磁铁矿还原法制备绿矾及其母液回收新技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫铁矿烧渣是硫酸工业的固体废物,综合利用硫铁矿烧渣具有十分重要的意义。本文利用硫铁矿烧渣制备得到高质量绿矾,将绿矾母液与氨反应得到硫酸亚铁铵,达到了清洁生产绿矾的目的。
     在硫酸溶液中,加入硫铁矿烧渣,在搅拌下,控制反应温度为115℃,反应4h后过滤得到烧渣酸浸液。硫铁矿化学性质极其稳定,通常条件下与硫铁矿烧渣酸浸液中Fe~(3+)反应速度很慢。硫铁矿经机械活化后反应活性大大提高,扫描电镜(SEM)实验表明硫精矿为块状体,球磨后硫精矿表面呈颗粒状,并有团聚现象,反应后团聚现象消失。
     反应因素对硫铁矿还原法制备硫酸亚铁结果有着重要的影响,增加球料比、延长球磨时间、降低反应液固比、提高反应温度和溶液氢离子浓度,均有利于FeS_2与Fe~(3+)反应速度的加快。Fe~(3+)浓度高,不利于提高Fe~(3+)的还原率。在球料比10.8∶1、球磨时间4h,反应液固比100∶20、反应温度80℃、总铁浓度2.230mol/L、Fe~(3+)浓度2.130mol/L、氢离子浓度为0.700mol/L条件下,反应90minFe~(3+)原率达到99.05%;当反应温度高于85℃时,反应中有白色沉淀物FeSO_4·H_2O生成。
     通过对机械活化硫铁矿与硫铁矿烧渣酸浸液中Fe~(3+)反应动力学的研究,得出该反应符合收缩未反应芯模型,属化学控制。反应动力学方程为1-(1-X_b)~(1/3)=kt,k=82.12e~(-35120/RT),活化能E_0=35.12kJ·mol~(-1)。研究结果表明提高反应温度可以明显提高FeS_2与Fe~(3+)反应速度,实验结果也得到证实。溶液中FeS_2与Fe~(3+)发生如下反应FeS_2+14Fe~(3+)+8H_2O=15Fe~(2+)+2SO_4~(2-)+16H~+,FeS_2+2Fe~(3+)=3Fe~(2+)+2S↓。
     存放后机械活化的硫铁矿的活性有所降低,当液固质量比为25∶2时,90℃下反应240min,存放3个月的活性硫铁矿还原Fe~(3+)的转化率为61.2%,未存放活性硫铁矿还原Fe~(3+)转化率达到76.75%。
     硫铁矿还原法所得绿矾母液含有较高浓度的Fe~(3+),使用少量铁屑
    
    还原处理后,绿矾母液中FesO;和玩50;含量一般为1 .18mol/L和
    1.44mol/L,重金属离子含量有所减少,Fe3+毛0.Olmol/L,有利于回
    收绿矾母液制备莫尔盐。
     利用处理后绿矾母液制备工业级莫尔盐适宜条件是搅拌速度为
    200一350转/分钟、Fe3+浓度蕊0.osmol/L、反应终点pH值为1 .5一2.5、
    氨气流量为0.1一0.4m3/h。当母液中亚铁和硫酸浓度调节分别为1.654
    mol/L时,上述条件下制备得到的莫尔盐、硫酸亚铁回收率为85.20cy0。
     硫铁矿作还原剂制得绿矾质量好于GB 1 0 5 31一S9优等品质量,接
    近GB664一93化学试剂。工业级莫尔盐样品质量达到企业标准,
    (Fe(NH4)2(504):·6玩O含量)98%,水不溶物蕊0.1%)。
In sulfuric acid industry pyrite cinder is the main solid waste, it is very important to use them comprehensively. In this paper, the high grade copperas were synthesized by using the pyrite cinder as raw materials, then the Fe(NFl4)(SO4)2.6H2O was synthesized by using copperas mother liquid and ammonia. In the whole process, there is no waste and clean production goal is achieved.
    The pyrite cinder was added into acid sulfuric solution, then stirring and keeping the temperature at 150 . After react for 4h, the leaching liquid was obtained. The SEM tests show that pyrite is clumpy, activated pyrite is granular and agglomerate and the agglomeration of activated pyrite disappears after reaction.
    Using the pyrite as the reductant, the reaction conditions have great effects on FeSO4 synthesized by reduction method. The rate of FeS2 and Fe3+ increasing as ratio of ball mass to pyrite mass, grinding time and reaction temperature, H+ concentration increase and ratio of solution volume to activated pyrite mass decreases. When Fe3+ concentration is higher, it is not available for the reduction of Fe3+.The reduction ratio of Fe3+to Fe2+ is up to 99.05%, when the reaction temperature is 80 and the ratio of solution volume to activated pyrite mass is 100:20 and the ratio of ball mass to activated pyrite mass is 10.8:1 and ball grinding time is 4h. And the total Fe concentration is 2.230mol/L and Fe3+ concentration is 2.130 mol/L and H+ concentration is 0.700mol/L and the reaction time is 1.5 h.. The white sediment FeSO4 H2O is produced when the reaction temperature is above 85
    The kinetics on Fe3+ produced by mechanical activation pyrite is studied in this paper, the reaction is controlled by diffusion and the reaction is applicable to the shrinking core model, the kinetics equation is the active energy E0 is 35.12kJ mol-1. The reaction rate between the FeS2 and Fe3+ increases obviously with the increase of the reaction temperature. The results can be proved by our experiment. The main reactions in the solution are below: FeS2+14Fe3++8H2O=15Fe2++2SO42-+16H+, FeS2+2Fe3+=3Fe2++2S .
    The activity of the mechanical activated pyrite is decreased after depositing it for a long time. The Fe3+ reduction ratio of the mechanical
    
    
    activation pyrite is 61.2% when the mass ratio of liquid to solid is 25:2 and the reaction time is 2h. at the reaction temperature of 90 and depositing it for 3 month, but the Fe3+ reduction ratio of the pyrite without deposition is 76.75%.
    The copperas mother liquid has high Fe3+ concentration. After putting the iron scraps into mother liquid, the concentration of FeSO4 and H2SO4 in the copperas mother liquid are respectively 1.18mol/L and 1.44mol/L. Meantime the ion concentration of heaven metals decreased and the concentration of Fe3+ is lower than 0.01 mol/L, the conditions are available for recovery of the ammonium iron( II ) sulfate hexahydrate by the method of recycling copperas mother liquid.
    The optimal conditions that make industry grade ammonium iron( II) sulfate hexahydrate by processed copperas mother liquid are
    that stirring rate is 200-350 r/min, concentration of the Fe is lower than 0.05 mol/L, the pH value is 1.5-2.5, the flow of the ammonia is
    0.1-0.4 m3/h. when the concentration of the Fe and H2SO4 in the mother liquid is 1.654mol/L, the recovering of the ammonium iron(II) sulfate hexahydrate and FeSO4 is 85.20%.
    The quality of copperas prepared by this method is up to top grade
    product of GB105 31-89 of China. Ammonium iron( II ) sulfate
    hexahydrate sample quality was up to the enterprise standard.
    Fe(NH4)2(SO4)2 6H2O content is more than 98%, water insoluble
    substance is less than 0.1%.
引文
[1] 商连弟.硫酸亚铁的新用途[J]现代化工,1995(8):41—42.
    [2] 孙日圣.钛白厂副产硫酸亚铁综合利用展望[J]江西化工,1994(2):4-7.
    [3] 朱骥良,吴申年.颜料工艺学[M]化学工艺出版社,1989:155-194.
    [4] 周敏等.硫酸焙烧渣生产铁黄新工艺[J]环境工程,1998,14(5):49-53.
    [5] 陈白珍,龚竹青,黄坚,郑雅杰,王之平.硫铁矿烧渣制备铁黄颜料的工艺研究[J].无机盐工业,2001,33(4):39-42.
    [6] 郭秋宁等.利用钛白副产品制备氧化铁黑[J]广西化工,1999,28(1):40-42.
    [7] 舒保华.y-Fe_2SO_3型磁粉的性能及其生产.粉末冶金工业,1999.9(1):7-14.
    [8] 郑雅杰,龚竹青,陈白珍,陈文泊.硫铁矿烧渣湿法制备铁系产品的原理和途径分析[J].环境污染治理技术与设备,2001,2(1):48-54.
    [9] 宗俊等.超微细高度铁磁记录材料的合成研究(Ⅰ)无机盐工业,1999,31(4):12-13.
    [10] 郑怀礼等.聚合硫酸铁制备方法研究及其发展[J]环境污染治理技术与设备200,1(5):21-28.
    [11] 邓昌亮等.利用硫酸酸洗废液生产硫酸亚铁[J]化工环保,1998(18):150-154.
    [12] 谢海云等.钛白生产中废酸和硫酸亚铁综合利用及产品开发[J].昆明理工大学学报,2000(4):10-14.
    [13] 万金保.钢厂酸洗废液治理新工艺[J]工业水处理,2000(5):45-46.
    [14] 吴光红.钢材酸洗废水的综合利用[J]工业用水与废水,1999(3):33-34.
    [15] 冯俊瑜.用硫酸烧渣制取硫酸亚铁[J]化工环保,1994(5):311-312.
    [16] 孙石,宋平,吴小明.硫铁矿烧渣制备硫酸亚铁的研究[J]化工环保,1990,10(4):227-229.
    [17] 冯业铭,周敏.用含铁废渣非铁皮法生产氧化亚铁的研究[P]CN:1125196A,1996-06-26.
    [18] Balaz P, Post E, Bastl Z, et al. Thermoanalytical study of mechanically activated cinnabar Thermochimica Acta, 1992, 200(7-8): 371-377.
    [19] 陈世倌.机械活化及其在浸出过程中的应用[J]上海有色金属,1998,19(2):91-96.
    [20] 郑水林.超细粉碎原理、工艺设备及应用[M]北京:中国建材工业出版社,
    
    1993.111-126.
    [21] 黄祖强等.机械活化及其在湿法炼锌中的应用[J].广西大学学报(自然科学版)2002(4):288-292.
    [22] 李运姣,李洪桂,刘茂盛等.浅谈机械活化在湿法冶金中的应用[J]稀有金属与硬质合金1993,(3):38—42.
    [23] Urakaev F Kh, Bodyrev V V. Mechanism and kinetics of mechano chemical processes in comminuting devices. Theory [J]. Powder technology, 2000, 107 (1): 93-107.
    [24] Boldyrev V V. Mechanical activation of solids and its application to technology [J]. Journal de chimie pHysique. 1986. 8 (11—12): 821-829
    [25] Balaz P, Ebert I. Oxidative leaching of mechanically activated spHalerite. Hydrometallurgy, 1991,27(2): 141-142.
    [26] Sheppard L M Trends in milling equipment [J]. Ceramic Bulletin. 1991,70 (5): 803-808.
    [27] 黎铰海,黄祖强,刘雄民等.机械活化作用下载金矿物的形貌特征[J].金属矿山,2001,(1):31—33.
    [28] 杨家红,李洪桂,赵中伟等.矿物机械活化基础理论的研究进展[J].稀有金属与硬质合金,1996,(4)48-50.
    [29] 黎铉海等.机械活化强化浸出过程的理论分析及其应用[J].有色金属,2000.52(4):136-138.
    [30] Patteron J H. Tyree J R. A light scatting study of the hydrolytic polymerization of aluminum [J]. J. Colloid and interface Sci., 973, 43 (2):389-398.
    [31] 赵中伟.含金硫化矿的机械化学及其浸出工艺研究[D].长沙:中南工业大学,1995(3):21-24.
    [32] 黄云峰,王文潜等.机械化学及其在矿物加工中的应用[J].金属矿山,1999(5):17-20.
    [33] 苏绍眉.建设项目环境保护实用手册[M].北京,中国环境科学出版社,1992
    [34] 薛力基,马乃洋.硫酸渣的基本特性及其利[J].环境工程,1992,10(3):42-45.
    [35] 房裕生,张华.硫铁矿烧渣湿法脱硫及伴生有价金属的提炼方法

瓹N:1074947A.1993-08-04.
    [36] 王兴印,李建洲.利用硫酸厂焙烧废渣提取银初步探讨[J].陕西化工,1992,(3):42-45.
    [37] 付文斌.铬硫两渣高炉炼铁新工艺[J].无机盐工业,1991,(1):32-35.
    [38] 商志民,宋保山,李留记.硫铁矿烧渣制砖的实验[J].硫酸工业,1989,
    
    (4): 51-56.
    [39] Alimmaryi, salim A. Tomas Ferenc D. burn ability of cement raw materials at rapid calcinations conditions[J]. Cement and Concrete Research, 1980, 10(6): 739-752.
    [40] 张银龙.淄博钛厂以硫酸为中心的资源综合利用与研究与实践的概况[J].化工环保,1996.16:146~151.
    [41] 姚福琪.用黄铁矿制配矿渣生产黄色氧化铁颖被ぃ?981,(1):8-9.
    [42] 杨喜云,龚竹青,陈白珍,郑雅杰,黄坚.氧化铁黑颜料的制备[J].涂料工业,2001,(3):21-23.
    [43] Barth H G. particle size analysis [J]. Annal. Chem.,1995,67 (12): 257-272.
    [44] 王大伟,硫酸烧渣制备聚合硫酸铁新工艺[J].化学工程,1998,(6):39-40.
    [45] 张培根,葛秋萍,周宝石.我国硫铁矿烧渣综合利用的研究与实践概况[J].化工环保,1996,16:146-151.
    [46] Watanabe M and Hishimura S.U.S Patant 4113, 588, 1978, 12:13-14.
    [47] Balaz P, Bastl Z, Briancin J, et al. Surface and bulk properties of Materials Science, 1992, 27:653-657
    [48] Boldyrev V V. Solid State Ionics, 1993:63-65(1-4): 537-539
    [49] Eymery J P, Ylli E Study of a mechanochemical transformation in iron pyrite [J] Journal of Alloys and Compounds, 2000, 298:306-309
    [50] 潘连生,朱永铭,马竞.1997年中国化学工业发展指南,北京:化学工业出版社,1997.
    [51] 李和平,葛虹.精细化工工艺学.北京:科学出版社,1997.
    [52] 曾繁涤.精细化工产品及工艺学.北京:化学工业出版社.1997.
    [53] 陈金龙.精细有机合成原理与工艺.北京:中国轻工业出版社,1992.
    [54] 涂伟萍,陈少堂,程江等.化工进展,1997,5:20.
    [55] 席德立.无废工业----工业发展新模式.北京:清华大学出版社,1990.
    [56] Zheng Ya-jie, Gong Zhu-qing, Liu Li-hua, Chen Bai-zhen. Comparisons of Species and Coagulation Effects of PFS Solution and Solid PFS from Pyrite Cinders [J].Trans. Nonferrous Met. Soc. China, 2002,12(5): 983-986
    [57] Edward Olanipekun. Kinetic study of the leaching of a Nigerian ilmenite one by hydrochloric acid[J]. Hydrometallurgy, 1999, 53: 1-10.
    [58] 李洪桂,赵中伟,赵天丛.机械活化黄铁矿的物理化学性质[J].中南工业大学学报,1995,26(3):349-352.
    [59] J. P. Eymery and E Ylli. Study of a mechanochemical transformation in iron
    
    pyrite[J]. Journal of Alloys and Compounds, 2000,298(1-2): 306-309
    [60] Huping hu,Qiyuan Chen,Zhoulan Yin, Pingrnin Zhang, Jianpeng, Zou and Hongshengche. Study on the kinetics of thermal decomposition of mechanically activated pyrites [J]. 2002,389(12): 79-83.
    [61] 胡惠萍,陈启元,尹周澜,张平民,车洪生.机械活化黄铁矿的热分解动力学[J].中国有色金属学报,2002,12(3):611-614.
    [62] Tkacovo K and Balaz P. Selective leaching of Zinc from mechanically activated complex Cu-Pb-Zn concentrate[J]. Hydrometallurgy, 1993, 33: 291-300.
    [63] Pankaj kasliwal, P. S.T Sai.. Enrichment of titanium dioxide in red mud: a Kinetic study [J]. Hydrometallurgy, 1999, 53: 73-87.
    [64] Reedy B.J., Beattie J.k. and Lowson R.A.Vibrational spectroscopic ~(18)O tracer study of pyrite oxidation[J]. Geochimica Cosmochimic Acta, 1991,55:1609-1614.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700