卤水-碳铵法制备特级轻质氧化镁的新工艺技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化镁(MgO)是镁化合物的核心,因为它产量大,应用面广,品种规格多,并且还是其他高纯镁化合物的原料。我国是一个产镁大国,仅菱镁矿资源贮量约占世界总贮量的1/3,也是一个镁盐出口大国,但主要是以出口低值镁矿为主,这种只顾眼前利益,长期廉价出卖资源,不符合我国经济持续发展的政策。
     我国有漫长的海岸线,有取之不尽的海水资源,又是世界上生产海盐最多的国家,每年约副产卤水2000万m~3。卤水是浓缩了的海水,其中可溶性无机盐浓度是海水的40~50倍,其主要成分是镁,以卤水为原料生产镁产品,不仅价格便宜,而且卤水含杂质少,成分均匀,易处理,容易制备高纯镁制品。同时又减少了卤水中Mg~(2+)给制盐工业带来的二次污染,是一举两得的事,但是长期以来未能引起重视,90%以上的卤水没有被利用,大量镁资源白白浪费了,实在可惜!
     随着科学技术的飞速发展,镁产品的用途日益广泛,特别是高新科技领域内的应用,就需要高品质的镁产品。我国的镁产品工业,生产工艺落后,生产成本高,能耗大,产品品种单一,无法同工业发达国家竞争,失去了市场竞争力。
     本研究就是根据我国国情(有大量碳酸氢铵的生产)以卤水(或地下卤水)为原料,以碳酸氢铵和氨水为沉淀剂生产特级轻质氧化镁的新工艺研究。这种生产工艺技术在国外很少有报道,国内近年来虽有些试验研究,但大多停留在试验阶段,在山东省虽有些小厂用碳酸氢铵作沉淀剂(以期代替纯碱)生产轻质氧化镁,但工艺不合理,能耗高,经济效益差,大多处于开开停停的困境中。所以研究高附加值的特级轻质氧化镁及其新工艺技术,节能降耗,增大经济效益和社会效益就是本研究的目的。
     本研究所述的工艺是采用卤水、碳酸氢铵和氨水为原料,生产特级轻质氧化镁的方法。首先,将部分碳酸氢铵和氨水配成一定浓度的溶液,并将该溶液逐滴加入到卤水中,并在一定温度下反应。反应后,分批添加固体碳酸氢铵,直到沉淀完全。然后经陈化、热解、过滤、洗涤、干燥、粉碎、煅烧等工序制成轻质氧化镁。通过对碳酸氢铵和氨水的消耗量,反应温度对视比容、回收率的影响等工艺条件的研究和探讨,找到其最佳工艺条件。从而达到节能降耗并生产出特级轻质氧化镁产品的目的。在此基础上进行了工业放大试验,效果也非常理想。此方
    
    法的优点是工艺简单、易于操作控制、产品质量稳定、附加值高、经济效益显著。
     尽管卤水杂质含量少,为确保产品质量,本研究对其进行了净化处理。加入
    少量次氯酸钠和与5042一等摩尔的氯化钙以去掉铁、锰、50扩等杂质。并按反应
    原理,实验中紧紧抓住碳酸氢钱的离解式反应中生成的HCO3.或放出的CO:的利
    用和循环利用这一关键,进行了实验条件的探索。通过试验找出了:氨水的用量
    与卤水(浓度一定)用量,以及碳酸氢按用量与氨水之间的用量比。选出了最佳
    的三者之间用量关系,为:卤水用量:氨水用量=卜0.221(质量比);氨水用量:
    碳酸氢馁用量=1:0.61(质量比)。
     按此用量比,可使碳酸氢馁的耗量(生产一吨轻质氧化镁)由原来的4一6吨
    降低到2吨左右,从而大大降低了生产成本。
     通过对反应温度、热解温度对轻质氧化镁的产率与视比容关系的试验,得出
    在反应温度较低时,尽管热解温度较高,轻质氧化镁的视比容和产率都较低,随
    着反应温度的升高,视比容和产率也相应升高。综合考虑得到了较适宜工艺条件:
    反应温度为:60士5℃;热解温度为:70士5℃;热解时间为1小时。
     在小试、重复试验及放大试验的基础上,在山东潍坊地区天盛氧化镁厂进行
    了工业试生产,制备出特级轻质氧化镁产品,同时大大降低了生产成本,改善了
    操作环境。本工艺具有工艺简单,流程短,改善了操作环境,Mg2+回收率高等特
    点,特别适合中小规模生产,另外减少了原料消耗,降低了生产成本,生产出高
    附加值的特级轻质氧化镁,达到了节能降耗,增加经济效益的目的。
MgO is the core of magnesium compounds because of its high output, wide use, lots of kinds, mainly MgO is the materials of the other pure magnesium compounds.
    Magnesium compounds are mass-produced in China, the reserves of magnesite resources account for 1/3 in the world. China is a country which exports largely magnesian salts.
    China has a long coastline, so it has large amounts of seawater. The most briny salt is produced in China, so it has about 2000m3 haloid water as outgrowth. Haloid water is the concentrated seawater, in which, the consistence of solubrlrty salt is 40-50 times of seawater, its main component is magnesium. If we use haloid water to produce magnesian compounds, the products is not only more cheaper, but also less impurities, equality components, easily preparated high pure magnesian products. With this method, we can decrease the twice pollution. But in a long time, people don't focus on this instance and more than 90% haloid water is not fully used.
    With the quick development of technology, the use of magnesian products are more widely, specially in the fields of advanced technology, we need high quality magnesian products. But the technics of magnesian industry is draggle, high economic costs, high energy costs, less kinds of products. So we can not compete with the developed countries and lose much of markets.
    This paper about the technics is according to the situation of our country, using the material of haloid liquid, ammonium bicarbonate and ammonia to prepare the super light MgO. Few of this technics is reported hi foreign. There are some experiment researches in China, but they only stay experiment stage. In Shangdong, even though some small industries use ammonium bicarbonate as precipitator to produce the super light MgO, but the technics is not reasonable ,in high energy, badly economic benefit. So they are all in bad status. So the main purposes of this paper is to research high appendice super light MgO and its new technics, lessen energy
    
    
    consume, large economic benefits and society benefits.
    This paper about the technics is to use the material of haloid liquid, ammonium bicarbonate and ammonia to preparate the super light MgO. First, we use ammonium bicarbonate and ammonia to have the prescriptive consistency solution, then add the solution into haloid liquid drop by drop and reaction each other in the fixed temperature. After reaction we add ammonium bicarbonate solid into the solution in batches until deposited completely. Secondly, we use the methods of aging, pyrolysis, filtration, lavation, desiccation, shiver, calcinations, finally, the super light MgO is obtained. From the amount of ammonium bicarbonate and ammonia, reaction temperature, specific votume, recycle rate, we can find the excellent technics condition. So we can produce the super light MgO under the condition of less material and less energy. On this base, we have a magnified experimentation. It means that the result is very good. The virtues of this technics is simple, controllable, steady quality, high annex and more economic benefits.
    Although there are few of impurities in haloid water, in order to ensure the quality of the products, we have to purify it. We add little NaCIO and a little CaCk which molar scalar is same with the SO42" to dispose of the impurities, such as iron, manganese, SO42". According with the principle of reaction, in experimentation, we grasp the sticking point which in reaction of ammonium bicarbonate, there it creates HCOs" and COi, and both of the two can be used circularly to search after the conditions of the experiment. Through the experiment, we can confirm the ratio of dosage of ammonia and haloid wate, the ration of dosage of ammonium bicarbonate and ammonia. The best rations of the three are: Haloid water: Ammonia=l:0.221, Ammonia : Ammonium bicarbonate=l:0.61 by mass, respectively.
    With the rations of them, we can make the consuming of ammonium bicarbonate decrease from 4-6 tons to about 2 tons, and reduce the production costs.
    Through the experiment of the relations
引文
[1] 史祖余.从镁盐溶液中制取高纯度氧化镁[J].镁盐工业,2001,(2):78~81
    [2] 王路明.石灰卤水法制备超细氧化镁的研究[J].海湖盐与化工,2001,30(1):21~24
    [3] 叶锡生.纳米氧化镁晶体粒微结构的尺寸效应[J].浙江大学学报(工学版),2000,34(1):1~4
    [4] 张近.超细粉体氧化镁的合成[J].化学工程.1999,(2):34~36
    [5] 范太其.浅谈纳米级氧化镁的开发[J].镁盐工业,2001,(2):40~43
    [6] 汪国忠,陈素芳.纳米MgO粉体的合成.合成化学,1994,(4):300~302
    [7] 刘宝树,胡庆福,翟学良.纳米氧化镁的特性及制备[J].镁盐工业,2001,(2):1~6
    [8] 向兰,吴会军,金永成等.阻燃型氢氧化镁制备技术评述[J].镁盐工业,2001,(2):90~93
    [9] 郑绍雄.高纯氧化镁的历史回顾与展望,耐火材料,1994,28(5):289~292
    [10] 周产力,王犇.氢氧化镁阻燃剂的现状及展,无机盐工业,2004,36(3):11~13
    [11] 方裕勋,罗新.露水-白云石法氢氧化镁沉淀过程实验和研究,无机盐工业,1998,30(2):9~11
    [12] 张家驹等.高碱度高氧化镁烧结矿的研究[J].结烧球团,1992,(2):29
    [13] 李广路.球化剂中氧化镁的快速测定.镁盐工业,2000,(1):73~74
    [14] 王锋,李稳宏等.高活性氧化镁生产新工艺研究.镁盐工业,2004,(1):13~15
    [15] 范建萍,张毅安.石棉尾矿酸浸法制微孔二氧化硅和轻质氧化镁的工艺研究[J].山西化工,1996,(3):29~31
    
    
    [16] 张益湘.白云石加压碳化法制取轻质氧化镁[J].无机盐工业,1993,(4):4~6
    [17] 于少明,杨保俊.蛇纹石综合利用的方法及其发展[J].环境与开发,1998,13(1):18~19
    [18] 范建萍.从硼中制取轻质氧化镁的工艺研究[J].陕西化工,1999,28(2):18~20
    [19] 魏月华,周有英.苦卤---碳铵法制备氧化镁节能降耗的研究[J].海湖盐与化工,1995;23(5):9~13
    [20] 周世贤,郭瓦力.用硼泥生产高活性轻质氧化镁[J].无机盐工业,1997,(5):44~46
    [21] 白添中.回转煅烧窑制取轻质氧化镁的技术经济评价[J].无机盐工业,1999,31(1):41~43
    [22] 张继宇,赵维君,张树杰.轻质氧化镁干燥和煅烧新工艺的技术经济评价分析[J].无机盐工业,1993,(2):38~42
    [23] 张永声.离子交换法生产轻质氧化镁问题剖析及对策[J].陕西化工,1991,(3):14~16
    [24] 李文天,王向荣,乔冷.高镁卤水再生循环法生产轻质氧化镁[J].无机盐工业,1993,(2):12~14
    [25] 郑若锋,刘玉华.白云石制取轻质氧化镁和氯化钙工艺研究[J].无机盐工业,1992,(5):11~23
    [26] 隋升,曹广益.氧化镁生产工艺的改进[J].上海交通大学学报,2001,35(4):595~598
    [27] 朱亚先,刘新锦等.MgO纳米粉制备及表征.镁盐工业,2004,(1):16~17
    [28] 居安.纳米氢氧化镁的制备与应用.镁盐工业,2004,(1):24~26
    [29] 王云.利用现有工业条件实验室研制轻质氧化镁.镁盐工业,2004,(1):35~40
    [30] 林蔚,李青山等.纤维水镁石应用与开发.镁盐工业,2003,(1):5~8
    
    
    [31] 梁尊山.死海氧化镁和镁化合物生产.镁盐工业,2003,(1):8~10
    [32] 朱国才,梁国兴等.以菱镁矿制备镁盐系列产品.镁盐工业,2003,(1):11~12
    [33] 徐日瑶.青海盐湖水氯镁石脱水、电解制镁及高纯度氧化镁生产联合工艺[C],2001年全国镁行业年会论文集(1)
    [34] R P. Pawlek, R. "Bob"Brown. World primary and Secondary Magnesium Review[J] LIGAY METAL AGE, 2001, 59(7, 8): 50~57
    [35] RICHMOND Alvin, BENT John francis. Pretreatment of brine for boron removal[P]. US 4035469, 1977
    [36] INST Mneralnych materialow bu. Method of obtaining active magnesium oxide[P]. PL 333552, 2000
    [37] GRILL Michael, GRAF Gerhard. Process for producing pure magnesium oxide[P]. US 4944928, 1990
    [38] Legmao O, et al. The pHysical mechanical properties of ethylene-vinyl acetate copolymer. Rev Plast Mod, 1985, 49(34): 576
    [39] Zeng R J. Paricle--particle interaction processing of alumina ceramiea[D]. Leeds: Leed Univ., 1993: 121
    [40] Zeng R J and Rang B. Particle size distribution, powder agglomerates and their effects on sinterabiilty of ultrafine alumina powder[J]. J. Mater. SciVTechnoⅣ, 2000, 16(4): 393
    [41] S. C. PanigrapHy et al. Influence of MgOaddition on mineralogy of iron ore sinter. Metallurgical Yansactions B, 1984, 15(B)(3): 23
    [42] Ichiro Shigaki et al. Melting property of MgO containing sinter. Tansactions ISIJ, 1981, (21): 862
    [43] C.E. Loo et al. Mechanical properties of natural and synthetic mineral pHases in sinters having varing reduction degradation indices. Ironmaking sng Steelmaking, 1988, 15(6): 279
    [44] S. C. PanigrapHy et al. Effect of MgO addition on strength characteristics of iron ore sinter. Ironmaking sng Steelmaking, 1984, 11(1): 17
    
    
    [45] Xiaorong Fua et al. Preparation and characterization of MgO thin films by a simple nebulized spray pyrolysis technique. Applied Surface Science , Volume 148, Issues 3-4, July 1999, Pages 223-228
    [46] Yubao Li, Yoshio Bando and Tadao Sato. Preparation of network-like MgO nanobelts on Si substrate Chemical PHysics Letters. Volume 359, Issues 1-2, 13 June 2002, Pages 141-145
    [47] E. Alvaradoa, L. M. Torres-Martineza, A. F. Fuentesa and P. Quintana. Preparation and characterization of MgO powders obtained from different magnesium salts and the mineral dolomite. Polyhedron , Volume 19, Issues 22-23, 15 November 2000, Pages 2345-2351
    [48] T. V. Ashwortha, C. L. Panga, P. L. Wincottb, D. J. Vaughanb and G. Thornton. Imaging in situ cleaved MgO(100) with non-contact atomic force microscopy. Applied Surface Science, Volume 210, Issues 1-2, 31 March 2003, Pages 2-5
    [49] M. F. Gomez, L. E. Cadús and M. C. Abello. Preparation and characterization of MgO- Al_2O_3 composite oxides. Solid State Ionics, Volume 98, Issues 3-4, 2 June 1997, Pages 245-249
    [50] Jinting Jiua, Ken-ichi Kurumadac, Masataka Tanigakia, Motonari Adachib and Susumu Yoshikawab. Preparation of nanoporous MgO using gel as structure-direct template. Materials Letters, Volume58, Issues 1-2, January 2004, Pages 44-47
    [51] Y. H. Choa, J. K. Yanga, B. H. Kimb, Y. K. Jeongc, J. S Leea, T. Nakayamad, T. Sekinod and K. Niiharad. Preparation and characterization of metal/ceramic nanoporous nanocomposite powders. Journal of Magnetism and Magnetic, Materials Volume 266, Issues 1-2, October 2003, Pages 12-19
    [52] 宋彭生.盐湖及相关资源开发与利用进展.盐湖研究,2000,8(1):1~16
    [53] 宋彭生.盐湖及相关资源开发与利用进展.盐湖研究,2000,8(2):33~58
    
    
    [54] 于斤松,谭红兵.中国盐湖资源的开发利用与环境保护.盐湖研究,2000,8(1):24~29
    [55] 乌志明,温现明盐湖氯化物资源开发与环保.盐湖研究,2000,8(2):33~58
    [56] 陈鹏.浅述反循环工艺原理及运行问题.中国井矿盐,2000,32(2):13~15
    [57] 李延丰,王升吉等.莱州湾北部沿海地下卤水资源评价.海湖盐与化工,2000,29(6):38~42
    [58] 徐丽君,于廷芳.关于我国海水(含卤水)镁砂的研究与开发.海湖盐与化工,1999,28(1):16~20
    [59] 孙强.无水钾镁矾与氯化钾转化生成硫酸钾相图分析.海湖盐与化工,1999,28(1):24~25
    [60] 翟学良.卤水—氨连续沉淀Mg(OH)_2的设备选择.海湖盐与化工,2000,26(1):1~2
    [61] 李传亮,李旭娣.利用高低温盐联产三硅酸镁及无水硫酸钠的实验研究.海湖盐与化工,2000,26(1):3~5
    [62] 王路明.卤水合成镁氧反应条件的确定.海湖盐与化工,2000,26(1):8~10
    [63] 郭如新,沈世才.硫镁肥的过去现在和将来.海湖盐与化工,2000,26(1):19~22
    [64] 梁星虹.地下卤水综合利用技术和市场分析.海湖盐与化工,2000,26(1): 31~33
    [65] 牛自得.分离高温盐的工艺条件研究.海湖盐与化工,2000,29(6):4~7
    [66] 贺春宝.氯化钾与芒硝复分解制取硫酸钾的研究.海湖盐与化工,2000,29(6):30~33
    [67] 郭如新.阻燃剂发展现状.海湖盐与化工,1999,28(1):43~44
    [68] Z. Cui, G. W. Menga, W. D. Huanga, G. Z. Wanga and L. D. Zhanga. Preparation and characterization of MgO nanorods. Materials Research Bulletin, Volume 35, Issue 10, 15 July 2000, Pages 1653-1659
    [69] T. Nakayama, Bum-Sung Kima, Hiroki Kondoa, Yong-Ho Choab, Tohru
    
    Sekinoa, Masaaki Nagashimaa, Takafumi Kusunosea, Yamato Hayashia and Koichi Niiharaa. Fabrication of MgO based nanocomposites with multifunctionality. Journal of the European Ceramic Society, Volume 24, Issue 2, 2004, Pages 259-264
    [70] 王延辉.高视比容氧化镁的工艺研究,贵州化工,1998, (1):24~26
    [71] 廖莉玲,刘吉平.固相法合成纳米氧化镁,精细化工,2001,18(12):695~697
    [72] 郭如新.日本氧化镁、氢氧化镁的生产应用和研发动向,苏盐科技, 2003,6(2):8~10
    [73] 朱国才,孟广洲.碱式碳酸镁的形成过程及氧化镁含量控制,非金属矿,2002,25(3):16~18
    [74] 任庆利等.烧制工艺对氧化镁活性的影响,绝缘材料,2003,(3):12~15
    [75] 蓝军,董丽春.生产轻制碳酸镁的碳酸化工艺实验,无机盐工艺,2003,1(35): 21~23
    [76] 林慧博,印万中等.纳米氢氧化镁制备技术研究,有色矿冶,2003,19(1):33~36
    [77] 冯乃祥,李艳丽等.温度对沉淀氢氧化镁的影响,轻金属,2002,(1):46~49
    [78] 王兆中.浅淡海水镁砂的研制与发展,海湖盐与化工,1998,27(1):7~11
    [79] 欧育湘.国外无卤阻燃剂最新研究进展,精细专用化学品,2000,8(9):6~8
    [80] 郭如新.环境友好型阻燃剂--氢氧化镁,化工科技市场,2000,23(6),10~13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700