电磁卸荷阀动态特性仿真及流场数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国机械化采煤的快速发展,对乳化液泵站在压力控制和过载保护的要求越来越高。泵站传统卸荷阀由于其本身存在的一些不足,不能很好的满足这种要求。电磁卸荷阀的应用解决了这一难题。电磁卸荷阀作为乳化液泵站压力控制和过载保护的关键部件,电磁卸荷阀的研究已经受到足够重视。
     为了满足电磁卸荷阀在卸载时灵敏、稳定及大流量的要求。论文分析了电磁卸荷阀的结构和工作原理,运用流体力学、流体动力学相关知识建立了阀腔的流量特性方程和阀芯的运动微分方程,完成了阀的动态数学模型。并对卸荷阀关键尺寸参数进行了设计计算。
     运用AMESim仿真软件,建立了电磁卸荷阀的仿真模型,分析了卸荷阀中不同参数对卸荷阀动态特性的影响。仿真结果表明:主阀芯阻尼孔直径越小,主阀流量越大;主阀芯上腔容积越小,先导阀压力超调量越大,振荡次数较多;主阀上腔容积越大,液控先导阀开启时间就越早,超调量越小;主阀芯弹簧刚度越大,阀芯振荡次数越少,位移超调量也越小;卸荷阀在电磁控制时较机械式控制时,主阀阀口压力波动较小,主阀开启卸荷时间较早,达到稳态卸荷时间较短。
     运用CFD软件FLUENT建立了卸荷主阀和先导阀的二维流场流道模型。仿真结果表明:高压流体在节流口处是速度突变最大和压降最大的地方,在节流口区域处很容易观察到有气穴和漩涡现象发生。论文对卸荷主阀的结构进行了优化改进,并对比了改进前后卸荷主阀的压力、速度分布图和漩涡强度的大小,结论表明改进结构后的阀能够得到更好的流场特性。
     论文进行的研究工作对电磁卸荷阀的结构设计和优化设计提供了理论参考价值,对保证乳化液泵站稳定、可靠地运行有一定的现实意义。
Along with the rapid development of mining mechanization, the demand for pressure control and overload protection for emulsion pump becomes more and more high. Because of some shortage of traditional unloading valve in pump station, it cannot meet the requirements. The difficult problems were solved by applying the electromagnetic unloading valve. The electromagnetic unloading valve was selected as the key parts for pressure control and overload protection in emulsion pump, the research of electromagnetic unloading valve has already been paid enough attention.
     In order to meet the characteristics of sensitivity, stability and big flow rate of electromagnetic unloading valve. The structure and working principle of the electromagnetic unloading valve were analyzed and the body cavity flow characteristics equation, kinematics differential equation were described by using fluid mechanics and fluid dynamic, lastly the dynamic mathematical model of the valve was established, the key size parameters of unloading valve was calculated.
     This paper used AMESim code to establish the simulation model of electromagnetic unloading valve and analyzed dynamic characteristics influenced by the different parameters of the unloading valve. The results showed that the bigger flow rate of the main valve was, the smaller core damping hole diameter of the main valve was; The pilot valve pressure overshoot was higher and the number of the valve oscillation was more greater when the main valve core on cavity volume is more smaller; The bigger cavity volume of the main valve was, the earlier the pilot valve open time is and lower pressure overshoot of the pilot valve was; The results showed that with the increase of the spring stiffness, the number of the oscillation of the valve core and the overshoots of the displacement decreased; To compared with unloading valve controlled by electromagnetic and mechanical, when unloading valve controlled by electromagnetic, the pressure fluctuation of main valve was lower, the open time of the main valve was earlier, the steady unloading time was shorter.
     The paper used CFD code FLUENT to establish the2d flow field simulation model of main valve and the unloading pilot valve. The simulation results showed that the high pressure fluid speed mutation and pressure drop is the largest when high pressure fluid flow through the throttle mouth place. The appearance of cavitations and eddy was easily to observe at the place of throttling mouth area. The paper optimized and improved the structure of main valve, then made the contrasts of the pressure, velocity distribution and whirlpool intensity to the original structure, results showed that the improved valve can get better flow field characteristics.
     The research work of electromagnetic unloading valve can provide a theoretical reference value for its structure design and optimization design, it also has a certain practical meaning to ensure the stability and reliability of the emulsion pump.
引文
[1]祁伟,曹春玲.乳化液泵电液控制自动卸载及监控系统的研制[D].西安:西安科技大学,2007.4
    [2]杨师斌,任秀兰,王香兰.矿用乳化液泵的卸载问题分析[J].煤矿机械,1997,(6):29—30
    [3]Anon. PumPsmeettoughminingtasks. EngineeringnadMiningJoumal, v206, n7,2005.9:1 8-20
    [4]杨师斌,罗义英.乳化液泵用卸载阀的结构与卸载原理研究[J].煤矿机械,2001,(10)53—54
    [5]卢换春,牛雅丽.自动卸载阀的结构与卸载原理分析[J].河南城建高等专科学校学报,2001,10(4):22—24
    [6]陈冬生,赠孟雄.数字式电液控制的特点及发展趋势[J].液压与气动,1997,(4):3-4
    [7]王绍儒.矿用本安型电磁卸荷阀的试验研究[J].煤矿开采,2008(3):11
    [8]张盼盼,廉自生.乳化液泵站自动监控系统的研究与开发[D].太原:太原理工大学,2009.4
    [9]K. Dasgupta, R. Karmakar.Dynamic analysis of pilot operated pressure relief valve[J]. Simulation Modelling Practice and Theory, p35-49.
    [10]M. R. Mokhtarzadeh-Dehghan, N. Ladommatos, T. j. Brennan. Finite element analysis of flow in a hydraulic pressure valve[J]. Math.Modelling,1997, p437-445.
    [11]Zhifeng Liu, Kun Yang, Wentong Yang, Ling Li. The Numerical Simulation and Experimental Analysis of the Flow Field in the High Pressure Unloading Valve [R]. Sanya China:International Conference on Computer Modeling and Simulation (ICCMS 2010)
    [12]Roger Yang, Ph. D. CFD simulation of oil flow and flow induced forces inside hydraulic valves[J]. national fluid power association and society of automotive engineers,2002, p201-207.
    [13]Xiu Lei, Yajun Wu. Simulation and Result Analysis of AMEsim for the Relief Valve Dynamic Characteristics Experiment[R]. Wuhan China:International Conference on Electrical and Control Engineering,2010
    [14]K.Dasgupta, J. Watton.Dynamic analysis of proportional solenoid controlled piloted relief valve by bondgraph[J]. Simulation modelling practice and theory,2005,13 (1)
    [15]XueGuan Song, Ji Hoon Jung, Hyeong Seok Lee, Dong Kwan Kim, Young Chul Park. 2-D Dynamic Analysis of a Pressure Relief Valve by CFD[R].Hangzhou, china:WSEAS International Conference on Applied Computer and Applied Computational Science, 2010
    [16]Matthew J.stevenson, Xiao Dong Chen.Visualization of the Flow Patterns in a High-pressure Homogenizing Valve Using a CFD Package[J].Journal of Food Engineering33,1997, p151-165.
    [17]M.Borghi, M.Milani, R. Paoluzzi.Transient flow force estimation on the pilot stage of ahydraulic valve[J]. fluid power systems and technology,1998, (5):p157-162.
    [18]韦文术,宋艳亮.矿用本安型电磁卸荷阀的研究[J].煤矿机械,2007,28(10),54
    [19]张延军,寇子明.井下机车卸荷溢流阀特性分析[J].煤矿机电,2007(06),70.72
    [20]武宗才,刘志奇,袁利才.矿用卸荷溢流阀的建模与仿真研究[J].煤矿机械,2010(07),42-44
    [21]韩建华,刘志奇.基于遗传算法的卸载阀结构参数优化[J].太原科技大学学报,2011(08),305.308
    [22]韩新苗,聂松林,葛卫,刘谦.先导式水压溢流阀静动态特性的仿真研究[J].机床与液压,2008(10),106-108
    [23]刘远波,廉自生.液压支架中的电液控制阀的动态特性分析[J].流体传动与控制,2009(05),17-19
    [24]高诚,屈福政.卸荷阀的动态特性研究[D].大连:大连理工大学,2008.12
    [25]侯明亮,毛恩荣.电液换向阀的状态变量模型与仿真研究[J].系统仿真学报,2007,(02):21-23
    [26]沈娆洁,施光林.高压卸荷溢流水阀的建模及性能优化研究[D].上海:上海交通大学,2007.1
    [27]袁桂锋,赵连春,王传礼.直动式纯水溢流阀的动态特性仿真[J].机床与液压,2006, (6):88-90.
    [28]刘轶,贺小峰.基于MATLAB的水压溢流阀动态特性仿真[J].机械工程与自动化,2007,(10):29-31
    [29]焦黎栋,廉自生.大流量安全阀动态特性仿真与流畅数值模拟[D].太原:太原理工大学,2010O.5
    [30]张宏,廉自生,熊晓燕,赵国栋.基于CFD和两相流技术的高水基液压阀结构设计研究[J].煤矿机电,2007,(5):1—3
    [31]张玉真.先导式纯水溢流阀主阀阀口流场的数值模拟[J].科技信息,2011,(25):456.457
    [32]闻德生,李永安,张月忠,孙江波,杜利斌.锥形阀口滑阀的特性研究及流场数值模拟[J].机床与液压,2010(11):49-51
    [33]雷红霞,权龙.液压锥阀内部流场的三维仿真计算及可视化分析[J].机械科学与技术,2006,25(4):427-429
    [34]西安矿业学院.采掘机械[M].北京:煤炭工业出版社,1981
    [35]杨涛,李文英.乳化液泵站液压系统建模仿真与控制系统开发[D].太原:太原理工大学,2008.5
    [36]范存德.液压技术手册[M].沈阳:辽宁科学技术出版社,2004
    [37]韦文术,任伟.乳化液泵站自动卸荷系统的设计与实现[J].煤炭工程,2007,(8):20-21
    [38]杨霞,向虎.一种新型泵站卸荷阀的研究[J].煤矿开采,2006,(6):91-93
    [39]MT/T188.3-2000.煤矿用乳化液泵站卸载阀技术条件[S].北京:煤炭工业出版社,2000.
    [40]付永领.AMESim系统建模与仿真:从入门到精通[M].北京:北京航空航天大学出版社,2006,6.
    [41]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700