采用码分多址技术实现的光纤光栅自相关数字解调方法及传感网络
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统的机电传感器相比,光纤光栅传感器具有质量轻、体积小、频带宽、信号衰减弱、抗电磁干扰能力强、耐腐蚀性能好、寿命长、易实现分布式测量、不受潮湿环境影响等特点,自问世以来一直受到人们的关注。过去20年间,光纤光栅传感器得到迅速发展,其测量范围从机械量到电子量、化学量,几乎无所不包。
     但是,因为光纤光栅传感器结构复杂,价格高昂,而且可维护性差,所以虽然其性能十分完备,并且通常被认为具有优势,但应用范围却极为有限,只能用于非常特殊的场合。在传感器市场上,它只占有很小的市场份额,经济效益并不令人满意。
     在文献综述的基础上,本文指出光纤光栅传感器在封装形式、解调方案和网络结构上的缺陷是造成上述问题的主要原因,具体表现为:(1)结构上采用一体化设计方案,敏感光栅与传导光纤制作在同一根光纤上,重复性差,安装维护困难;(2)解调方法上完全依赖昂贵的光学器件进行频域分析,技术复杂,分辨率低,价格高昂;(3)复用系统中使用串联结构,光源与测量信号沿同一根光纤双向传输,容量有限,可靠性低,灵活性差,难于维护。
     为了解决以上问题,本文进行了以下创新:
     (1)为降低光纤光栅传感器的成本,满足工程测试领域对光纤光栅传感波长漂移高分辨率测量的需要,推动光纤光栅传感器在工程测试领域的应用,本文提出一种基于信号自相关原理的新型光纤光栅数字解调方法。
     该方法在可调谐滤波法的基础上,通过对光电探测器输出信号采用自相关分析,将对传感光栅反射谱波长漂移的测量转换为对光电探测器输出准周期信号时间漂移的测量,不仅能够准确解调,而且具有识别传感光栅反射谱形状的特点,能够有效克服各种加性噪声对信号的影响。
     仿真结果表明,即使在传感光栅具有相同波长变化范围的情况下,自相关数字解调方法也可以准确解调传感光栅波长漂移,但测量结果存在时间延迟,而且精度较低。
     (2)由于自相关数字解调方法对系统初始参数敏感,且需要通过数值方法求解非线性方程组以得到测量结果,所以不容易实现,解调精度也很难提高。为解决这一问题,本文进一步引入码分多址(CDMA:Code Division MultipleAccess)技术,通过对光电探测器输出信号进行编码简化了自相关数字解调方法的数值求解过程。
     码分多址技术是光纤通信主流信道复用技术之一。它能通过分配给每一个用户的唯一的地址码对用户发送信息进行扩频处理,并在数据接收端通过相关运算和特定门限判决技术从来自多个用户的叠加信号中恢复指定用户的原始信号,实现数据接收。
     研究表明,通过使用不同中心波长的光纤光栅对测点进行二进制编码,不同测点的传感器反射谱形状有了明显差异,使自相关数字解调方法对系统初始参数的敏感性明显降低。同时,自相关数字解调方法需要求解的非线性方程组被转换为线性方程组,测量精度明显提高。
     仿真结果表明,在传感光栅具有相同波长变化范围的情况下,采用码分多址技术实现的自相关数字解调方法也可以准确解调,而且不存在时间延迟,测量精度也远高于不采用码分多址技术的自相关数字解调方法。
     (3)为了增加复用系统的容量,提高系统的可靠性、可维护性和可扩展性,降低系统成本,本文在自相关数字解调方法的基础上,提出两种类似现场总线结构的光纤光栅传感系统:梯形光纤光栅传感网络和星型光纤光栅传感网络。
     在采用自相关数字解调方法构成的梯形光纤光栅传感网络中,光源与光纤光栅传感器并联在两根彼此独立的光纤之间,可靠性好,容易扩展;同时,通过对光电二极管输出信号的自相关分析,系统可以区分中心波长相同但谱线形状不同的传感器,不仅使系统容量大幅增加,而且能够保证测量精度不受系统规模影响。
     理论分析和实验研究表明,即使在传感光栅中心波长相同的情况下,采用自相关数字解调方法构成的光纤光栅传感网络也能够正确解调,从而使系统复用传感器的数目增加,而且可靠性高,易于维护和扩展,但测量灵敏度较理论值低。
     在采用码分多址技术实现的星型光纤光栅自相关数字传感网络中,每一个测点都用多个编码/传感光栅进行二进制编码,并通过星型网络连接到自相关数字解调仪上。测量时,宽带光源发出的光被编码/传感光栅反射后形成一系列离散谱片,其位置由外界被测量大小决定,经星型耦合器叠加后同时进入自相关数字解调仪进行数字解调,实现测量目的。
     理论分析表明,与现在使用的光纤光栅传感系统相比,采用码分多址技术实现的星型光纤光栅传感网络具有良好的灵活性,扩展方便,容易维护,可靠性高。而且由于允许为每一个测点提供一个独立的光源,所以容易获得高信噪比,更易于远程测量。
     总而言之,在光纤光栅自相关数字传感网络中,由于采用光纤光栅反射谱形状对测点进行寻址,系统容量明显增加;同时,由于采用相互独立的光纤分别传输能量信号和测量信号,系统的灵活性、可靠性和可维护性都得到增强。因此,基于自相关数字解调方法的光纤光栅传感系统能够有效降低光纤光栅传感器的安装成本和使用成本,充分发挥光纤光栅传感器复用能力强、易实现大规模远距离测量的优势。
     (4)最后,为了克服光纤光栅传感器重复性差、安装维护困难、安装质量无法保证的缺陷,方便工程技术人员在测试现场实现CDMA编码,本文给出一种分体插接式通用型光纤光栅应变传感预制结构——光纤光栅应变片。
     光纤光栅应变片采用分体式设计,把敏感光栅和传导光纤分别封装于光连接器两个相互独立的基体内部,并通过两个基体相互之间的插入实现光纤光栅与测量光路的机械联接。这种设计方法不但保留了光纤光栅良好的应变测试特性,减小了温度误差,而且在保证抗剪切能力的同时实现了机械式连接,便于一般工程技术人员使用,易于在测试现场进行CDMA编码,有利于光纤光栅传感技术在工程应用中的推广。
     理论分析和实验研究表明,光纤光栅应变片具有与光纤光栅相同的反射谱,测量线性度好,测量灵敏度高,且当试件材料与基底材料一致时,温度误差可以忽略。
Compared with the traditional electromachanical sensors, Fiber Bragg Grating (FBG) sensor has many advantages, such as light weight, small size, wide frequency band, low signal attenuation, high anti-electromagnetic interference ability, excellent corrosion resistance properties, long service life, easy to form distributed measurement system, immune to humid environment, and so on. FBG sensors have received people's attention continuously since its appearance, and have developed rapidly over the past 20 years, its measurement fields includes mechanical parameters, electronic parameters and chemical parameters, almost all-encompassing.
     However, the FBG sensor's application scope is extremely limited.Because of its complex structure, expensive price and poor maintainability; the FBG sensor could only be used for very special situations and only occupies a very small market share in the sensor market, although it is generally considered an outstangding transducer and its performance is very perfect.
     Based on the review of its basic and applied researches, the reason that caused above questions was summed up in the shortcomings of the FBG sensor's package, its demodulation method and multiplexing network in this dissertation. In details, (1) the FBG sensor's package, which manufactured the sensitive grating and the conduction optic fibers on the same fiber, decease its reliability and maintainability; (2) the FBG sensor's demodulator, in which the measurement results are obtained by frequency domain analysis entirely dependent on expensive optical devices, reduce its resolution and increase its price; and (3) the FBG sensor's multiplexing network using series structure, which transmissit the lightsource signal and the measuring signal along opposite directions in same fiber, limits its capacity and makes it unextensible. Above reasons increased the FBG sensor's installation costs and use costs, as a result, its application in engeering has been limited.
     To solve these problems, this dissertation proposed the following innovations:
     (1) A new digital demodulation method based on signal autocorrelation principle is proposed to detect the wavelength drift of FBG sensors used in engineering with high resolution and to reduce its expensive price.
     By autocorrelation analysis of photodiode output signal sequence, the digital demodulation method developed from the matched filtering method transform the wayelength measurement of FBG sensor's reflect spectrum into the time measurement of photodiode output electronic signal, overcome the influence of noise while realize high precision detection of wavelength drift. And, this method also has quick scan speed and powerful multiplexing capability by recognize the reflection spectrum of FBG sensors.
     The numerical simulation results indicated that the digital demodulation method can detect the wavelength drift accurately when the FBG sensors have different range, and can be used when the FBG sensors have the same range. But the precision is low, and has time delay.
     (2)The CDMA (Code Division Mulitple Access) technology has been introduced into the autocorrelation numeral demodulation method, to reduce its sensitivity to the FBG sensor's initial parameters and simplify its solving process of the nonlinear equations.
     CDMA is another technology of multiplexing and multi-access besides TDM and WDM, which supports multiple simultaneous transmissions in the same timeslot and the same frequency by coding in the optical domain. Especially, by autocorrelation analysis and threshold judgement, it can restore some user's signal from multi-user's superposition signal received at the same time using its unique address.
     By coding with Bragg grating, the sensitivity to the FBG'sensor's initial parameters reduced significantly for the reflection spectrum from different measurement point has an obviously difference, and the precision improved significantly for the nonlinear equations have been converted to linear equations.
     The numerical simulation results indicated that the digital demodulation method realized by CDMA can detect the wavelength drift precisely when the FBG sensors have the same or different range, and has not time delay.
     (3)Based on the autocorrelation digital demodulating method, two kind of multiplying networks named ladder FBG sensing network and star FBG sensing network are proposed, which have a similar structure to field bus system and can increase its capacity and improve its reliability, maintainability and expansibility.
     In the ladder FBG sensing network, the light source and FBG sensors are parallel to two independent fibers, which decrease its fault rate and make it easy to expand. At the same time, sensors with same central wave length but different spectrum can be differentiated through the autocorrelation operation of photodiode output signal, which guarantee the measuring accuracy's not be influenced by the measuring point quantity of system.
     The theoretical analysis and experiment study indicated that the ladder FBG sensing network has a lower fault rate, and the system's measuring accuracy is not influenced by its scale, but lower than calculated value.
     In the star FBG sensing network using CDMA, every measurement point encoded by FBG has a unique binary code and connects to the autocorrelation digital demodulator by the star network. The lights emitted from a broadband source are reflected by encoding/sensing FBG, and generate a series of discrete spectrum films decided by the measurand.Through a star coupler, the spectrum film from different measurement points are superimposed and send to an autocorrelation digital demodulator, and obtained the measurands finally.
     The theoretical analysis indicated that the star FBG sensing network using CDMA has good reliability, maintainability and expansibility due to its easy access and flexible network structure, and is suitable for remote measurement because the SNR can be improved by an independent lightsource provided to the measurement point.
     In conclusion, either the ladder FBG sensing network or the star FBG sensing network can reduce the FBG sensor's installation costs and use costs, and give full play to the FBG sensor's multiplexing ability and its remote measurement ability.
     (4) Finally, a new kind of general prefabricated strain sensor called FBG strain gauge is designed in order to improve the FBG sensor's reliability, maintainability and meet the engineer's requirements for CDMA coding in engineering.
     The FBG strain gauge has a separated plug structure. In this structure, the sensitive grating and the transmit optical fiber are designed separately in independent matrixes, and can be plugged in each other to realize the mechanical connection.
     Theoretical analyses indicated that the FBG strain gauge has the same reflection spectrum with FBG grating, and successive experiments indicated that it has good linearity and high sensitivity, whereas the temperature error changed with the specimen's changing. When the specimen and the strain gauge's matrix are made by the same material, the temperature error can be ignored.
引文
[1]GB/T 18901.1-2002.光纤传感器 第1部分:总规范[S].北京:中国标准出版社,2002.
    [2]Ramaier N,Otto S W.Optical Sensors:Industrial,Environmental and Diagnostic Applications[M].北京:科学出版社,2008.
    [3]Silvano Donati.光电仪器:激光传感与测量[M].西安:西安交通大学出版社,2006,237-239.
    [4]Schroder N.Press Release:Sensor Markets 2008[M].Switzland:Intechno Consulting,1999:69-93.
    [5]Culshaw B.Optical Fiber Sensors:Principles and Components[M].Boston:Artech House Publishers,1988.
    [6]Silvana Donati.光电仪器:激光传感与测量[M].西安:西安交通大学出版社,2006:236-273.
    [7]李川,张以谟,赵永贵,等.光纤光栅:原理、技术与传感应用[M].北京:科学出版社,2005:1.
    [8]饶云江,王义平,朱涛.光纤光栅原理及应用[M].北京:科学出版社,2006:136-137.
    [9]廖延彪.光纤光学[M].北京:清华大学出版社,2000,198-202.
    [10]廖延彪.光纤光学[M].北京:清华大学出版社,2000,203-204.
    [11]Kersey A D,Marrone M J.Fiber Bragg grating high-magnetic-field probe[C].Glasgow,United Kingdom:Proc.SPIE,1994:2360,53-56.
    [12]李川,张以谟,赵永贵,等.光纤光栅:原理、技术与传感应用[M].北京:科学出版社,2005:108-114.
    [13]W W M,G M,W H G.Fiber optic Bragg grating sensors[C].SPIE Conference on Fiber Optic and Laser Sensors,1989:1169,98-107.
    [14]Rao Y J,Jackson D A.A prototype multiplexing system for use with a large number of fibre-optic-based extrinsic Fabry-Perot sensors exploiting low coherence interrogation[C].Proc.SPIE.,1995:2507,90-98.
    [15]李川,张以谟,赵永贵,等.光纤光栅:原理、技术与传感应用[M].北京:科学出版社,2005:114-116.
    [16]饶云江,王义平,朱涛.光纤光栅原理及应用[M].北京:科学出版社,2006,163.
    [17]Caucheteur C,Lhomme F,Chah K,et al.Fiber bragg grating sensor demodulation technique by synthesis of grating parameters from its reflection spectrum[J].Optics Communications.2004,240(4-6):329-336.
    [18]Zhao Y,Liao Y B.Discrimination Methods and Demodulation Techniques for Filter Bragg Grating Sensors[J].Optics and Lasers in Engineering.2004,41(1):1-18.
    [19]Kersey A D,Davis M A,Patrick H J,et al.Fiber grating sensors[J].Journal of Lightwave Technology.1997,15(8):1442-1463.
    [20]廖延彪.光纤光学[M].北京:清华大学出版社,2000:259.
    [21]靳伟,廖延彪,张志鹏.导波光学传感器:原理与技术[M].北京:科学出版社.1998.
    [22]李川,张以谟,赵永贵,等.光纤光栅:原理、技术与传感应用[M].北京:科学出版社,2005:222.
    [23]张引发,王宏科,邓大鹏.光缆线路工程设计、施工与维护[M].北京:电子工业出版社,2002:29-31.
    [24]陈炳炎.光纤光缆的设计和制造[M].杭州:浙江大学出版社,2003.
    [25]饶云江,王义平,朱涛.光纤光栅原理及应用[M].北京:科学出版社,2006:154-156.
    [26]Askins C G,Putnam M A,Patrick H J,et al.Fibre strength unaffected by on-line writing of single-pulse Bragg gratings[J].Electronics Letters.1997,33(15):1333-1334.
    [27]Varelas D,Limberger H G,Salathe R P,et al.UV-induced mechanical degradation of optical fibres[J].Electronics Letters.1997,33(9):804-806.
    [28]Feced R,Roe-Edwards M P,Kanellopoulos S E,et al.Mechanical strength degradation of UV exposed optical fibres[J].Electronics Letters.1997,33(2):157-159.
    [29]Rothschild M,Ehrlich D J,Shaver D C.Effects of Excimer Laser Irradiation on the Transmission,Index of Refraction,and Density of Ultraviolet Grade Fused Silica[J].Applied Physics Letters.1989,55:1276-1278.
    [30]Fiori C,Devine R A B.Ultraviolet Irradiation Induced Compaction and Photoetching in Amorphous Thermal SiO2[J].Materials Research Society Symposium Proceedings.1986,61:187-195.
    [31]李川,张以谟,赵永贵,等.光纤光栅:原理、技术与传感应用[M].北京:科学出版社,2005:29-31.
    [32]饶云江,王义平,朱涛.光纤光栅原理及应用[M].北京:科学出版社,2006:5.
    [33]Poumellec B,Kherbouche F.The Photorefractive Bragg Gratings in the Fibers for Telecommunications[J].Journal of Physics Ⅲ France.1996,6:1595-1624.
    [34]Erdogan T,Mizrahi V,Lemaire P J,et al.Decay of ultraviolet-induced fiber Bragg gratings[J].Journal of Applied Physics.1994,76(1):73-80.
    [35]Kannan S,Guo J Z,Lemaire P J.Thermal stability analysis of UV-induced fiber Bragg gratings[J].Journal of Lightwave Technology.1997,15(8):1478-1483.
    [36]于秀娟,余有龙,张敏,等.铜片封装光纤光栅传感器的应变和温度传感特性研究[J].光子学报.2006,35(9):1325-1328.
    [37]詹亚歌,蔡海文,耿建新,等.铝槽封装光纤光栅传感器的增敏特性研究[J].光子学报.2004,33(8):952-955.
    [38]江毅,严云,Christopher,等.光纤光栅腐蚀传感器[J].光子学报.2006,35(1):96-99.
    [39]Chan T H,Yu L,Tam H Y,et al.Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge:Background and experimental observation[J].Engineering Structures.2006,28(5):648-659.
    [40]罗建花,开桂云,刘波,等.轮辐式光纤光栅压力传感器的设计与实现[J].光子学报.2006,35(01):105-108.
    [41]Ezbiri A,Kanellopoulos S E,Handerek V A.High resolution instrumentation system for fibre-Bragg grating aerospace sensors[J].Optics Communications.1998,150(1-6):43-48.
    [42]李川,张以谟,赵永贵,等.光纤光栅:原理、传感与应用[M].北京:科学出版社,2005:179.
    [43]Tennyson R.Installation,Use and Repaire of Fiber Optic Sensors[M].ISIS Canada Design Manual,Spring,University of Manitoba,Winnipeg,Manitoba,Canada,2001.
    [44]涂亚庆,刘兴长.光纤智能结构[M].北京:高等教育出版社,2005:450.
    [45]Brady G P,Kalli K,Webb D J.Archambault,simultaneous measurement of strain and temprature using the first-and sercond diffraction wavelength of Bragg gratings[C].IEE Proceedings in Optoelectronics,1997:114,156-161.
    [46]Yoffe G W,Krug P A,Ouellette F,et al.Passive temperature-compensating package for optical fiber gratings[J].Applied Optics.1995,34(30):6859-6861.
    [47]Iwashima T,Inoue A,Shigematsu M,et al.Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes[J].Electronics Letters.1997,33(5):417-419.
    [48]李川,孙宇,吴晟,等.分离应变和温度的差动式光纤Bragg光栅传感器[J].仪表技术与传感器.2004(03):53-54.
    [49]Xu M G,Dong L,Reekie L,et al.Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fibre[J].Electronics Letters.1995,31(10):823-825.
    [50]Xu M G,Archambault J L,Reekie L,et al.Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors[J].Electronics Letters.1994,30(13):1085-1087.
    [51]Jones J D C.Review of fiber sensor techniques for temperature-strain discrimination[C].Williamsburg,VA,USA:1997,36-39.
    [52]Udd E,Nelson D V,Lawrence C M.Three axis strain and temperature sensor[C].Sapporo,Japan:Proceedings os the Optical Fiber Sensors Conference,1996,224-247.
    [53]Kalli K,Brady G,Webb D J,et al.Possible approach for the simultaneous measurement of temperature and strain via first and second order diffraction from Bragg grating sensors[C].London,UK:Proceedings of the Optical Fiber Sensors Conference,1995,11-15.
    [54]Kannellopoulos S E,Handerek V A,Rogers A J.Simultaneous strain and temperature sensing with photogenerated in-fiber gratings[J].Optics letters.1995,20:333-335.
    [55]Song M,Lee B,Lee S B,et al.Interferometric temperature-insensitive strain measurement with different-diameter fiber Bragg gratings[J].Optics Letters.1997,22(11):790-792.
    [56]关柏鸥,Tamhy,Hosl,等.用一根光纤光栅实现温度与应变的同时测量[J].光学学报.2000,20(06):821-826.
    [57]Patrick H J,Williams G M,Kersey A D,et al.Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination[J].IEEE Photonics Technology Letters.1996,8(9):1223-1225.
    [58]Smith J,Brown A,Demerchant M,et al.Simultaneous strain and temperature measurement using a Brillouin scattering based distributed sensor[C].Newport Beach,CA,USA:Proceedings of SPIE-The International Society for Optical Engineering,1999:3670,366-373.
    [59]Davis M A,Kersey A D.Separating the temperature and strain effects on fiber Bragg grating sensors using stimulated Brillouin scattering[C].San Diego,CA,USA:Proc.SPIE,1996:2718,270-278.
    [60]Davis M A,Kersey V A.Simultaneous measurement of temperature and strain using fiber Bragg grating sensors and Brillouin scattering:SPIE[Z].1996:2838,114-123.
    [61]Shu X,Zhao D,Zhang L,et al.Use of dual-grating sensors formed by different types of fiber Bragg gratings for simultaneous temperature and strain measurements[J].Applied Optics.2004,43(10):2006-2012.
    [62]Mandal J,Sun T,Grattan K T,et al.A wide temperature tunable fibre laser using a chirped grating and a type ⅡA fibre Bragg grating[J].Measurement Science and Technology.2004,15(6):1113-1119.
    [63]Pal S,Sun T,Grattan K T,et al.Strain-independent temperature measurement using a type-1 and type-ⅡA optical fiber Bragg grating combination[J].Review of Scientific Instruments.2004,75(5 PART 1):1327-1331.
    [64]Frazao O,Lima M J,Santos J L.Simultaneous measurement of strain and temperature using type Ⅰ and type ⅡA fibre Bragg gratings[J].Journal of Optics A:Pure and Applied Optics.2003,5(3):183-185.
    [65]Udd E,Schulz W,Seim J.Distributed Multiaxis fiber grating strain sensor applications for bridges,in fiber sensors for constructional materials and bridges[Z].1998168-180.
    [66]杨 W.,布迪纳斯 R.罗氏应力应变公式手册[M].第七版.北京:科学出版社,2005:629-647.
    [67]Kersey A D,Davis M A,Patrick H J,et al.Fiber Grating Sensors[J].Journal of Lightwave Technology.1997,15(8):1442-1463.
    [68]陈扬駸,杨晓华.激光光谱测量技术[M].上海:华东师范大学出版社,2006:36-54.
    [69]Melle S M,Liu K,Measures R M.A passive wavelength demodulation system for guided-wave Bragg grating sensors[J].IEEE Photonics Technology Letters.1992,4(5):516-518.
    [70]Davis M A,Kersey A D.All-fibre Bragg grating strain-sensor demodulation technique using a wavelength division coupler[J].Electronics Letters.1994,30(1):75-77.
    [71]Li Dong-Sheng,Sui Qing-Mei,Cao Yu-Qiang.Linearity optimization of edge filter demodulators in FBGs[J].Optoelectronics Letters.2008,4(3):193-195.
    [72]Jackson D A,Ribeiro A B,Reekie L,et al.Simple multiplexing scheme for a fiber-optic grating sensor network[J].Optics Letters.1993,18(14):1192-1194.
    [73]Brady G P,Hope S,Lobo R A,et al.Demultiplexing of fibre Bragg grating temperature and strain sensors[J].Optics Communications.1994,111(1-2):51-54.
    [74]Davis M A,Kersey A D.Matched-filter interrogation technique for fibre Bragg grating arrays[J].Electronics Letters.1995,31(10):822-823.
    [75]曲远方.现代陶瓷材料及技术[M].上海:华东理工大学出版社,2008:294-346.
    [76]Kersey A D,Berkoff T A,Morey W W.Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter[J].Optics Letters. 1993,18(16):1370-1372.
    
    [77] Davis M A, Bellemore D G, Putnam M A, et al. Interrogation of 60 fibre Bragg grating sensors with microstrain resolution capability[J]. Electronics Letters. 1996,32(15): 1393-1394.
    
    [78] Ball G A, Morey W W, Cheo P K. Fiber laser source/analyzer for bragg grating sensor array interrogation[J]. Journal of Lightwave Technology. 1994,12(4):700-703.
    
    [79] Yun S H, Richardson D J, Kim B Y. Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser[J]. Optics Letters. 1998, 23(11): 843-845.
    
    [80] Dennis M L, Putnam M A, Kang J U, et al. Grating sensor array demodulation by use of a passively mode-locked fiber laser[J]. Optics Letters. 1997, 22(17): 1362.
    
    [81] Putnam M A, Dennis M L, Kang J U, et al. Sensor grating array demodulation using a passively mode-locked fiber laser[C]. Dallas, TX, USA: 1997, 156-157.
    
    [82] Kersey A D, Berkoff T A, Morey W W. High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection[J]. Electronics Letters.1992, 28(3): 236-238.
    
    [83] Kersey A D, Berkoff T A, Morey W W. Fiber-optic Bragg grating strain sensor with drift-compensated high-resolution interferometric wavelength-shift detection[J].Optics Letters. 1993, 18(1): 72-74.
    
    [84] Koo K P, Kersey A D. Fibre laser sensor with ultrahigh strain resolution using interferometric interrogation[J]. Electronics Letters. 1995, 31(14): 1180-1182.
    
    [85] Rao Y J, Jackson D A, Zhang L, et al. Dual-cavity interferometric wavelength-shift detection for in-fiber Bragg grating sensors [J]. Optics Letters. 1996,21(19): 1556-1558.
    
    [86] Kersey A D, Berkoff T A. Fiber-optic Bragg-grating differential-temperature sensor[J]. IEEE Photonics Technology Letters. 1992, 4(10): 1183-1185.
    
    [87] Rao Y J, Kalli K, Brady G, et al. Spatially-multiplexed fibre-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection[J]. Electronics Letters. 1995,31(12): 1009-1010.
    
    [88] Berkoff T A, Kersey A D. Fiber Bragg grating array sensor system using a bandpass wavelength division multiplexer and interferometric detection[J]. IEEE Photonics Technology Letters. 1996,8(11): 1522-1524.
    
    [89] Hu Y, Chen S, Zhang L, et al. Multiplexing Bragg gratings using combined wavelength and spatial division techniques with digital resolution enhancement[J].Electronics Letters. 1997, 33(23): 1973-1975.
    
    [90] Weis R S, Kersey A D, Berkoff T A. Four-element fiber grating sensor array with phase-sensitive detection[J]. IEEE Photonics Technology Letters. 1994, 6(12):1469-1472.
    
    [91] Rao Y J. In-fiber Bragg grating sensors [J]. Measurment Science and Technology. 1997, 8(4): 355-375.
    
    [92] Rao Y J. Recent progress in applications of in-fibre Bragg grating sensors [J].Optics and Lasers in Engineering. 1999, 31(4): 297-324.
    
    [93] Nasa. Pressure Sensor Using Fiber Bragg Gratings[EB/OL]. 2008.7.14.http://ti.arc.nasa.gov/ic/projects/photonics/OS/Proposed/Bragg/bragg.html.
    
    [94] Trutzel M, Betz D, Holz M, et al. Investigation of fiberoptic Bragg grating sensors for applications in the aviation industry[C]. Kyongju, South Korea:Proceedings of SPIE - The International Society for Optical Engineering, 1999: 3746,624-627.
    
    [95] Hjelme D R, Bjerkan L, Neegard S, et al. Application of Bragg grating sensors in the characterization of scaled marine vehicle models[J]. Applied Optics. 1997, 36(1):328-336.
    
    [96] Sagvolden G, Pran K, Vines L, et al. Fiber optic system for ship hull mornitoring[C]. Optical Fiber Sensors Conference Technical Digest, 2002. OFS 2002,15th, 2002: 1,435-438.
    
    [97] Prohaska J D, Snitzer E, Chen B. Fiber optic Bragg grating strain sensor in large scale concrete structures[C]. 1992, 286-294.
    
    [98] Nellen P M, Anderegg P, Broennimann R, et al. Application of fiber optical and resistance strain gauges for long-term surveillance of civil engineering structures[C].San Diego, CA, USA : SPIE proceedings series , 1997: 3043, 77-86.
    
    [99] Mohamed, Maalej, Anestis, et al. Structural health monitoring of smart structures[J].Smart Materials and Structures.2002,11(4):581-589.
    [100]梁磊,姜德生,周雪芳,等.光纤Bragg光栅传感器在桥梁工程中的应用[J].光学与光电技术.2003,1(02):36-39.
    [101]朱文琪,卢哲安,江志学,等.桥梁加固的光纤光栅传感监测评估研究[J].武汉理工大学学报.2003,25(12):59-62.
    [102]欧进萍,周智,武湛君,等.黑龙江呼兰河大桥的光纤光栅智能监测技术[J].土木工程学报.2004,37(01):45-64.
    [103]张东生,李微,郭丹,等.基于光纤光栅振动传感器的桥梁索力实时监测[J].传感技术学报.2007,20(12):2720-2723.
    [104]李川,张以谟,赵永贵,等.光纤光栅:原理、技术与传感应用[M].北京:科学出版社,2005:204-206.
    [105]赵星光,邱海涛.光纤Bragg光栅传感技术在隧道监测中的应用[J].岩石力学与工程学报.2007,26(03):587-593.
    [106]范湘湘,范耀东,鲍东玉.秦岭终南山特长公路隧道光纤光栅传感技术的应用[J].中国交通信息产业.2007(7):112-113.
    [107]崔天麟,肖红渠,魏广庆,等.广州地铁小北站暗挖隧道FBG监测技术研究[J].现代隧道技术.2007,44(04):28-31.
    [108]何涛,赵鸣,谢强,等.光纤光栅传感器用于盾构隧道施工的监测[J].地下空间与工程学报.2008,4(1):157-161.
    [109]Ferdinand P,Ferragu O,Lechien J L,et al.Mine operating accurate STABILity control with optical fiber sensing and Bragg grating technology:the European BRITE/EURAM STABILOS project[J].Journal of Lightwave Technology.1995,13(7):1303-1313.
    [110]林枫,蔡海文,夏志平,等.光纤光栅滤波的瓦斯传感系统的研究[J].中国激光.2005,32(04):549-552.
    [111]Nellen P M,Mauron P,Frank A,et al.Reliability of fiber Bragg grating based sensors for downhole applications[J].Sensors and Actuators,A:Physical.2003,103(3):364-376.
    [112]Rebel G,Chaplin C R,Groves-Kirkby C,et al.Condition monitoring techniques for fibre mooring ropes[J].Insight:Non-Destructive Testing and Condition Monitoring.2000,42(6):384-390.
    [113]Kersey A D.Optical fiber sensors for permanent downwell monitoring applications in the oil and gas industry[J].IEICE Transactions on Electronics.2000,E83-C(3):400-404.
    [114]Kersey A D.Optical fiber sensors for downwell monitoring applications in the oil &gas industry[C].Kyongju,South Korea:Proceedings of SPIE-The International Society for Optical Engineering,1999:3746,326-331.
    [115]禹大宽,乔学光,贾振安,等.应用在油气管线的光纤光栅温度压力传感系统[J].激光技术.2007,31(1):12-14.
    [116]张向东,李育林,彭文达,等.光纤复合型油气井下压力温度测量系统[J].光子学报.2003,32(07):864-867.
    [117]赵洪霞,鲍吉龙.一种新颖的光纤光栅电流传感器[J].量子电子学报.2005,22(06):951-954.
    [118]Henderson P J,Fisher N E,Jackson D A.Current metering using fibre-grating based interrogation of a conventional current transfomer[C].Williamsburg,USA:Proc.12th Inter.Conf.on OFS,1997,186-189.
    [119]Hammon T E,Stokes A D.Optical fibre Bragg grating temperature sensor measurements in an electrical power transformer using a temperature compensated fibre Bragg grating as a reference[C].Sapporo,Japan:Proc.11th Inter.Conf.on OFS,1996,566-569.
    [120]Rao Y,Webb D J,Jackson D A,et al.In-fiber Bragg-grating temperature sensor system for medical applications[J].Journal of Lightwave Technology.1997,15(5):779-785.
    [121]Tamagawa K,Ogawa K,Nakajima M.Detection of respiratory movement during SPECT/PET data acquisition[C].Nuclear Science Symposium Conference Record,2002 IEEE,2002:3,1571-1574.
    [122]Hill K O,Fujii Y,Johnson D C,et al.Photosensitivity in Optical Fiber Waveguides:Application to Reflection Filter Fabrication[J].Applied Physics Letters.1978,32(10):647-649.
    [123]Kawasaki B S,Hill K O,Johnson D C,et al.Narrow-Band Bragg Reflectors in Optical Fibers[J], Optics Letters. 1978, 3(2): 66-68.
    
    [124] Meltz G, Morey M M, Glenn W H. Formation of Bragg Gratings in Optical Fibers by a Transverse Holographic Method[J]. Optical Letters. 1989,14(15):823-825.
    
    [125] Hill K O, Malo B, Bilodeau F, et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask[J]. Applied Physics Letters. 1993,62(10): 1035-1037.
    
    [126] Butter C D, Hocker G B. Fiber optics strain gauge[J]. Applied Optics. 1978,17(9): 2867-2869.
    
    [127] Meltz G, Morey W W, Glenn W H, et al. In-fiber Bragg-grating temperature and strain sensors[C]. Albuquerque, NM, USA: 1988: 34, 239-242.
    
    [128] Rao Y J, Ribeiro A B, Jackson D A, et al. Combined spatial- and time-division-multiplexing scheme for fiber grating sensors with drift-compensated phase-sensitive detection[J]. Optics Letters. 1995, 20(20): 2149-2151.
    
    [129] Wagreich R B, Atia W A, Singh H, et al. Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre[J]. Electronics Letters. 1996,32(13): 1223-1224.
    
    [130] Mora J, Diez A, Cruz J L, et al. Magnetostrictive sensor interrogated by fiber gratings for DC-current and temperature discrimination[J]. IEEE Photonics Technology Letters. 2000, 12(12): 1680-1682.
    
    [131] Gander M J, Macpherson W N, Mcbride R, et al. Bend measurement using Bragg gratings in multicore fibre[J]. Electronics Letters. 2000, 36(2): 120-121.
    
    [132] Weigang Z, Xiaoyi D, Dejun D, et al. Linear fiber-grating-type sensing tuned by applying torsion stress[J]. Electronics Letters. 2000, 36(20): 1686-1688.
    
    [133] Zhang Y, Feng D, Liu Z, et al. High-sensitivity pressure sensor using a shielded polymer-coated fiber Bragg grating[J]. IEEE Photonics Technology Letters. 2001,13(6): 618-619.
    
    [134] Yoji O, Ryohei T N T. Application of chirped fiber Bragg grating sensors for identification of crack locations in composites[J]. Composites Part A: Applied Science and Manufacturing. 2004, 35(1): 59-65.
    [135]Chong J H,Shum P,Lu C,et al.Measurements of refractive index sensitivity using long-period grating refractometer[J].Optics Communications.2004,229(1-6):65-69.
    [136]Iadicicco A,Cusano A,Cutolo A,et al.Thinned fiber Bragg gratings as high sensitivity refractive index sensor[J].IEEE Photonics Technology Letters.2004,16(4):1149-1151.
    [137]Rao Y J,Yuan S F,Zeng X K,et al.Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system[J].Optics and Lasers in Engineering.2002,38(6):557-566.
    [138]Rao Y,Zeng X,Zhu Y,et al.Temperature-strain discrimination sensor using a WDM chirped in-fiber Bragg grating and extrinsic Fabry-Perot[J].Chinese Physics Letters.2001,18(5):643-645.
    [139]鲍丙豪,周燕.传感器手册[M].北京:化学工业出版社,2008,334-337.
    [140]鲍丙豪,周燕.传感器手册[M].北京:化学工业出版社,2008:340-344.
    [141]鲍丙豪,周燕.传感器手册[M].北京:化学工业出版社,2008:344-347.
    [142]Hongxi Y,David J R.Optical Code Division Multiple Access Communication Networks[M].北京:清华大学出版社,2008:13.
    [143]李传起,孙小菡.OCDMA系统地址码理论[M].合肥:中国科学技术大学出版社.2005:1-4.
    [144]Gilhousen K S,Jacobs I M,Padovani R,et al.Increased capacity using CDMA for mobile satellite communication[J].IEEE Journal on Selected Areas in Communications.1990,8(4):503-514.
    [145]Fathallah H,Rusch L A.Robust optical FFH-CDMA communications:coding in place of frequency and temperature controls[J].Journal of Lightwave Technology.1999,17(8):1284-1293.
    [146]Inaty E,Shalaby H M H,Fortier P,et al.Multirate optical fast frequency hopping CDMA system using power control[J].Journal of Lightwave Technology.2002,20(2):166-177.
    [147]李传起,孙小菡.OCDMA系统地址码理论[M].合肥:中国科学技术大学
    [148] Benedetto S, Olmo G. Performance evaluation of coherent optical code division multiple access[J]. Electronics Letters. 1991, 27(22): 2000-2002.
    
    [149] Wei H, Nizam M H M, Andonovic I, et al. Coherent optical CDMA (OCDMA) systems used for high-capacityoptical fiber networks-system description, OTDMA comparison, and OCDMA/WDMA networking [J]. Journal of Lightwave Technology.2000, 18(6): 765-778.
    
    [150] Ayadi F, Rusch L A. Coherent optical CDMA with limited phase excursion[J]. Communications Letters. 1997,1(1): 28-30.
    
    [151] Wei H, Andonovic I. Coherent optical pulse CDMA systems based on coherent correlationdetection[J]. IEEE Transactions on Communications. 1999,47(2):261-271.
    
    [152] Zaccarin D, Kavehrad M. New architecture for incoherent optical CDMA to achieve bipolarcapacity[J]. Electronics Letters. 1994, 30(3): 258-259.
    
    [153] Sangin K, Minjeong K, Soojin P, et al. Incoherent bidirectional fiber-optic code division multiple accessnetworks[J]. IEEE Photonics Technology Letters. 2000, 12(7):921-923.
    
    [154] Chen L R, Smith P W E. Demonstration of incoherent wavelength-encoding/time-spreadingoptical CDMA using chirped moire gratings [J]. IEEE Photonics Technology Letters. 2000, 12(9): 1281-1283.
    
    [155] Ohtsuki T. Channel interference cancellation using electrooptic switch andoptical hardlimiters for direct-detection optical CDMA systems [J]. Journal of Lightwave Techonlogy. 1998, 16(4): 520-526.
    
    [156] Hongxi Y, David J R. Optical Code Division Multiple Access Communication Networks[M]. 北京:清华大学出版社, 2008: 382.
    
    [157] Wakafuji K, Ohtsuki T. Direct-detection optical CDMA receiver with interference estimation and double optical hardlimiters[J]. Journal of Lightwave Technology. 2003, 21(10): 2182-2188.
    
    [158] Shaar A A, Davies P A. Prime sequences: quasi-optimal sequences for OR channel code division multiplexing [J]. Electronics Letters. 1983, 19(21): 888-890.
    [159] Salehi J A. Code division multiple-access techniques in optical fiber networks.I.Fundamental principles [J]. IEEE Transactions on Communications. 1989, 37(18):824-833.
    
    [160] Zhang J -, Kwong W C. Effective design of optical code-division multiple access networksby using the modified prime code[J]. Electronics Letters. 1997, 33(3):229-230.
    
    [161] Zhang J, Kwong W C, Sharma A B. Performance comparison of 2n extended prime codes (λ c = 1) and 2n prime codes (λc = 2) in fiber-optic CDMA systems[C]. Beijing, China: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States, 1998: 2, 35081-35085.
    
    [162] Kwong W C, Zhang J G, Yang G C. 2n prime-sequence code and its optical CDMA coding architecture [J]. Electronics Letters. 1994, 30(6): 509-510.
    
    [163] Fathallah H, Rusch L A, Larochelle S. Passive optical fast frequency-hop CDMA communications system[J]. Journal of Lightwave Technology. 1999, 17(3):397-405.
    
    [164] Kyoungsik Y, Namkyoo P. Design of new family of two-dimensional wavelength-time spreadingcodes for optical code division multiple access networks [J].Electronics Letters. 1999, 35(10): 830-831.
    
    [165] Shivaleela E S, Sivarajan K N, Selvarajan A. Design of a new family of two-dimensional codes for fiber-optic CDMA networks[J]. Journal of Lightwave Technology. 1998, 16(4): 501-508.
    
    [166] Yim R M H, Chen L R, Bajcsy J. Design and performance of 2-D codes for wavelength-time optical CDMA[J]. IEEE Photonics Technology Letters. 2002, 14(5):714-716.
    
    [167] Kyoungsik Y, Namkyoo P. Design of new family of two-dimensional wavelength-time spreadingcodes for optical code division multiple access networks[J].Electronics Letters. 1999, 35(10): 830-831.
    
    [168] Hongxi Y, David J R. Optical Code Division Multiple Access Communication Networks[M]. 北京:清华大学出版社, 2008: 27-28.
    
    [169] Chung F R K, Salehi J A, Wei V K. Optical orthogonal codes: design, analysis and applications[J]. IEEE Transactions on Information Theory. 1989, 35(3): 595-604.
    
    [170] Keshavarzian A, Salehi J A. Optical orthogonal code acquisition in fiber-optic CDMA systems via the simple serial-search method[J]. IEEE Transactions on Communications. 2002, 50(3): 473-483.
    
    [171] Nobuko M, Hirobumi M, Satoshi S. Optical orthogonal codes obtained from conics on finite projective planes [J]. Finite Fields and Their Applications. 2004,10(3): 405-411.
    
    [172] Abel R J R R, Buratti M. Some progress on (v,4,1) difference families and optical orthogonal codes [J]. Journal of Combinatorial Theory, Series A. 2004, 106(1):59-75.
    
    [173] Yanxun C, Jianxing Y. Further results on optimal optical orthogonal codes with weight 4[J]. Discrete Mathematics. 2004,279(1-3): 135-151.
    
    [174] Yanxun C, Fuji-Hara R, Ying M. Combinatorial constructions of optimal optical orthogonal codes with weight 4[J]. IEEE Transaction on Information Theory.2003,49(5): 1283-1292.
    
    [175] Park E, Mendez A J, Garmire E M. Temporal/spatial optical CDMA networks-design, demonstration, and comparison with temporal networks [J]. IEEE Photonics Technology Letters. 1992,4(10): 1160-1162.
    
    [176] Yang G, Kwong W C. Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks [J]. IEEE Transactions on Communications. 1997,45(11): 1426-1434.
    
    [177] Shivaleela E S, Sivarajan K N, Selvarajan A. Design of a new family of two-dimensional codes for fiber-opticCDMA networks[J]. Journal of Lightwave Technology. 1998, 16(4): 501-508.
    
    [178] Guu-Chang Y, Kwong W C. Performance comparison of multiwavelength CDMA and WDMA+CDMA forfiber-optic networks [J]. IEEE Transactions on Communications. 1997,45(11): 1426-1434.
    
    [179] Tancevski L, Andonovic I. Wavelength hopping/time spreading code division multiple accesssystems[J]. Electronics Letters. 1994, 30(17): 1388-1390.
    
    [180] Tancevski L, Andonovic I. Hybrid wavelength hopping/time spreading schemes for use in massiveoptical networks with increased security [J]. Journal of Lightwave Technology.1996, 14(12): 2636-2647.
    
    [181] L T, I A, M T, et al. Massive optical LANs using wavelength hopping/time spreading with increased security[J]. IEEE Photonics Technology Letters. 1996, 8(7): 935-937.
    
    [182] Shengpeng W, Yu H. Two-dimensional optical CDMA differential system with prime/OOCcodes[J]. IEEE Photonics Technology Letters. 2001, 13(12): 1373-1375.
    
    [183] Kwong W C, Guu-Chang Y, Baby V, et al. Multiple-wavelength optical orthogonal codes under prime-sequence permutations for optical CDMA[J]. IEEE Transactions on Communications. 2005, 53(1): 117-123.
    
    [184] Sun S, Hongxi Y, Ziyu W, et al. A new family of 2-D optical orthogonal codes and analysis of its performance in optical CDMA access networks[J]. Journal of Lightwave Technology. 2006, 24(4): 1646-1653.
    
    [185] Kwong W C, Yang G, Liu Y. A New Family of Wavelength-Time Optical CDMA Codes Utilizing Programmable Arrayed Waveguide Gratings[J]. IEEE Journal on Selected Areas in Communications. 2005, 23(8): 1564-1571.
    
    [186] Kwong W C, Guu-Chang Y, Cheng-Yuan C. Wavelength-hopping time-spreading optical CDMA with bipolar codes[J]. Journal of Lightwave Technology. 2005, 23(1): 260-267.
    
    [187] Seong-Sik M, Hark Y, Yong H W. Time - wavelength hybrid optical CDMA system with tunable encoder/decoder using switch and fixed delay-line [J]. Optics Communications. 2003, 216(4-6): 335-342.
    
    [188] Chang T W F, Sargent E H. Optical CDMA using 2-D codes: The optimal single-user detector[J]. IEEE Communications Letters. 2001, 5(4): 169-171.
    
    [189] Jun S Y, Kim Y I, Lee C H. Design concept of an CDMA system with optical fiber delay line[C]. Seoul, South Korea: IEEE, Piscataway, NJ, USA, 1999: 2,515-516.
    
    [190] Hongxi Y, David J R. Optical Code Division Multiple Access Communication Networks[M]. 北京:清华大学出版社, 2008:169-175.
    
    [191] Hongxi Y, David J R. Optical Code Division Multiple Access Communication Networks[M].北京:清华大学出版社,2008:190-201.
    [192]Hongxi Y,David J R.Optical Code Division Multiple Access Communication Networks[M].北京:清华大学出版社,2008:176-189.
    [193]Davies P A,Shaar A A.Asynchronous multiplexing for an optical-fibre local-area network[J].Electronics Letters.1983,19(10):390-392.
    [194]Prucnal P,Santoro M,Fan T.Spread spectrum fiber-optic local area network using optical processing[J].Journal of Lightwave Technology.1986,4(5):547-554.
    [195]Prucnal P,Santoro M,Sehgal S.Ultrafast All-Optical Synchronous Multiple Access Fiber Networks[J].IEEE Journal on Selected Areas in Communications.1986,4(9):1484-1493.
    [196]A M W,J P H,J A S.Encoding and decoding of femtosecond pulses[J].Optics Letters.1988,13(4):300-302.
    [197]Salehi J A,Brackett C A.Code division multiple-access techniques in optical fiber networks.Ⅱ.Systems performance analysis[J].IEEE Transactions on Communications.1989,37(8):834-842.
    [198]Chung H,Kumar P V.Optical orthogonal codes-new bounds and an optimal construction[J].IEEE Transactions on Information Theory.1990,36(4):866-873.
    [199]Holmes A S,Syms R R A.All-optical CDMA using 'quasi-prime' codes[J].Journal of Lightwave Technology.1992,10(2):279-286.
    [200]Maric S V,Kostic Z I,Titlebaum E L.A new family of optical code sequences for use in spread-spectrumfiber-optic local area networks[J].IEEE Transactions on Communications.1993,41(8):1217-1221.
    [201]Yang G,Kwong W C.Performance analysis of optical CDMA with prime codes[J].Electronics Letters.1995,31(7):569-570.
    [202]Kwong W C,Perrier P A,Prucnal P R.Performance comparison of asynchronous and synchronouscode-division multiple-access techniques for fiber-optic local areanetworks[J].IEEE Transactions on Communications.1991,39(11):1625-1634.
    [203]Maric S V.New family of algebraically designed optical orthogonal codes for use in CDMA fibre-optic networks[J].Electronics Letters.1993,29(6):538-539.
    [204]Park E,Mendez A J,Garmire E M.Temporal/spatial optical CDMA networks-design,demonstration,andcomparison with temporal networks[J].IEEE Photonics Technology Letters.1992,4(10):1160-1162.
    [205]Yu K,Shin J,Park N.Wavelength-time spreading optical CDMA system using wavelength multiplexers and mirrored fiber delay lines[J].IEEE Photonics Technology Letters.2000,12(9):1278-1280.
    [206]Djordjevic I B,Vasic B,Rorison J.Multi-weight unipolar codes for multimedia spectral-amplitude-coding optical CDMA systems[J].IEEE Communications Letters.2004,8(4):259-261.
    [207]Ben Jaafar H,Larochelle S,Cortes P,et al.1.25Gbit/s transmission of optical FFH-OCDMA signals over 80km with 16 users[C].Optical Fiber Communication Conference and Exhibit,2001.OFC 2001,2001:2,1-3.
    [208]Bres C-,Glesk I,Prucnal P R.Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating[J].IEEE Photonics Technology Letters.2006,18(7):889-891.
    [209]Saghari P,Kamath P,Arbab V,et al.Experimental Demonstration of an Interference-Avoidance-Based Protocol for O-CDMA Networks[C].OFC 2006,2006,1-3.
    [210]王芬,陈达如,秦山,等.基于PCF实现稳定输出的主动锁模光纤激光器[J].光电子.激光.2007,18(9):1052-1054.
    [211]张灵箭,陈彪,陈佳佳,等.基于AWG二维编解码的OCDMA多用户分插复用[J].光电子.激光.2007,18(6):694-697.
    [212]陈彪,王福昌,陈佳佳,等.基于光纤光栅和二维编码的OCDMA分插复用[J].光电子.激光.2006,17(3):324-327.
    [213]丁美玲,章献民,陈抗生.DS—OCDMA系统中FBG编解码器的研究[J].光子学报.2001,30(8):998-1002.
    [214]张崇富,邱昆,安晓强,等.光码分多址多用户系统实验及性能分析[J].光电子.激光.2008,19(1):50-53.
    [215]周秀丽,杨华军,马君显.异步OCDMA系统信道容量研究[J].电子与信息 学报.2007,29(11):2606-2608.
    [216]刘伟锋,邱昆,张崇富,等.OCDMA环网的码字消除功能及其性能分析[J].光电子.激光.2007,18(5):588-592.
    [217]Rao N,Xu X,Li S.Hybrid chaotic sequence for QS-CDMA system with RAKE receiver[J].Journal of Systems Engineering and Electronics.2004,15(3):278-282.
    [218]沈成彬,吴琛,于金辉,等.A novel symbol overlapping FFH-OCDMA system[J].中国光学快报:英文版.2004,2(2):78-81.
    [219]张海滨,黄培中,宋文涛,等.随机与同步频谱相位编码OCDMA系统的性能比较[J].上海交通大学学报.2003,37(10):1560-1563.
    [220]吉建华,沈成彬,吴琛,等.一种改善FFH—OCDMA性能的非循环单重合码[J].光子学报.2003,32(5):539-541.
    [221]晏力.光通信网的光码分多址(OCDMA)技术[J].渝州大学学报:自然科学版.2002,19(4):83-86.
    [222]Duan X,Niu Z,Zheng J.Optimizing radio resource allocation in multimedia DS-CDMA systems based on utility functions[J].IEICE Transactions on Communications.2004,E87-B(8):2233-2242.
    [223]吉建华,徐铭,杨淑雯.基于最大似然准则的多波长OCDMA接收机的最佳判决门限研究[J].光子学报.2007,36(4):698-701.
    [224]吉建华,田晶晶,徐铭,等.一种基于素数码和单重合序列的二维光正交码[J].光电子.激光.2007,18(4):436-438.
    [225]李晓滨.一种新的光码分多址多用户干扰抑制方法[J].光电子.激光.2006,17(9):1096-1099.
    [226]吉建华,徐铭,杨淑雯,等.采用光硬限幅器和RS码的多波长OCDMA性能分析[J].光电子.激光.2005,16(11):1312-1315.
    [227]吉建华,徐铭,杨淑雯.一种多波长OCDMA解码器方案及其性能分析[J].光子学报.2005,34(8):1217-1219.
    [228]Abbenseth S,Lochmann S I.Overcoming restrictions of traditional FBG sensor networks using SIK-DS-CDMA[C].Warsaw,Poland:2005:5952,1-9.
    [229]李川,李欣,张大煦,等.用于钢筋混凝土梁的光纤光栅应变传感器(英 文)[J].光电工程.2004,33(08):952-955.
    [230]Benmokrane B,El-Salakawy E,El-Ragaby A,et al.Designing and testing of concrete bridge decks reinforced with glass FRP bars[J].Journal of Bridge Engineering.2006,11(2):217-229.
    [231]马科斯·波恩,埃米尔·沃尔夫.光学原理[M].北京:电子工业出版社,2006.
    [232]GB/T 18806-2002.电阻应变式压力传感器总规范[S].北京,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700