高压高水基矿用乳化液泵站卸载阀的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国煤炭开采中,井下开采占据着主导地位。乳化液泵站作为井下采煤液压系统的动力元件,它为系统提供工作用的乳化液介质。现代化的采煤工作面对乳化液泵站的供液质量要求越来越高,即要求到达液压支架的压力波动范围越来越小。但是随着工作面对重载高速的要求越来越高,使得泵站功率越来越大,节能因素决定了不能使用溢流阀来稳定泵站压力,只能使用工作在开关状态下的卸载阀来稳定泵站的供液压力。因此,卸载阀的动态特性显得尤为重要。论文基于机液仿真软件AMESim对矿用乳化液泵站卸载阀进行了建模和仿真研究,并结合实验进行参数辨识,研究了卸载阀的动态特性,研究的结果对卸载阀新样机的制作有一定的指导意义。
     论文首先介绍了水压传动的定义,紧接着阐述了国内外卸载阀的研究现状。由于高水基介质的特殊性,论述了高水基介质带来的问题以及在设计加工制造过程中高水基液压元件用到的关键技术。运用机械/液压及动力学软件AMESim对卸载阀进行建模,建立了卸载阀的数学模型及AMESim仿真模型。根据所建立的模型,对电磁控制方式和机械控制方式进行了详细的分析,得出各自工作的动态过程。对卸载阀进行了频域分析,得出卸载阀在工作时的稳定性和稳定裕度。利用AMESim软件中的模态分析工具计算出卸载阀的固有频率,使工作频率远离模态频率以减小振动现象。运用遗传算法优化原理,选择卸载阀中影响因素较大的参数进行参数取值,并对这些参数进行优化设计,使得卸载阀在工作时达到最大的节能效果。为验证上述仿真结果,在煤炭科学研究院太原研究院的帮助下,搭建了实验系统并进行实验。实验结果表明,卸载阀具有稳定性好、压力波动范围小的特点,能够满足乳化液泵站的工作需要,同时也验证了模拟仿真的正确性。
     论文所做工作主要是针对矿乳化液泵站压力控制的特殊性,对泵站用卸载阀进行了数学分析及仿真研究,为卸载阀动态性能的设计提供理论支持。本文中对卸载阀结构参数的优化结果为卸载阀性能的提高也有一定的参考价值。
In china coal mining, underground mining play a main role. Emulsion pump as a power component in mining hydraulic system. It offers emulsion medium for system to work .Modern mining industry needs the medium pump station provide higher and higher quality. In other words, it asks the hydraulic support should bear for smaller and smaller pressure wave. But as the operation face to heavy load and high speed which needs more and more , it makes pump station power bigger and bigger. And energy conservation factor decides relief valve could not stabilize the power that coming from pump station. So, unloading valve becomes especially important, because it dynamics characteristics .Thesis is based on machine liquid simulation software AMESim which study for the modeling and emulation and rely on the parameter identification experiment to study the dynamic characteristics of unloading valves. The result of the study for unloading valves production of a new prototype has very important guidance role.
     Firstly, this thesis introduces the definition of hydraulic transmission .Then, it shows a research status recently about unloading valve at home and abroad. Because of the aqueous medium specific characteristic ,thesis discuss the problem that aqueous status brings about and the key technology of designing processing manufacturing process, taking advantage of hydraulic pressure and AMESim to modeling unloading valve, build unloading valve mathematical model and AMESim simulation model. According to the model ,I make analysis of electromagnetic control way and machinery control way .Then I have the dynamic progress conclusion to discharge valve for the frequency domain analysis, to calculates the inherent frequency of unloading valve by using AMESim software's modal analysis .It makes frequency of operation far away from modal frequency. In order to avoiding covibration, I put Genetic Algorithm optimization theory in use, choose the bigger parameter which influences unloading valve to Parameter selection. Then optimization design this parameters, so as to make unloading valve could achieve a best Energy-saving effect when it works. For checking the simulation result listed above, with the help of the coal scientist graduated school of taiyuan, I put up Experimental System and started experiment. The experiment result shows that unloading valve has good steadiness and pressure wave ranges small. It not only contents emulsion pump station need,but also tests and verifies imitate emulation exact.
     This thesis is mainly studied for the special emulsion pump pressure control ,useing unloading valves to mathematical analysis and simulation study for pump station.Then it supports a theory for unloading valve trends function. This thesis about unloading valve structure parameters has a great reference value.
引文
[1]何坚,刘思宁,许明恒,等.高水基液压驱动技术的最新研究动态[J].机床与液压,2001(2):12-14
    [2]刘银水,朱玉泉,李壮云,等.高水基液压传动技术的特征与新进展[J].液压与气动,2006(2):66-69
    [3]李松晶,阮健,弓永军,等.先进液压传动技术概论[M].哈尔滨工业大学出版社,2008
    [4] LIM G H, CHUA P S K, HE Y B. Modern water hydraulics-the new energy transmission technology in fluid power[J]. Applied Energy, 2003, 76(1-3): 239-246
    [5] BFPA (英国流体动力协会). Water hydraulics-a guide to products and Suppliers in the UK(Z). England: BFPA, 2000
    [6] Erik Trostman. Water hydraulic Control Technology(Z). New York , LSA, 1996
    [7]宫川新平.アクアドライブシステムを展望する[J].油空压技术,2003(2):12-19
    [8]孙惠民,张媛,周满山,等.乳化液泵站的节能改造[J]煤矿机械,2005(8):96-98
    [9]于海涌,孟金锁,等.放顶煤工作面支架受力特征及分析[J].煤炭学报,1995,20(5):461-466
    [10]章之燕.大倾角综放液压支架稳定性动态分析和防倒防滑措施[J].煤炭学报,2007,32(7):705-709
    [11]韦文术,任伟,等.乳化液泵站自动卸载系统的设计与实现[J].煤炭工程,2007(8): 20-21
    [12]李壮云.液压元件与系统[M].机械工业出版社,2006
    [13]雷天觉.液压工程手册[M].北京工业出版社,1990
    [14]张弈.水液压系统的发展现状与面临的挑战[J].液压与气动,1999(1):2-3
    [15]唐向阳.纯水液压系统的现状与未来[J].液压与气动,2000(4):5-6
    [16]李壮云.高水基液压技术的发展及展望[J].华中工学院学报,1997(3):2-8
    [17]袁子荣,杨宗正,陈智勇,等.高水基介质液压调速回路的的特性研究[J].昆明工学院学报,1992,17(2):82-87
    [18]李栋.浅谈采煤为什么选用水包油型乳化液[J].昆明工学院学报,2007(25):271
    [19] M T76-2002,液压支架(柱)用乳化液、浓缩物及其高含水液压液[S].中华人民共和国煤炭行业标准
    [20]王新华,魏源迁,李剑锋,伍良生,等.高水基液压传动元件的腐蚀与控制[J].机床与液压,2004(9):1-4
    [21]张利平.液压阀原理、使用与维护[M].化学工业出版社,2005
    [22]刘银水,李壮云,等.高水基液压传动技术在移动机械中的应用[J].液压与气动,2004(3):36-37
    [23] Wolfgang Backe,Water-or oil-hydraulics in the future. The sixth Scandinavian International Conference on Fluid Power[Z]. Tam-pere,Finland:May 26-28,1999:51-64
    [24] Stricker S. Advances Make Tap Water Hydraulics More Practical[J]. Hydraulic andPneumatics,1996:29-32
    [25]刘美霞,王东,李壮云,等.海(淡)水液压元件材料的耐蚀耐磨特性分析[J].液压气动与密封,2003(2):25-27
    [26]王强,姜继海,等.高水基液压传动元件的发展现状及其应用前景[J].机床与液压, 2004(10):1-3
    [27]刘银水,黄艳,贺小峰,李壮云,等.高水基液压阀的研究与发展[J].液压与气动,2001(5):10-13
    [28]王芳.基于CFD的高水基先导阀流场的数值模拟[D].太原理工大学,2006
    [29]杨曙东,李壮云,朱玉泉,等.高水基液压传动的主要课题与研究进展[J].中国机械工程,2000,11(9):1071-1073
    [30]弓永军,周华,杨华勇,等.纯水液压控制阀的研制[J].机床与液压,2004(10):14-19
    [31]焦素娟,周华,杨华勇,等.不锈钢作为高水基液压元件材料的盐雾实验研究[J].液压与气动,2002(2):11-14
    [32]杨曙东,等.工程塑料在高水基液压元件中的应用研究[J].中国机械工程,2000,11(10):1193-1195
    [33]吴晓玲.润滑设计手册[M].化学工业出版社,2006
    [34]李壮云,葛宜远,陈尧明,等.液压元件与系统[M].机械工业出版社,2000
    [35]贺小峰,何海洋等.先导式高水基液压溢流阀动态特性的仿真[J].机械工程学报,2006,42(1):75-80
    [36]胡燕平,彭佑多,吴根茂,等.液阻网络系统学[M].机械工业出版社,2003
    [37]胡燕平,谌铎文,毛征宇等.Π桥电液比例溢流阀动态特性[J].煤炭学报,2007,32(11):1228-1232
    [38]付永领,祁晓野,等. AMEsim系统建模和仿真——从入门到精通[M].北京航空航天大学出版社,2006
    [39] MAGINE S.A.AMESim4.2 User Manual[M].2004
    [40]李永堂,雷步芳,高雨茁,等.液压系统建模与仿真[M].冶金工业出版社,2003
    [41]李成功,和彦淼,等.液压系统建模与仿真研究[M].航空工业出版社,2008
    [42]俞启灏,黄永铸,等.模态分析在工程振动中的应用[J].北京建筑工程学院学报,2007,,23(1):15-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700