.
    [86] Hellsten H, Ulander L, Gustavsson A, et al. Development of VHF CARABASⅡSAR. RadarSensor Technology of SPIE - Proceeding, Orlando, Florida, 1996, 2747:48-60.
    [87]方学立. UWB-SAR图像中的目标检测与鉴别:(博士论文),长沙:国防科学科技大学,2005.
    [88] David A N. Stepped-frequency radar design and signal processing enhances ground penetratingradar performance:(PhD thesis), Australia, 1996.
    [89] Aruna G, Dennis L. Wave equation formulation of synthetic aperture radar (SAR) algorithms in thetime-space domain. IEEE Transactions on GRS, 1998, 36(6):1995-1999.
    [90] Ahmad F, Amin M G, Kassam S. A synthetic aperture beamformer for imaging through a dielectricwall. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1):271-283.
    [91]任丽,香龙腾,远海鹏. HPRF脉冲多普勒频率步进雷达信号处理与参数设计.电子学报,2007, 35(9): 1630-1636.
    [92]陈行勇,刘永祥,黎湘等.步进频率信号相位对消合成运动目标距离像.电子与信息学报,2007, 29(4): 815-818.
    [93] Kong L J. Life detection algorithm for stepped-frequency CW radar. 2009 IET International RadarConference, Gui Lin, China, 2009: 1-4.
    [94] Folkesson K K. Model-baesd compensation of topographic effects for improved stem-volumeretrieval from CARABAS-ⅡVHF-band SAR images. IEEE Transactions on Geoscience andRemote Sensing, 2009, 47(4): 1045-1055.
    [95] Valle S, Zanzi L. 2D and 3D focusing of ground penetrating radar for NDT. Eighth InternationalConference on Ground Penetrating Radar of SPIE - Proceeding, Gold Coast, Australia, 2000,(4084):157-162.
    [96] Brooks J, vanKempen L, Sahli H. A primary study in adaptive clutter reduction and buriedminelike target enhancement from GPR data. Detection and Remediation Technologies for Minesand Minelike Targets V of SPIE - proceeding, Orlando, FL, USA, 2000: 1183-1192.
    [97] Larsson E G, Li J,Habersat J, et al. Removal of surface return in ground-penetrating radar data.Detection and Remediation Technologies for Mines and Minelike Targets VI of SPIE–Proceeding,2001, Orlando, FL, USA, 4394:764-775.
    [98] Potin D, Duflos E, Vanheeghe P. Landmines ground-penetrating radar signal enhancement bydigital filtering. IEEE Transaction on Geoscience and Remote Sensing, 2006, 44(9): 2393-2406.
    [99]包乾宗,陈文超,高静怀等.探地雷达直达波衰减的Curvelet变换方法.电波科学学报, 2008,23(3): 449-454.
    [100]张蓓,刘家学,吴仁彪.探地雷达子空间地杂波抑制方法研究.信号处理, 2005, 21(4):514-517.
    [101]高守传,黄春琳,粟毅.基于RLS横向滤波自适应抵消法的直达波抑制.信号处理, 2004,20(6): 566-571.
    [102]倪安胜,王健琪,杨国胜等.基于FFT频域积累的非接触生命参数信号检测.第四军医大学学报, 2003, 24(2): 172-175.
    [103]冯正权,何庆华,吴宝明等.基于高阶统计量分析的生物医学信号处理应用.中国医学物理学杂志, 2011, 28(5): 2899-2903.
    [104]邹永星,周仁魁.一种基于高阶累积量的生命体低速运动信号检测和识别方法.光子学报,2007, 36(9): 1738-1741.
    [105] Acharya U R, Chna K C. Application of higher order spectra for the identification of diabetesretinopathy stages. Journal of Medical Systems, 2008, 32(6):481-490.
    [106]梁军利,杨树元,唐志峰.基于随机共振的微弱信号检测.电子与信息学报, 2006, 28(6):1068-1072.
    [107] Hu N Q, Chen M, Wen X S. The application of stochastic resonance theory for early detectingrub-impact fault of rotor system. Mechanical Systems and Signal Processing, 2003, 17(4):883-895.
    [108] Anderson B E, Griffa M, Ulrich T J, et al, Improving spatial resolution of a time-reversed focususing frequency-domain signal processing. Journal of the Acoustical Society of America..2007,122(5): 3072.
    [109] Ahmad F, Zhang Y M, Amin M G. Three-dimensional wideband beamforming for imagingthrough a single wall. IEEE Geoscience and Remote Sensing Letters. 2008, 5(2): 176-179.
    [110]谢敬辉,廖宁放,曹良才.傅里叶光学与现代光学基础.北京:北京理工大学出版社, 2007.
    [111]戈鲁,赫兹若格鲁.电磁场与电磁波.北京:机械工业出版社, 2006.
    [112] Nguyen L H, Ressler M, Soumekh M. Signal processing and image formation usinglow-frequency ultra-wideband radar data. Proceedings of SPIE: Detection and RemediationTechnologies for Mines and Minelike Targets. orlando, USA, 2004: 1053-1064.
    [113]戴华.矩阵论.北京:科学出版社, 2007.
    [114]杨竹青,李勇,胡德文.独立成分分析方法综述.自动化学报, 2002, 28(5): 762-772.
    [115]张建明,林亚平,吴宏斌等.独立成分分析的研究进展.系统仿真学报, 2006, 18(4):992-1001.
    [116] Hyv rinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEETransaction On Neural Networks. 1999, 10(3): 626-634.
    [117]姚俊良,杨小牛,李建东等.用于共道通信系统的FastICA算法性能分析.信号处理, 2010,26(5): 771-777.
    [118] Erdogan A T. Globally convergent deflationary Instantaneous blind source separation algorithmfor digital communic;ation signal. IEEE transactions on signal processing. 2005, 55(5): 2182-2192.
    [119] Kostanic I, Mikhael W. Independent component analysis based QAM receiver. Digital SignalProcessing. 2004, 14(3): 241-252.
    [120] Bingham E, Hyv rinen A. A Fast fixed-point algorithms for independent component analysis ofcomplex valued signals. International Journal of Neural Systems. 2000, 10(1): 1-8.
    [121]李镜,林秋华.一种应用幅值信息的一单元定点复数ICA-R算法.电子与信息学报, 2008,30(11): 2666-2669.
    [122]朱永峰,杨杰,董铮等.基于复数FastICA算法的短波同频信号盲源分离.通信对抗, 2008,104(4): 22-25.
    [123] Wang Y Z, Kuhn M J, Fathy A E. Advanced system level simulation of UWB three-dimensionalthrough-wall imaging radar for performance limitation prediction. 2010 IEEE/MTT-S InternationalMicrowave Symposium, Anaheim, CA, 2010: 165-168.
    [124] Thayaparan T, Stankovic L, Djurovic I. Intelligent target recognition using micro-Doppler radarsignatures. Radar Sensor Technology XIII of SPIE - Proceedings, Orlando, FL, USA, 2009,7308:17-28.
    [125] Agilent Technologies. E5071C ENA网络分析仪手册. 2010. http://cp.literature.agilent.com/litweb/pdf/5989-5478CHCN.pdf.
    [126] Wang G, Zhang Y, Amin M G. A new approach for target locations in the presence of wallambiguities. IEEE Transactions on Aerospace and Electronic Systems. 2006, 42(1): 801-805.
    [127]李镜,林秋华.一种应用幅值信息的一单元定点复数ICA-R算法.电子与信息学报, 2008,30(11): 2666-2669.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700