甘草通过RNA结合蛋白HuR对肠上皮细胞的p21、p53mRNA转录后调节研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     保护小肠粘膜屏障对防止肠内细菌及内毒素的移位具有非常重要的意义,小肠粘膜屏障完整性的维持有赖于小肠隐窝干细胞的增殖、分化、移行、粘附等共同作用,在病理性损伤下,小肠隐窝干细胞的快速增殖对粘膜损伤的修复起到了重要作用。现代研究发现健脾益气类中药能够通过调节肠内细胞的增殖能力对脾虚状态下的肠粘膜的损伤起到修复作用。甘草具有健脾益气的功效,同时甘草对以粘膜损伤为病理特征的疾病有显著的治疗作用如消化性溃疡病等。但目前有关甘草对小肠上皮细胞保护作用的细胞和分子水平药理研究的报道甚少。国外研究中常采用大鼠小肠隐窝干细胞IEC-6和DFMO诱导的生长抑制的IEC-6病理细胞模型为载体研究小肠上皮细胞增殖、移行、粘附、分化等功能。在健脾中药对胃肠上皮保护的机制研究中,小肠隐窝干细胞被认为是健脾益气中药的主要药理作用靶点之一,并采用IEC-6细胞模型进行了相关的药理研究,基于MTT法的初步研究发现甘草对正常IEC-6细胞有促进增殖的作用,但对其中潜在的分子机制并未研究,对病理状态下肠上皮细胞的药效作用也未涉及。
     国外通过DFMO诱导的生长抑制的IEC-6模型细胞发现了许多与肠上皮细胞细胞增殖相关的基因,这些基因表达受转录后水平的调控,即RNA结合蛋白HuR与其中的某些基因mRNA非编码区的AU富集元件(AU-rich elements, AREs)的相互作用使这些mRNA的稳定性受到影响,从而最终调节这些基因终产物——蛋白的表达及其生物学效应。预实验研究初步发现甘草及其活性成分之一甘草酸对IEC-6细胞内的HuR有调节的作用,因此本研究将更深入的研究甘草如何通过RNA结合蛋白HuR对肠上皮细胞p21、p53的mRNA进行转录后调节,明确HuR是甘草促进IEC-6细胞增殖作用的分子药靶之一。
     目的
     1.研究甘草对正常IEC-6细胞和DFMO模型细胞增殖的调节作用。
     2.研究与甘草调节IEC-6细胞增殖相关的基因及其表达。
     3.研究甘草在调控相关基因表达中可能与HuR有关的转录后调节机制。
     方法
     1.细胞模型和用药
     以正常IEC-6细胞作为生理性细胞模型,DFMO模型细胞作为病理性细胞模型。
     实验用药采用的甘草为甘草颗粒(商品化的甘草水提物),甘草成分采用的是2005版《中国药典》中规定的甘草两个主要指标成分甘草酸和甘草苷。
     2.研究甘草、甘草酸、甘草苷对IEC-6细胞增殖的调节作用和药物的有效剂量
     采用基于流式细胞术的细胞计数法、DAPI嵌染核酸的细胞周期检测以及CFSE标记细胞检测细胞分裂速度三种方法研究甘草颗粒对正常IEC-6细胞和DFMO模型细胞的增殖的影响并确定有效的剂量范围。采用MTT法研究甘草酸对两种模型细胞的增殖的调节作用;采用流式细胞术的细胞计数法研究甘草苷对两种模型细胞增殖的影响。3.研究甘草对IEC-6细胞促增殖作用相关的靶基因表达的影响
     利用荧光定量PCR技术和western blot蛋白免疫印迹技术,分别对甘草调节IEC-6细胞增殖、并且与细胞周期相关的基因的mRNA水平和蛋白水平进行检测。4.研究甘草通过HuR调控相关基因mRNA稳定性的转录后调节机制
     首先通过放线菌素D抑制转录,并结合PCR技术研究甘草对相关mRNA稳定性的影响,以证明甘草通过转录后调节途径调控基因表达的可能性;其次以western blot技术分别检测HuR在胞浆、胞核的水平,研究mRNA稳定性的改变和RNA结合蛋白HuR的相关性;接着重点研究甘草对相关mRNA和HuR的共同调节是否通过mRNA和HuR的相互作用产生,分别以mRNP免疫沉淀技术研究细胞内源性HuR-mRNP复合物中目标mRNA的含量以明确甘草对HuR和靶mRNA结合的影响、以biotin-pull down技术研究相关mRNA和HuR的相互作用是否是通过HuR对mRNA非编码区AREs识别产生、以基因重组和荧光素酶报告基因检测技术验证甘草是否是通过相关mRNA的AREs片段对最终的基因表达产生影响。
     结果
     1.甘草对DFMO诱导的生长抑制的IEC-6细胞模型具有促进增殖的作用
     甘草对正常的IEC-6细胞并无促进增殖的作用;而对DFMO模型细胞的生长抑制的状态却有逆转的作用,且该作用与胞周期的影响有关;甘草酸和甘草苷虽为甘草的主要指标成分,但本实验中并未发现两者对于这两种细胞模型的增殖有和甘草颗粒一致的影响。
     2.甘草可调控DFMO模型细胞p21、p53基因的mRNA和蛋白表达
     DFMO模型细胞生长受抑的同时伴随p2、p53mRNA和蛋白水平的表达相对增加,但在添加甘草后得以一定程度的逆转,并且在一定范围内具有剂量依赖性。提示p2l和p53可能是本实验条件下甘草药理作用的靶基因。
     3.甘草通过RNA结合蛋白HuR从转录后水平调控p21和p53mRNA的稳定性
     甘草对DFMO模型细胞p21和p53 mRNA水平的下调可通过降低p21和p53mRNA的稳定性实现,同时DFMO引起的HuR向胞浆的外移可被甘草逆转。利用mRNP免疫沉淀技术,检测到甘草处理DFMO模型细胞后内源性HuR-mRNP复合物中的p21和p53mRNA含量,相对DFMO模型细胞减少,提示甘草减少了HuR与p21mRNA和p53mRNA的结合以及HuR携带mRNA向胞浆的转移,从而降低了p21和p53mRNA在胞浆内的稳定表达。Biotin-pull down技术检测的结果提示p21mRNA和HuR的结合可通过p21mRNA的3’-UTR内的AREs和HuR特异性的识别和结合实现;通过基因重组和荧光素酶报告基因技术验证了甘草能通过p21mRNA的3’-UTR内的AREs片段调控相应基因表达的水平。
     结论
     甘草对DFMO诱导的生长抑制的IEC-6细胞具有促进增殖的作用,该作用可以通过HuR介导的调节p21和p53mRNA稳定性的转录后调控机制实现。本课题通过体外实验为甘草在病理状态下对肠上皮细胞的保护作用提供了实验依据,证实了HuR作为甘草的分子药靶之一在转录后水平调控基因表达的作用。
Background
     Intestinal mucoasal barrier is recognized as an important protective defense against the hacterial translocation and endotoxin penetrating from intestinal lumen. The integrity of of intestinal mucosal barrier largely depends on the proliferation, differentiation, migration and adhesion of the stem cells reside in small intestinal crypt. The rapid proliferative characteristic of intestinal crypt cells greatly contributes to the healing of intestinal mucosal injuries in pathological conditions. Licorice belongs to the category of herbs that tonifies the spleen and strengthens the Qi, in which the herbs are reported to possess treatment properties for the intestinal mucosal lesion due to Spleen Qi Deficiency through promoting the growth of intestinal epithelium cells. Moreover, licorice has a potent healing effect on the mucosal wounds in varied diseases especially in peptic ulcer. However, the cellular and molecular mechanism about the protective action of licorice on small intestinal epithelium cells is still elusive. The rat small intestinal epithelial cell line, IEC-6 is a commonly-used physiological cellular model for studying the proliferation, migration, adhesion and differentiation of intestinal epithelia cells. Correspondingly, IEC-6 cells treated with DFMO, an agent inhibits the growth of cells, are used as a pathological model. Based on the researches into the protective mechanism of herbs for invigorating spleen, small intestinal crypt cells are considered as a pharmacological target of spleen-strengthening and qi-invigorating herbal medicine. A MTT assay preliminarilly revealed that licorice extracts have a pro-proliferative effect on normal IEC-6 cells, but either the underlying molecular mechanism or the action of licorice on the cells under pathological conditions still remain to be uncovered. Based upon the researches on DFMO-treated cells, it was revealed that the expression of some genes that related with the growth of intestinal epithelial cells were regulated at post-transcriptional level. The mRNA stability of these genes are influenced by the interaction between their AU-rich elements within 3'-UTR (3'untranslated region) and HuR, a typical RNA binding protein, consequently, the quantiy of mRNA available for translation decides the production of proteins and the biological function they exert. A preliminary research conducted in our group discovered that the cytoplasmic localization of HuR in IEC-6 cells could be detected in the presence of glycyrrhizic acid, one of active principles of licorice. Therefore, we hypothesize that the post-transcriptional regulation might be involved in the proliferation of IEC-6 triggered by licorice, and HuR could be one of the potential molecular targets during the process.
     Objective
     In the present research, we aim at:
     1. evaluating the impact of licorice on the proliferation of normal IEC-6 cells and DFMO-induced growth inhibitory IEC-6 cells.
     2. examining the gene expression that correlated with the pro-proliferative action of licorice on IEC-6 cells.
     3. investigating the role of HuR within the process of licorice regulating gene expression and the possible post-transcriptional regulatory mechanism mediated by HuR.
     Methods
     1. Cellular models and drugs
     Normal IEC-6 cells and DFMO-treated IEC-6 cells were separately used as physiological and pathological cellular models under corresponding conditions. Licorice granules (a commercial product of locorice aqueous extract), glycyrrhizic acid monoammonium salt and liquiritin (two major marker compounds defined by Pharmacopoeia of the People's Republic of China) were used as the drug to determine the effect of licorice on the proliferation of IEC-6 cells.
     2. Measuring the pro-proliferation action of licorice granules, glycyrrhizic acid monoammonium salt and liquiritin on IEC-6 cells and determining corresponding effective dosage
     Direct cell number measurement, cell distribution detection and CFSE-labeled cell division tracking were employed as three major flow cytometry-based techniques in our research to evaluate the proliferative activity of normal IEC-6 cells and DFMO-treated IEC-6 cells after the administration of licorice. MTT assay and flow cytometry-based cell counting were respectively applied to determine the action of glycyrrhizic acid monoammonium salt and liquiritin on the proliferation of IEC-6 cells.
     3. Analyzing the effect of licorice on the expression of target genes Quantitative real-time PCR (qRT-PCR) and western blot were performed to analysize transcriptional and translational expression of genes that associated with the pro-proliferative effect of licorice.
     4. Investigating the post-transcriptional mechanism that licorice regulates mRNA stabitlity through HuR
     Following transcriptional repression induced by actinomycin D, the changes of mRNA stability after licorice treatment were assessed by qRT-PCR. Then the cytoplasmic and nuclear HuR levels were detected by western blot analysis to identify whether the changes of mRNA stability were accompanied with the alterning intracellular localization of HuR. Furthermore, it is necessary to verify whether the synchronous changes of mRNA stability and nucleo-cytoplasmic distribution of HuR after licorice treatment were dependent on the interaction between HuR and its target mRNAs. mRNP immunoprecipitation was used to facilitate analysis of the level of target mRNAs in endogenously formed HuR-mRNA complexes from cellular extracts. In addition, biotin pull-down assay was employed to identify whether AREs within untranslated region contributes to the binding of HuR and its mRNAs. The biological effect of ARE containing-fragment from HuR targeted mRNAs was validated throuth gene recombination and luciferase reporter gene assay.
     Results
     1. Licorice can stimulate the proliferation of DFMO-treated IEC-6 cells by reversing the growth-inhibitory effect of DFMO.
     Within the dosage studied in our research, licorice was found to significantly promote the growth of IEC-6 cells that had been treated with DFMO, while it did not cause similar effect on the normal IEC-6 cells. The pro-proliferative action of licorice on IEC-6 cells was accompanied with the changes in cell cycle progression. Although glycyrrhizic acid and liquiritin are two major mark components of licorice, they failed to stimulate the proliferation of IEC-6 cells as licorice.
     2. The pharmacological action of licorice on DFMO-treated IEC-6 cells was associated with the expression of p21 and p53.
     The raised levels of p21 and p53 mRNA and protein in DFMO-treated cells were significantly down-regulated by licorice in a dose-dependant manner within certain concentration range. It suggested that p21 and p53 might be target genes of licorice in our experiments.
     3. Licorice exerted its pharmacological action through HuR-mediated post-transcriptional regulatory mechanism.
     The levels of p21 and p53 mRNAs in DFMO-treated IEC-6 cells could be down-regulated by licorice via stabilizing p21 and p53 mRNAs, meanwhile, the cytoplasmic translocation of HuR induced by HuR could be reversed by licorice. Based on mRNP immunoprecipitation, the decreasing p21 and p53 mRNAs within endogenously formed HuR-mRNP complexes were detected in the IEC-6 cells treated with DFMO plus licorice, compared with DFMO-treated cells. The result indicated that licorice abolished the binding of endogenous HuR to p21 and p53 mRNA, and hence destabilized these two mRNAs and consequently decreased their expression in cytoplasm. It was further supported by biotin pull down assay that the binding of HuR and p21mRNA was due to the specific affinity of HuR to the AREs resided in 3'-UTR of p21 mRNA. Luciferase reporter gene assay proved that licorice modulated gene expression through HuR-targeted fragment from p21mRNA.
     Conclusions
     Taken together, our conclusion from this work is that licorice post-transcriptioinally down-regulates the levels of p21 and p53 mRNAs via HuR and therefore stimulates the growth of DFMO-treated IEC-6 cells. This study presents an interpretation that licorice exerts its healing effect on intestinal mucosa through the modulationg of cell kinetics. More importantly, HuR was identified as a molecular drug target of licorice at post-transcriptional level.
引文
[1]Wilmore D W, Smith R J, O'dwyer S T, et al. The gut: a central organ after surgical stress[J]. Surgery,1988,104(5):917-23.
    [2]Antonsson J B, Fiddian-Green R G The role of the gut in shock and multiple system organ failure[J]. Eur J Surg,1991,157(1):3-12.
    [3]Swank G M, Deitch E A. Role of the gut in multiple organ failure:bacterial translocation and permeability changes[J]. World J Surg,1996,20(4):411-7.
    [4]Hassoun H T, Kone B C, Mercer D W, et al. Post-injury multiple organ failure:the role of the gut[J]. Shock,2001,15(1):1-10.
    [5]许长照,张瑜瑶,刘隆棣.脾虚证患者十二指肠的病理形态及组织化学研究[J].中国中西医结合杂志,1987,(12).
    [6]姚永莉,宋于刚,赵彤.大鼠脾虚证模型的胃肠粘膜形态学研究[J].中国中西医结合脾胃杂志,2000,8(1):8-10.
    [7]王孟清,欧正武,吴明贞.健运冲剂促脾虚泄泻模型大鼠受损肠粘膜修复的研究[J].中国中西医结合脾胃杂志,1999,7(4):217-219.
    [8]曹小玉,杨智梅,彭成.四君子颗粒抗脾虚动物胃肠细胞损伤的研究[J].成都中医药大学学报,2000,23(3).
    [9]许长照,马永华,卞惠敏.脾虚小鼠模型及健脾中药治疗的形态药理学研究[J].中药药理与临床,1991,7(5):30-33.
    [10]蔡莹,蔡光先,刘柏炎.生晒参超微饮片对脾虚小鼠小肠黏膜形态学的影响[J].湖南中医药大学学报,2007,27(3):20-22.
    [11]彭成,雷载权.四君子汤抗脾虚动物胃肠细胞损伤的研究[J].中药药理与临床,1995,(6):7-10.
    [12]姚永莉,宋于刚,张万岱.四君子汤治疗实验脾虚证对胃肠粘膜细胞增殖动力学的影响[J].世界华人消化杂志,1999,7(6):550.
    [13]姚永莉,张万岱,宋于刚.实验脾虚证胃肠粘膜细胞的增殖动力学研究[J].现代消化及介入诊疗杂志,1999,4(1):42-43.
    [14]尹光耀,张武宁,何雪芬.脾虚证胃病胃粘膜业细胞结构及其微量元素、Dna研究的临床意义[J].中国中西医结合脾胃杂志,1996,4(01):10-15.
    [15]徐珊,石君杰,杨季国.慢性胃炎脾气虚证与胃粘膜细胞凋亡调控基因的相关性研究[J].中医杂志,2004,45(08):614-616.
    [16]周冬枝,吴苏冬,刘永惠.胃癌中医证型与p53、bcl-2、bax基因蛋白表达关系的研究[J].北京中医药大学学报,2003,26(02):56-58.
    [17]苏冬,周冬枝,贾宗良.结肠癌脾虚证p53,Bcl-2和Bax的表达[J].第四军医大学学报,2003,24(12):1111-1113.
    [18]高碧珍,黄爱民,章志安.不同证候模型大鼠胃黏膜细胞凋亡与证的相关性研究[J].中华中医药杂志,2005,20(9):557-558.
    [19]徐珊,周嘉鹤,王常松.慢性萎缩性胃炎大鼠胃黏膜细胞凋亡与中医证型的相关性[J].中医杂志,2007,48(6):538-541.
    [20]刘晓颖,陈小野.脾气虚证与胃粘膜P53基因表达关系的实验研究[J].中国中医基础医学杂志,1999,5(3):15-18.
    [21]Krauss G. Biochemistry of Signal Transduction and Regulation[M]. Wiley-VCH, 2003.
    [22]彭成,雷载权.四君子汤抗脾虚动物胃肠细胞损伤的研究[J].中药药理与临床,1995,6.
    [23]陈艳芬,陈蔚文.中药防治肠粘膜损伤作用机理研究近况[J].中医杂志,2002,43(7):550-552.
    [24]戴宝隆,冯惠生,韩景.脾虚证动物模型复健后十二指肠粘膜上皮细胞的动力变化[J].北京师范大学学报(自然科学版),1986,(2):72-74.
    [25]计惠民.汉方药对增龄小鼠小肠粘膜变化的影响(第1报)[J].国外医学.中医中药分册,1997,19(05):47.
    [26]计惠民.汉方药对增龄小鼠小肠粘膜变化的影响(第2报)[J].国外医学.中医中药分册,1997,19(05):47.
    [27]彭成,雷载权.人参皂甙健脾益气作用的实验研究[J].中药药理与临床,1997,13(5):17-19.
    [28]许长照,张瑜瑶.祁白术治疗脾虚证小鼠对消化器官组化和超微结构的影响[J].中国中西医结合消化杂志,2001,9(5):268-271.
    [29]陈蔚文.健脾益气中药的小肠隐窝细胞药理靶点探讨[J].广州中医药大学学报,2004,21(5):356-360.
    [30]Jones B A, Gores G J. Physiology and pathophysiology of apoptosis in epithelial cells of the liver, pancreas, and intestine.[J]. Am J Physiol Gastrointest Liver Physiol,1997,273:G1174-G1188.
    [31]Quaroni A, Wands J, Trelstad R, et al. Epithelioid cell cultures from rat small intestine. Characterization by morphologic and immunologic criteria.[J]. The Journal of Cell Biology,1979 80(2):248-265.
    [32]Mccormack S A, Viar M J, Johnson L R. Migration of IEC-6 cells: a model for mucosal healing[J]. Am J Physiol,1992,263(3 Pt 1):G426-35.
    [33]匡伟,赵国琦.几种特殊的肠上皮细胞系[J].中国畜牧杂志,2007,43(13): 41-44.
    [34]Rhee H J, Kim E-J, Lee J K. Physiological polyamines:simple primordial stress molecules[J]. Journal of Cellular and Molecular Medicine,2007,11(4):685-703.
    [35]Schippera R G, Verhofstad A a J. Distribution Patterns of Ornithine Decarboxylase in Cells and Tissues:Facts, Problems, and Postulates [J]. The Journal of Histochemistry & Cytochemistry,2002,50(9):1143-1160.
    [36]Wang J Y. Polyamines and mRNA stability in regulation of intestinal mucosal growth[J]. Amino Acids,2007,33(2):241-52.
    [37]Wang J Y, Johnson L R. Polyamines and ornithine decarboxylase during repair of duodenal mucosa after stress in rats[J]. Gastroenterology,1991,100(2):333-43.
    [38]Wang J Y, Johnson L R. Luminal polyamines substitute for tissue polyamines in duodenal mucosal repair after stress in rats[J]. Gastroenterology,1992,102(4 Pt 1): 1109-17.
    [39]Patel A R, Li J, Bass B L, et al. Expression of the transforming growth factor-beta gene during growth inhibition following polyamine depletion[J]. Am J Physiol, 1998,275(2 Pt 1):C590-8.
    [40]Rao J N, Li L, Bass B L, et al. Expression of the TGF-beta receptor gene and sensitivity to growth inhibition following polyamine depletion[J]. Am J Physiol Cell Physiol,2000,279(4):C1034-44.
    [41]Wang J Y, Mccormack S A, Viar M J, et al. Decreased expression of protooncogenes c-fos, c-myc, and c-jun following polyamine depletion in IEC-6 cells[J]. Am J Physiol,1993,265(2 Pt 1):G331-8.
    [42]Kramer D L, Vujcic S, Diegelman P, et al. Polyamine analogue induction of the p53-p21WAF1/CIP1-Rb pathway and G1 arrest in human melanoma cells[J]. Cancer Res,1999,59(6):1278-86.
    [43]Li L, Rao J N, Guo X, et al. Polyamine depletion stabilizes p53 resulting in inhibition of normal intestinal epithelial cell proliferation[J]. Am J Physiol Cell Physiol,2001,281(3):C941-53.
    [44]Li L, Liu L, Rao J N, et al. JunD stabilization results in inhibition of normal intestinal epithelial cell growth through P21 after polyamine depletion[J]. Gastroenterology,2002,123(3):764-79.
    [45]Patel A R, Wang J Y. Polyamine depletion is associated with an increase in JunD/AP-1 activity in small intestinal crypt cells[J]. Am J Physiol,1999,276(2 Pt 1):G441-50.
    [46]Liu L, Santora R, Rao J N, et al. Activation of TGF-beta-Smad signaling pathway following polyamine depletion in intestinal epithelial cells[J]. Am J Physiol Gastrointest Liver Physiol,2003,285(5):G1056-67.
    [47]Cm B, Ja. S. HuR and mRNA stability[J]. Cell Mol Life Sci,2001,58(2):266-277.
    [48]Silanes I L P D, Fanl J, Yang X, et al. Role of the RNA-binding protein HuR in colon carcinogenesis[J]. Oncogene,2003,22:7146-7154.
    [49]Zou T, Mazan-Mamczarz K, Rao J N, et al. Polyamine depletion increases cytoplasmic levels of RNA-binding protein HuR leading to stabilization of nucleophosmin and p53 mRNAs[J]. J Biol Chem,2006,281(28):19387-94.
    [50]张子理,陈蔚文.党参、黄芪、白术、白草提取部位对小肠上皮细胞增殖的影响[J].中药药理与临床,2002,18(1):10-12.
    [51]张子理,陈蔚文.党参、黄芪、白术提取物配伍应用对小肠上皮细胞增殖的影响[J].广州中医药大学学报,2002,19(2):137-140.
    [52]张子理,陈蔚文.黄芪和白术对胃粘膜损伤药理作用的初步研究[J].中华实用中西医杂志,2006,19(4):470-471.
    [53]张子理,陈蔚文.黄芪注射液和白术提取部位对小肠上皮细胞移行的影响[J].中草药,2002,33(10):912-915.
    [54]张子理,陈蔚文.黄芪注射液通过激活鸟氨酸脱羧酶促进IEC-6细胞分化的研究[J].中国中西医结合杂志,2002,22(6):439-443.
    [55]王鹏,张子理.白术提取物B13通过激活鸟氨酸脱羧酶促进IEC-6细胞移行[J].中华实用中西医杂志,2003,16(6):837-839.
    [56]杜红卫,刘中文,王冰梅.补中益气汤对脾虚动物胃粘膜细胞凋亡的影响[J].长春中医药大学学报,2006,22(3):39-40.
    [57]赵霞,潘华峰,鞠晓云.胃痞消抑制慢性萎缩性胃炎脾虚大鼠胃黏膜上皮细胞凋亡及调控蛋白Caspase-3和p53表达[J].中国新药杂志,2007,16(13):1018-1021.
    [58]赵霞,潘华峰,鞠晓云.胃痞消对CAG脾虚大鼠胃黏膜上皮细胞凋亡及调控蛋白Caspase-3影响的研究[J].中国中医基础医学杂志,2007,13(1):42-43.
    [59]陈海娇.北药甘草的药理学研究进展[J].吉林农业科技学院学报,2006,15(2):15-16.
    [60]Fintelmann V. Modern phytotherapy and its uses in gastrointestinal conditions[J]. Planta Med,1991,57(7 Suppl):S48-52.
    [61]Martin M D, Sherman J, Van Der Ven P, et al. A controlled trial of a dissolving oral patch concerning glycyrrhiza (licorice) herbal extract for the treatment of aphthous ulcers[J]. Gen Dent,2008,56(2):206-10; quiz 211-2,224.
    [62]Oloumi M M, Derakhshanfar A, A. N. Healing potential of liquorice root extract on dermal wounds in rats[J]. Journal of veterinary research,2007,62(4):147-154.
    [63]Fiore C, Eisenhut M, Ragazzi E, et al. A history of the therapeutic use of liquorice in Europe[J]. J Ethnopharmacol,2005,99(3):317-24.
    [64]Revers F E. Licorice juice in therapy of ventricular and duodenal ulcers[J]. Ned Tijdschr Geneeskd,1948,92(39):2968-73.
    [65]Hawkins E B, Ehrlich S D. Licorice [M].2007.
    [66]Blumenthal M, Goldberg A, Brinckmann J, et al. Herbal Medicine—Expanded Commission E Monographs[M]. Austin,TX:American Botanical Council,2000.
    [67]Dai S, Ogle C W, Cho C H. Effects of carbenoxolone sodium on gastric and duodenal mucus synthesis in mice[J]. Pharmacology,1986,33(1):58-60.
    [68]Van Marle J, Aarsen P N, Lind A, et al. Deglycyrrhizinised liquorice (DGL) and the renewal of rat stomach epithelium[J]. Eur J Pharmacol,1981,72(2-3):219-25.
    [69]王丽,徐成荣.加味芍药甘草汤治疗消化性溃疡78例[J].中国民间疗法,2002,10(3):52-53.
    [70]厉为广.芍药甘草汤加味治疗溃疡病170例[J].光明中医,1999,14(82):35-36.
    [71]杨伟辉.六君芍药甘草汤加味治疗消化道溃疡60例[J].辽宁中医杂志,1999,26(10):460.
    [72]赵良辰,赵云桂,杨永海.桂枝人参汤合芍药甘草汤治疗消化性溃疡60例[J].陕西中医,1999,20(6):242.
    [73]刘锋.加味芍药甘草汤灌肠治疗溃疡性结肠炎53例[J].中国民间疗法,2000,8(11):39-40.
    [74]张雪燕,韩涛,孟莉.芍药甘草汤在溃疡性结肠炎中的应用[J].辽宁中医学院学报,2004,6(4):280-281.
    [75]He J X, Akao T, Nishino T, et al. The influence of commonly prescribed synthetic drugs for peptic ulcer on the pharmacokinetic fate of glycyrrhizin from Shaoyao-Gancao-tang[J]. Biol Pharm Bull,2001,24(12):1395-9.
    [76]刘克玄,吴伟康,罗汉川.四逆汤对大鼠肠缺血再灌注后小肠上皮细胞超微结构的影响[J].中国病理生理杂志,2004,20(4):636-639.
    [77]周军辉,伍卫平,孙文基.甘草黄酮类化学成分研究进展[J].中国药品标准,2004,5(01):10-14.
    [78]王敏.甘草研究综述[J].齐鲁药事,2005,24(10):614-615.
    [79]田庆来,官月平,张波.甘草有效成分的药理作用研究进展[J].天然产物研究与开发,2006,18(02):343-347.
    [80]索田栋,张军良,郭燕文.甘草酸及其衍生物的研究进展[J].精细与专用化学品,2006,14(17):13-16.
    [81]Young G P, St John D J, Coventry D A. Treatment of duodenal ulcer with carbenoxolone sodium: a double-masked endoscopic trial[J]. Med J Aust,1979,1(1): 2-5.
    [82]Isbrucker R A, Burdock G A. Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin[J]. Regul Toxicol Pharmacol,2006,46(3):167-92.
    [83]张继,姚健,丁兰.甘草的利用研究进展[J].草原与草坪,2000,89(2):12-16.
    [84]曲中堂,项昭保.甘草甜素药理作用研究动态[J].时珍国医国药,2007,18(10):2568-2570.
    [85]常廷民,韩宇,张超贤.复方甘草酸苷注射液治疗溃疡性结肠炎疗效观察[J].中国药房,2004,15(9):559-560.
    [86]邹传用.甘草中黄酮类化合物的研究进展[J].宁夏石油化工2003,22(2):11-13.
    [87]乔仲和,胡自如.甘草渣中大量黄酮类化合物的分离及甘草的综合开发研究[J].中草药,1997,28(9):522-524.
    [88]贾国惠,贾世山.甘草中黄酮的药理作用研究进展[J].中国药学杂志,1998,33(9):513-516.
    [89]邢国秀,李楠,王童.甘草中黄酮类化学成分的研究进展[J].中国中药杂志,2003,28(7):593-597.
    [90]C.-H. Cho, Wang J-Y. Gastrointestinal Mucosal Repair and Experimental Therapeutics[M]. S. Karger Publishers 2002.
    [91]Lewin B. Genes VIII[M]. Benjamin Cummings,2003.
    [92]Peng S S, Chen C Y, Xu N, et al. RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein[J]. EMBO J,1998,17(12):3461-70.
    [93]Khabar K S. The AU-rich transcriptome:more than interferons and cytokines, and its role in disease[J]. J Interferon Cytokine Res,2005,25(1):1-10.
    [94]Glisovic T, Bachorik J L, Yong J, et al. RNA-binding proteins and post-transcriptional gene regulation[J]. FEBS Lett,2008,582(14):1977-86.
    [95]Fan X C, Steitz J A. HNS, a nuclear-cytoplasmic shuttling sequence in HuR[J]. Proc Natl Acad Sci USA,1998,95(26):15293-8.
    [96]Galban S, Kuwano Y, Pullmann R, Jr., et al. RNA-binding proteins HuR and PTB promote the translation of hypoxia-inducible factor lalpha[J]. Mol Cell Biol,2008, 28(1):93-107.
    [97]Wang W, Furneaux H, Cheng H, et al. HuR regulates p21 mRNA stabilization by UV light[J]. Mol Cell Biol,2000,20(3):760-9.
    [98]Yaman I, Fernandez J, Sarkar B, et al. Nutritional control of mRNA stability is mediated by a conserved AU-rich element that binds the cytoplasmic shuttling protein HuR[J]. J Biol Chem,2002,277(44):41539-46.
    [99]Gallouzi I E, Brennan C M, Stenberg M G, et al. HuR binding to cytoplasmic mRNA is perturbed by heat shock[J]. Proc Natl Acad Sci USA,2000,97(7): 3073-8.
    [100]Myer V E, Fan X C, Steitz J A. Identification of HuR as a protein implicated in AUUUA-mediated mRNA decay[J]. EMBO J,1997,16(8):2130-9.
    [101]Lopez De Silanes I, Zhan M, Lal A, et al. Identification of a target RNA motif for RNA-binding protein HuR[J]. Proc Natl Acad Sci USA,2004,101(9):2987-92.
    [102]Wang W, Caldwell M C, Lin S, et al. HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation[J]. EMBO J,2000,19(10):2340-50.
    [103]Wang W, Yang X, Cristofalo V J, et al. Loss of HuR is linked to reduced expression of proliferative genes during replicative senescence [J]. Mol Cell Biol,2001,21(17): 5889-98.
    [104]Galban S, Fan J, Martindale J L, et al. von Hippel-Lindau protein-mediated repression of tumor necrosis factor alpha translation revealed through use of cDNA arrays[J]. Mol Cell Biol,2003,23(7):2316-28.
    [105]Figueroa A, Cuadrado A, Fan J, et al. Role of HuR in skeletal myogenesis through coordinate regulation of muscle differentiation genes[J]. Mol Cell Biol,2003, 23(14):4991-5004.
    [106]Atasoy U, Curry S L, Lopez De Silanes I, et al. Regulation of Eotaxin Gene Expression by TNF-{alpha} and IL-4 Through mRNA Stabilization:Involvement of the RNA-Binding Protein HuR[J]. J Immunol,2003,171(8):4369-4378.
    [107]Atasoy U, Watson J, Patel D, et al. ELAV protein HuA (HuR) can redistribute between nucleus and cytoplasm and is upregulated during serum stimulation and T cell activation[J]. J Cell Sci,1998,111(21):3145-3156.
    [108]Mazan-Mamczarz K, Galban S, Lopez De Silanes I, et al. RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation[J]. Proc Natl Acad Sci USA,2003,100(14):8354-9.
    [109]Doller A, Pfeilschifter J, Eberhardt W. Signalling pathways regulating nucleo-cytoplasmic shuttling of the mRNA-binding protein HuR[J]. Cell Signal, 2008,20(12):2165-73.
    [110]Keene J D. RNA regulons:coordination of post-transcriptional events[J]. Nat Rev Genet,2007,8(7):533-43.
    [111]Liu L, Rao J N, Zou T, et al. Polyamines regulate c-Myc translation through Chk2-dependent HuR phosphorylation[J]. Mol Biol Cell,2009,20(23):4885-98.
    [112]Tongtong Zou, Lan Xiao, Rao N. Jaladanki, et al. Polyamines Modulate the Stability of JunD mRNA Through RNA-Binding Proteins HuR and AUF1 in Intestinal Epithelial Cells[J].2008.
    [113]Zhang X, Zou T, Rao J N, et al. Stabilization of XIAP mRNA through the RNA binding protein HuR regulated by cellular polyamines[J]. Nucleic Acids Res,2009, 37(22):7623-37.
    [114]Wang P Y, Rao J N, Zou T, et al. Post-transcriptional regulation of MEK-1 by polyamines through the RNA-binding protein HuR modulating intestinal epithelial apoptosis[J]. Biochem J,2010,426(3):293-306.
    [115]张娴.RNA结合蛋白HuR对IEC-6细胞XIAP转录后调节及多胺和甘草酸的作用研究[D].广州中医药大学,2009.
    [116]韩凌,王培训,危建安.四君子汤总多糖对大鼠小肠上皮株IEC-6细胞增殖的作用(英文)[J].中国临床康复,2006,10(35):175-177.
    [117]韩凌,王培训,刘良.四君子汤总多糖对大鼠小肠上皮细胞株IEC-6迁移的影响[J].山东中医杂志,2006,25(8):544-546.
    [118]Peng L, Wang B, Ren P. Reduction of MTT by flavonoids in the absence of cells[J]. Colloids Surf B Biointerfaces,2005,45(2):108-11.
    [119]Talorete T P, Bouaziz M, Sayadi S, et al. Influence of medium type and serum on MTT reduction by flavonoids in the absence of cells[J]. Cytotechnology,2006, 52(3):189-98.
    [120]王会玲,张金元.甘草酸对马兜铃酸致肾小管上皮细胞损害保护作用的初步研究[J].中国中西医结合肾病杂志,2005,6(4):200-203.
    [121]刘岩,赵世萍,董晞.甘草苷及人参皂苷对乌头碱导致心肌细胞离子通道mRNA表达变化的影响[J].中国中医基础医学杂志,2008,14(5):359-361.
    [122]Ray R M, Zimmerman B J, Mccormack S A, et al. Polyamine depletion arrests cell cycle and induces inhibitors p21(Wafl/Cipl), p27(Kipl), and p53 in IEC-6 cells[J]. Am J Physiol,1999,276(3 Pt 1):C684-91.
    [123]De Bartolo L, Morelli S, Gallo M C, et al. Effect of isoliquiritigenin on viability and differentiated functions of human hepatocytes maintained on PEEK-WC-polyurethane membranes[J]. Biomaterials,2005,26(33):6625-34.
    [124]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods,2001, 25(4):402-8.
    [125]Ferreira I D, Rosario V E, Cravo P V. Real-time quantitative PCR with SYBR Green I detection for estimating copy numbers of nine drug resistance candidate genes in Plasmodium falciparum[J]. Malar J,2006,5:1.
    [126]Blundell R A. The Biology of p21 Wafl/Cipl-Review Paper[J].2006.
    [127]Gartel A L, Serfas M S, Tyner A L. p21--negative regulator of the cell cycle[J]. Proc Soc Exp Biol Med,1996,213(2):138-49.
    [128]Levine A J. p53, the cellular gatekeeper for growth and division[J]. Cell,1997, 88(3):323-31.
    [129]Liu L, Guo X, Rao J N, et al. Polyamine-modulated c-Myc expression in normal intestinal epithelial cells regulates p21Cip1 transcription through a proximal promoter region[J]. Biochem J,2006,398(2):257-67.
    [130]Zou T, Rao J N, Liu L, et al. Polyamine depletion induces nucleophosmin modulating stability and transcriptional activity of p53 in intestinal epithelial cells[J]. Am J Physiol Cell Physiol,2005,289(3):C686-96.
    [131]Zou T, Liu L, Rao J N, et al. Polyamines modulate the subcellular localization of RNA-binding protein HuR through AMP-activated protein kinase-regulated phosphorylation and acetylation of importin alpha 1[J]. Biochem J,2008,409(2): 389-98.
    [132]Zhang A H, Rao J N, Zou T, et al. p53-dependent NDRG1 expression induces inhibition of intestinal epithelial cell proliferation but not apoptosis after polyamine depletion[J]. Am J Physiol Cell Physiol,2007,293(1):C379-89.
    [133]Xiao L, Rao J N, Zou T, et al. Induced JunD in intestinal epithelial cells represses CDK4 transcription through its proximal promoter region following polyamine depletion[J]. Biochem J,2007,403(3):573-81.
    [134]Lodish H. Molecular Cell Biology[M]. Fifth Edition edition ed.:W. H. Freeman, 2003.
    [135]Ross J. mRNA stability in mammalian cells[J]. Microbiol Rev,1995,59(3):423-50.
    [136]Hargrove J L, Schmidt F H. The role of mRNA and protein stability in gene expression[J]. FASEB J,1989,3(12):2360-70.
    [137]Choong M L, Yang H, Lee M A, et al. Specific activation of the p53 pathway by low dose actinomycin D:a new route to p53 based cyclotherapy[J]. Cell Cycle,2009, 8(17):2810-8.
    [138]Masuda K, Abdelmohsen K, Gorospe M. RNA-binding proteins implicated in the hypoxic response[J]. J Cell Mol Med,2009,13(9A):2759-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700