畜粪及其堆肥中水溶性有机物对金霉素在土壤中吸附的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着集约化养殖的发展,抗生素类药物用量逐年增加,使抗生素的污染越来越严重。近年来不断有国内外文献报道,土壤、河流、海洋、地下水、污水处理厂出水甚至在自来水中检出抗生素类污染物。我国的兽药残留研究和监控工作起步较晚,抗生素对环境的污染在我国十分严重。
     与此同时,集约化养殖业的快速发展带来了大量畜禽粪便的排放。有机肥及其堆肥的农用,势必将会短期内大量增加土壤中的水溶性有机物(DOM)。而DOM是污染物在土壤中迁移的载体。这将影响到土壤中抗生素的吸附和迁移等环境行为,从而影响细菌抗药性的传播,影响到农产品的安全和人类的健康。
     因此,开展有机肥产生的DOM对土壤中抗生素环境行为影响的研究对于抗生素污染土壤的风险评价及修复和防止对地表与地下水体的污染及对食品安全都具有重要的意义。本研究旨在通过研究“外源”DOM对金霉素与土壤吸附的影响,为抗生素污染评价和防治提供理论依据,为畜粪及其堆肥的科学施用提供参考。
     本论文研究了不同条件下金霉素(CTC)的吸附动力学;以“序批式”试验,通过添加不同来源(牛粪、牛粪堆肥、猪粪、猪粪堆肥)、不同浓度(200 mg/L,50mg/L)水溶性有机物,研究对金霉素与土壤吸附的影响;通过透析法得到了不同分子量DOM,以序批式试验,通过添加不同分子量猪粪DOM,研究了大分子和小分子DOM对金霉素与土壤吸附的影响;并且通过添加不同浓度苹果酸和柠檬酸,研究不同种类和浓度小分子DOM对金霉素与土壤吸附的影响。主要结论如下:
     1. pH5.50,水/土比为500:1时,金霉素在土壤中的吸附符合“使液相中目标物浓度减少30~70%”的标准,且该条件下金霉素能够较快达到吸附平衡。
     2.水溶性有机物(DOM)对金霉素吸附影响的与DOM种类有关。当金霉素初始浓度较低时(﹤20 mg/L),200 mg/L不同种类DOM都明显抑制对金霉素与土壤的吸附。牛粪和牛粪堆肥DOM对金霉素吸附的抑制作用强于猪粪和猪粪堆肥DOM。说明,DOM对金霉素吸附的影响与其来源有关。
     3.整体来看,同浓度畜粪DOM与相应的堆肥DOM对金霉素与土壤吸附影响的差异不大,即畜粪堆肥化对于DOM对金霉素与土壤吸附影响的差异不大。但由于堆肥能明显较少畜粪中DOM含量,从而减弱DOM对金霉素与土壤的抑制,使液相中金霉素浓度相对减少,因此堆肥化可减轻畜粪施用造成的土壤溶液中金霉素浓度增大的危害。
     4. DOM浓度是影响金霉素吸附等温线的一个重要因素。与对照相比,50 mg/L DOM可使吸附系数Kf减小一半左右或更多;而与50 mg/L DOM相比,除猪粪堆肥DOM外,200 mg/L其它三种DOM都可使Kf明显减小。
     5. DOM对金霉素与土壤的吸附起抑制作用还是促进作用与金霉素初始浓度有关。当金霉素初始浓度较低时,不同种类DOM都具有抑制金霉素吸附的作用;而随着金霉素初始浓度的提高,DOM有促进金霉素吸附的趋势。DOM与金霉素结合,从而对土壤吸附金霉素有竞争效应可能是DOM抑制吸附的原因,而共吸附或累积吸附机制则可能是DOM促进金霉素吸附的原因。
     6.小分子DOM对金霉素吸附的抑制作用强于大分子DOM;小分子DOM的种类和浓度都是影响其抑制作用的因素,其中小分子的种类是更为关键的因素。
With the rapid development of intensive culture, the use of antibiotic drugs is increasing year by year and the pollution of antibiotics is more and more serious. Recently, antibiotics occurrence in soil, river, sea, groundwater and effluent of wastewater treatment plant, even tap waters were reported in domestic and foreign literature. Research on veterinary drug residues and monitoring starts relatively late and antibiotics pollution to the environment is serious in China.
     Meanwhile, the rapid development of intensive culture cause a large emission of livestock manure. Agricultural applicability of organic manure and its compost will increase dissolved organic matter(DOM) in soil in a short term. The DOM is the carrier of pollutants transport in soil, which will influence the antibiotics environmental behaviors, such as sorption and transport and so on, which will influence the spread of bacteria drug-resistance, influence the safety of agricultural products and the health of people.
     So carrying out the research of effects of organic fertilizer on antibiotics environmental behaviors in soil is important for risk assessment on antibiotics pollution to soil, prevention and repair of antibiotics pollution to surface water and groundwater, and food safety. This paper aimed at effects of exotic DOM on sorption of antibiotics by soil, which will provide theoretical basis for assessment and control of antibiotic pollution, and provide reference for scientific application of livestock manure.
     This research studied sorption kinetics of chlortetracycline(CTC), a kind of tetracyclines antibiotics, sorption by soil in different conditions; with the method of batch experiment, effects of different source DOMs on sorption of chlortetracycline by soil were studied with adding DOMs from cow manure, cow manure compost, pig manure and pig manure compost and of different concentration(200 mg/L,50mg/L) by dialysis, DOMs of different molecular weight were obtained and with the method of batch experiment, the effects of different molecula weight DOMs on sorption of chlortetracycline by soil were studied by adding DOMs of low-molecular-weight and high-molecular-weight DOM from pig manure; And, the effects of different low-molecular-weight DOM on sorption of chlortetracycline by soil were studied by adding malic and citric. The main results are as follows:
     1. When pH was 5.50 and water/soil ratio was 500:1, chlortetracycline sorption by soil met the standard of“concentration of target compound decrease by the 30~70% range”, and under that condition, sorption equilibrium reached quickly.
     2. Effects of DOM on sorption of CTC by soil was related to the kind of DOM. When CTC was in low concentration(﹤20 mg/L), all of the different DOMs of 200 mg/L inhibited the sorption of CTC by soil significantly and the effects of DOMs from cow manure and cow manure compost were stronger than that of pig manure and pig manure compost. The result showed that the effect of DOMs on sorption of CTC by soil was related to the source of DOM
     3. On the whole, under the same DOM concentration, there were little difference of effects of DOMs from manure and its corresponding compost to CTC sorption by soil, namely composting had little effect on the influence of DOM to CTC sorption by soil. But as composting could reduce DOM concentration, which could reduce the inhibition effect of DOM on sorption of CTC by soil and reduce the concentration of CTC in liquid phase, thus composting could lighten the CTC concentration increment caused by manure application.
     4. The concentration of DOM was an important factor influencing sorption isotherm. Compared to the control treatment, 50 mg/L DOM could reduce adsorption coefficient Kf by about 50% or more; compared to the 50 mg/L DOM treatment, except the DOM from pig manure compost, the other 3 kinds of DOM with 200 mg/L, could reduce adsorption coefficient Kf significantly.
     5. The inhibition/promotion effects of DOM on sorption of CTC by soil were related to the initial concentration of CTC. When the initial concentration of CTC was low, all of the DOMs inhibited sorption, while when the initial concentration of CTC improved, the trend of promotion to sorption occured. DOM binding with CTC could cause a competition effect to soil sorption with CTC. This competition effect may be the reason for CTC sorption inhibition by DOM. While co-sorption or cumulative effects may be the reason for CTC sorption promotion by DOM.
     6. The inhibition effect of low-molecular-weight DOM on CTC sorption was stronger than that of high-molecular-weight DOM; the type and concentration of low-molecular-weight DOM were the factors influencing inhibition effect, so the type of low-molecular-weight DOM was the key factor of influencing inhibition of CTC by soil.
引文
[1] Wise R. Antimicrobial resistance: priorities for action[J]. Journal of Antimicrobial Chemotherapy, 2002, 49:585-586.
    [2] Carlson J C, Mabury S A. Dissipation kinetics and mobility of chlortetracycline, tylosin, and monensin in an agricultural soil in Northumberland County, Ontario, Canada[J]. Environmental Toxicology and Chemistry, 2006, 25(1):1-10.
    [3] Richardson B J, Lam P K, Martin M. Emerging chemicals of concern: pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China[J]. Marine Pollution Bulletin, 2005, 50:913-920.
    [4] Tamtam F, Mercier F, Bot B L, et al. Occurrence and fate of antibiotics in the Seine River in various hydrological conditions[J]. Science of the Total Environment, 2008, 393:84-95.
    [5] Hirsch R, Ternes T, Haberer K, et al. Occurrence of antibiotics in the aquatic environment[J]. Science of the Total Environment, 1999, 225:109-118.
    [6] http://paper.people.com.cn/smsb/html/2008-03/18/content_48316583.htm
    [7]徐维海,张干,邹世春,等.香港维多利亚港和珠江广州河段水体中抗生素的含量特征及其季节变化[J].环境科学, 2006, 27(12):2458-2462.
    [8] Morales-Mu?oza S, Luque-Garcíaa J L, Castro M D L D. Continuous microwave-assisted extraction coupled with derivatization and fluorimetric monitoring for the determineation of fluoroquinolone antibacterial agents from soil samples[J]. Journal of Chromatography A, 2004, 1059 (1-2):25-31.
    [9] Hamscher G., Sczesny S, H?per H, et al. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry[J]. Analytical Chemistry, 2002, 74:1509-1518.
    [10]周启星,罗义,王美娥.抗生素的环境残留、生态毒性及抗性基因污染[J].生态毒理学报, 2007, 2(3):243-251.
    [11]赵娜.珠三角地区典型菜地土壤抗生素污染特征研究[D].广州:暨南大学, 2007.
    [12]谭建华.城市水环境中抗菌药物的分析—广州城市水体中抗生素类污染物的分布初探[D].广州:中国科学院广州地球化学研究所, 2007.
    [13]王丽平,顾国平,章明奎.抗生素残留对农产品安全与生态环境的影响[J].安徽农学通报, 2007, 13(2):74-76.
    [14]张浩,罗义,周启星.四环素类抗生素生态毒性研究进展[J].农业环境科学学报2008, 27(2):407-413.
    [15]徐维海.典型抗生素类药物在珠江三角洲水环境中的分布、行为与归宿[D].广州:中国科学院广州地球化学研究所, 2007.
    [16]张慧敏,章明奎,顾国平.浙北地区畜禽粪便和农田土壤中四环素类抗生素残留[J].生态与农村环境学报, 2008, 24 (3):69-73.
    [17]张劲强,董元华,安琼,等.兽药抗生素在土壤环境中的行为[J].土壤, 2005, 37(4):353-361.
    [18]段丽丽.磺胺二甲嘧啶及其主要代谢产物在砂质壤土中转归的研究[D].北京:中国农业大学,2005.
    [19]刁晓平,孙振钧,沈建忠.兽药的生态毒理及其对环境影响的研究进展[J].应用生态学报, 2004, 15(2):321-325.
    [20]董丹.液相色谱-质谱/质谱测定动物源性食品和水中17种磺胺[D].沈阳:东北大学, 2004.
    [21]王冰,孙成,胡冠九.环境中抗生素残留潜在风险及其研究进展[J].环境科学与技术, 2007, 30(3):108-112.
    [22] Teuber M. Veterinary use and antibiotic resistance[J]. Current Opinion in Microbiology, 2001, 4:493-499.
    [23] Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils - a review[J]. Journal of Plant Nutrition and Soil Science, 2003, 166:145-167.
    [24] http://www.commondreams.org/news2001/0108-01.htm
    [25]王冉,刘铁铮,王恬.抗生素在环境中的转归及其生态毒性[J].生态学报, 2006, 26(1): 265-270.
    [26]武庭,周敏,郭宏栋,等.四环素在黄土中的吸附行为[J].环境科学学报, 2008, 28(11):2311 -2314.
    [27] Samueisen O B. Degradation of oxyteracycline in seawater at two different temperatures and light intensities and persistence of oxyteracycline in the sediment from a fish farm[J]. Aquculture, 1989, 83:7-16.
    [28]陈昦,董元华,王辉,等.江苏省畜禽粪便中磺胺类药物残留特征[J].农业环境科学学报, 2008, 27(1):385-389.
    [29]汪勇,林先贵,王一明,等.长期施用粪肥对农田土壤中细菌四环素抗性水平的影响[J].安徽农业科学, 2008, 36 (14):5944-5945, 5947.
    [30] Rhodes G, Huys G, Swings J, et al. Distribution of oxytetracycline resistance plasmids between aeromonads on hospital and aquaculture environments: implication of Tn1721 in dissemination of tetracycline resistance determinant tet A [J]. Applied and Environment Microbiology, 2000, 66:3883-3890.
    [31]吴银宝.恩诺沙星在鸡粪中的残留及其生态毒理学研究[D].广州:华南农业大学, 2003.
    [32]孔维栋,朱永官.抗生素类兽药对植物和土壤微生物的生态毒理学效应研究进展[J].生态毒理学报, 2007, 2(1):1-9.
    [33]武婷,王超,李楠.高效液相色谱法测定化妆品中九种禁用四环素类抗生素的方法研究[J].分析试验室, 2007, 26(8):52-55.
    [34] Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment[J]. Ecological Indicators, 2008, 8:1-13.
    [35]王冉,魏瑞成,刘铁铮,等.畜禽排泄物中金霉素残留的测定方法[J].江苏农业学报, 2007, 23(6):634-637.
    [36] Gu C, Karthikeyan K G, Sibley S D, et al. Complexation of the antibiotic tetracycline with humic acid[J]. Chemosphere, 2007, 66:1494-1501.
    [37] Sarmah A K, Meyer M T, Boxall A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics(VAs) in the environment[J]. Chemosphere, 2006, 65:725-759.
    [38]吉彩霓,岳振峰,谢丽琪,等.高效液相色谱法同时检测水产品中7种四环素类抗生素残留的研究[J].中国兽医科技, 2005, 35(10):820-826.
    [39]张树清,张夫道,刘秀梅,等.高温堆肥对畜禽粪中抗生素降解和重金属钝化的作用[J].中国农业科学, 2006, 39(2):337-343.
    [40] Sassman S A, Lee L S. Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange[J]. Environmental Science and Technology, 2005, 39:7452-7459.
    [41] Figueroa R A, Leonard A, Mackay A A. Modeling tetracycline antibiotic sorption to clays[J]. Environmental Science and Technology, 2004, 38:476-483.
    [42] Allaire S E, Castillo J D, Juneau V. Sorption kinetics of chlortetracyline and tylosin on sandy loam and heavy clay soils[J]. Environmental Toxicology and Chemistry, 2006, 35:969-972.
    [43]高原,关连珠,宋丹,等.外源金霉素在土壤中的残留特点及对土壤酶活性的影响[J].北方园艺, 2008, 10:42-44.
    [44]匡光伟,邓昉,董燕德,等.金霉素在鸡粪中的降解研究[J].动物医学进展, 2007, 28(6): 50-52.
    [45] Sukul P, Spiteller M. Reviews of Environmental Contamination and Toxicology vol. 187, Sulfonamides in the Environment as Veterinary Drugs[M]. New York: Springer, 2006.
    [46] Gao J, Pedersen J A. Adsorption of sulfonamide antimicrobial agents to clay minerals[J]. Environmental Science and Technology, 2005, 39:9509-9516.
    [47]张劲强,董元华.诺氟沙星在4种土壤中的吸附-解吸特征[J].环境科学, 2007, 28(9):2134-2140.
    [48] Nowara A, Burhenne J, Spiteller M. Binding of fluoroquinolone carboxylic acid derivatives to clay minerals[J]. Journal of Agricultural and Food Chemistry, 1997, 45:1459-1463.
    [49] Rab?lle M, Spliid N H. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil[J]. Chemosphere, 2000, 40:715-722.
    [50] Kahle M, Stamm C. Sorption of the veterinary antimicrobial sulfathiazole to organic materials of different origin[J]. Environmental Science and Technology, 2007, 41:132-138.
    [51] Jones A D, Bruland G L, Agrawal S G, et al. Factors influencing the sorption of oxytetracycline to soil[J]. Environmental Toxicology and Chemistry, 2005, 24(4):761-770.
    [52] Pils J R V, Laird D A. Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay-humic complexes[J]. Environmental Science and Technology, 2007, 41:1928-1933.
    [53] Kulshrestha P, Giese R F J, Aga D S. Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil[J]. Environmental Science and Technology, 2004, 38(15):4097-4105.
    [54] Hamscher G, Pawelzick H T, H?per H, et al. Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure[J]. Environmental Toxicology and Chemistry, 2005, 24(4):861-868.
    [55] Blackwell P A, Kay P, Boxall A B A. The dissipation and transport of veterinary antibiotics in a sandy loam soil[J]. Chemosphere, 2007, 67:292-299.
    [56] Kim S C. Occurrence, fate, and transport of human and veterinary antibiotics in the watershed[D]. Colorado State, USA: Colorado State University, 2006.
    [57] Hektoen H, Berge J A, Hormazabalb V, et al. Persistence of antibacterial agents in marine sediments[J]. Aquaculture, 1995, 133:175-184.
    [58] Boxall A B, Fogg L, Blackwell P A, et al. Reviews of Environmental Contamination and Toxicology vol. 180, Veterinary Medicines in the Environment[M]. New York: Springer, 2004.
    [59] Schlüsener M P, Bester K. Persistence of antibiotics such as macrolides tiamulin and salinomycin in soil[J]. Environmental Pollution, 2006, 143:565-571.
    [60]胡莹莹,王菊英,马德毅.近岸养殖区抗生素的海洋环境效应研究进展[J].海洋环境科学, 2004, 23(4):76-80.
    [61] Lunestad B T, Samuelsen O B, Fjelde S, et al. Photostability of eight antibacterial agents in seawater[J]. Aquaculture, 1995, 134:217-225.
    [62] Ingerslev F, Halling-S?rensen B. Biodegradability of metronidazole, olaquindox, and tylosin and formation of tylosin degradation products in aerobic soil-manure slurries[J]. Ecotoxicology and Environmental Safety, 2001, 48:311-320.
    [63] Migliore L, Brambilla G, Cozzolino S. Effect on plants of sulphadimethoxine used in intensive farming(Panicum miliaceum, Pisum sativum and Zea mays)[J]. Agriculture, Ecosystems and Environment, 1995, 52:103-110.
    [64] Migliore L, Civitareale C, Cozzolino S, et al. Laboratory models to evaluate phytotoxicity of sulphadimethoxine on terrestrial plants[J]. Chemosphere, 1998, 37(14-15):2957-2961.
    [65] Migliore L, Cozzolino S, Fiori M. Phytotoxicity to and uptake of enrofloxacin in crop plants[J]. Chemosphere, 2003, 52:1233-1244.
    [66] Boxall A B, Johnson P, Smith E D, et al. Uptake of veterinary medicines from soils into plants[J]. Journal of Agricultural and Food Chemistry, 2006, 54:2288-2297.
    [67] Kumar K, Gupta S C, Baidoo S K, et al. Antibiotic uptake by plants from soil fertilized with animal manure[J]. Environmental Toxicology and Chemistry, 2005, 34:2082-2085.
    [68] Dolliver H, Kumar K, Gupta S. Sulfamethazine uptake by plants from manure-amended soil[J]. Environmental Toxicology and Chemistry, 2007, 36:1224-1230.
    [69] Kong W D, Zhu Y G, Liang Y C, et al. Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.)[J]. Environmental Pollution, 2007, 147:187-193.
    [70] Coogan M A, Edziyie R E, Point T W, et al. Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream[J]. Chemosphere, 2007, 67:1911-1918.
    [71]夏炜林.不同堆肥方式处理奶牛粪便的效果及其对小油菜品质影响[D].儋州:华南热带农业大学, 2007.
    [72]张相锋,王洪涛,聂永丰,等.猪粪和锯末联合堆肥的中试研究[J].农村生态环境, 2002, 18(4):19-22.
    [73]贺琪,李国学,张亚宁,等.高温堆肥过程中的氮素损失及其变化规律[J].农业环境科学学报, 2005, 1:169-173.
    [74]单德鑫,李淑芹,许景钢.牛粪生物堆肥有机酸变化及对腐熟度的影响[J].环境科学与技术, 2007, 30 (1):29-32.
    [75]展跃平,小山·太.畜禽粪便堆肥化试验[J].环境保护与治理, 2002, 11:35-36.
    [76]郑国砥,陈同斌,高定,等.好氧高温堆肥处理对猪粪中重金属形态的影响[J].中国环境科学, 2005, 25(1):6-9.
    [77]杨国义,夏钟文,李芳柏,等.不同通风方式对猪粪高温堆肥氮素和碳素变化的影响[J].农业环境科学学报, 2003, 22(4):463-467.
    [78]陈同斌,陈志军.土壤中溶解性有机质及其对污染物吸附和解吸行为的影响[J].植物营养与肥料学报, 1998, 4(3):201-210.
    [79]吴文铸.水溶性有机物对土壤中多环芳烃(菲)环境行为及植物吸收的影响[D].南京:南京农业大学, 2007.
    [80]梁涛,陶澎,刘广君,等.依春河河水水溶性腐殖酸内源释放模型[J].环境科学学报, 1997, 17(2):136-140.
    [81] Huang X J, Lee L S. Effects of dissolved organic matter from animal waste effluent on chlorpyrifos sorption by soils[J]. Environmental Toxicology and Chemistry, 2001, 20:1258-1265.
    [82] Sun Z H, Mao L, Xian Q M, et al. Effects of dissolved organic matter from sewage sludge on sorption of tetrabromobisphenol A by soils[J]. Journal of Environmental Sciences, 2008, 20:1075-1081.
    [83]陈雪艳.流动注射化学发光法在喹诺酮类药物分析中的应用研究[D].保定:河北大学, 2006.
    [84]王辉,董元华,张绪美,等.江苏省集约化养殖畜禽粪便盐分含量及分布特征分析[J].农业工程学报, 2007, 23(11):229-233.
    [85]章明奎,王丽平,郑顺安.两种外源抗生素在农业土壤中的吸附与迁移特性[J].生态学报, 2008, 28(2):761-766.
    [86]刘维屏.农药环境化学[M].北京:化学工业出版社, 2006.
    [87]刘维屏,季瑾.农药在土壤—水环境中归宿的主要支配因素—吸附和脱附[J].中国环境科学, 1996, 16(1):25-30.
    [88]杨琛.煤中干酪根的非均质性与疏水性有机污染物的吸附-解吸行为间的关系[D].广州:中国科学院广州地球化学研究所, 2003.
    [89] OECD. Adsorption-desorption using a batch equilibrium method.OECD guidelines for testing of chemicals, test guideline 106[M]. Paris, France: Organization for Economic Cooperation and Development, 2000.
    [90] Tolls J. Sorption of veterinary pharmaceuticals in soils: a review[J]. Environmental Science and Technology, 2001, 35(17):3397-3406.
    [91]朱利中,杨坤,许高金.对硝基苯酚在沉积物上的吸附特征—吸附等温线和吸附热力学[J].环境科学学报, 2001, 21(6):674-678.
    [92]单正军,朱忠林,华晓梅,等.除剂拉索对地下水影响研究[J].环境科学学报, 1994, 14(1):72-78.
    [93]王冉,魏瑞成,刘铁铮,等.兽药金霉素在畜禽粪便上的吸附特征研究[J].环境科学, 2008, 29(5):1363-1368.
    [94]焦少俊,孙兆海,郑寿荣,等.四环素在乌栅土中的吸附与解吸[J].农业环境科学学报, 2008, 27(5):1732-1736.
    [95] Figueroa R A, Mackay A A. Sorption of oxytetracycline to iro oxides and iron oxide-rich soils[J]. Environmental Science and Technology, 2005, 39:6664-6671.
    [96] Wong J W C, Li K L, Zhou L X, et al. The sorption of Cd and Zn by different soils in the presence of dissolved organic matter from sludge[J]. Geoderma, 2007, 137:310-317.
    [97] Han N Z, Thompson M L. Impact of Dissolved Organic Matter on Copper Mobility in Aquifer Material[J]. Environmental Toxicology and Chemistry, 2003, 32:1829-1836.
    [98] Cox L, Celis R, Hermosin M C, et al. Effect of organic amendments on herbicide sorption as related to the nature of the dissolved organic matter[J]. Environmental Science and Technology, 2000,34:4600-4605.
    [99] Celis R, Barriuso E, Houot S. Sorption and desorption of atrazine by sludge-amended soil: dissolved organic matter effects[J]. Environmental Toxicology and Chemistry, 1998, 27:1348-1356.
    [100] Totsche K U, Danzer J, K?gel-Knabner I. Dissolved organic matter-enhanced retention of polycyclic aromatic hydrocarbons in soil miscible displacement experiments[J]. Environmental Toxicology and Chemistry, 1997, 26:1090-1100.
    [101] Gao Y Z , Wei X, Ling W T, et al. Impact of exotic and inherent dissolved organic matter on sorption of phenanthrene by soils[J]. Journal of Hazardous Materials, 2007, 140:138-144.
    [102] Raber B, Kogel-Knabner I. Influence of origin and properties of dissolved organic matter on the partition of polycyclic aromatic hydrocarbons (PAHs) [J ]. European Journal of Soil Science, 1997, 48:443-455.
    [103] Zhang J Q, Dong Y H. Effect of low-molecular-weight organic acids on the adsorption of nor?oxacin in typical variable charge soils of China[J]. Journal of Hazardous Materials, 2008, 151:833-839.
    [104] MacKay A A, Canterbury B. Oxytetracycline sorption to organic matter by metal-bridging[J]. Environmental Toxicology and Chemistry, 2005, 34:1964-1971.
    [105]王艮梅,孙成.表面活性剂及DOM对土壤中菲、芘解吸行为的影响因子初探[J].生态环境, 2007, 16(4):1108-1112.
    [106]叶常明,李铁,雷志芳.离子化有机污染物在沉积物和水相间的平衡分配计算[J].环境化学, 1998, 17(3):205-211.
    [107] Baham J, Sposito G. Chemistry of water-soluble, metal-complexing ligands extracted from an anaerobically-digested sewage sludge[J ]. Environmental Toxicology and Chemistry, 1983, 12(1):96-100.
    [108] Kaiser K, Zech W. Natural organic matter sorption on different mineral surfaces studies by DRIFT spectroscopy[J]. Sciences of Soils, 1997, 2:71-74.
    [109] Elabd H, Jury W A, Cliath M M. Cliath M M. Spatial variability of pesticide absorption parameters[J]. Environmental Science and Technology, 1986, 20:256-260.
    [110]凌婉婷,徐建民,高彦征,等.溶解性有机质对土壤中有机污染物环境行为的影响[J].应用生态学报, 2004, 15(2):326-330.
    [111]毛丽,孙兆海,余益军,等.可溶性有机物对四溴双酚A的增溶作用研究[J].环境科学, 2009, 30(1):184-190.
    [112]徐玉芬,吴平霄,党志.水溶性有机质对土壤中污染物环境行为影响的研究进展[J].矿物岩石地球化学通报, 2007, 26(3):307-312.
    [113] Thiele-Bruhn S, Aust M -O. Effects of pig slurry on the sorption of sulfonamide antibiotics in soil[J]. Archives of Environment Contamination and Toxicology, 2004, 47:21-39.
    [114] Gu C, Karthikeyan K G. Sorption of the antibiotic tetracycline to humic-mineral complexes[J]. Environmental Toxicology and Chemistry, 2008, 37:704-711.
    [115] Li J Y, Xu R K, Xiao S C, et al. Xiao S C, et al. Effect of low-molecular-weight organic anions on exchangeable aluminum capacity of variable charge soils[J]. Journal of Colloid and Interface Science, 2005, 284:393-399.
    [116] Xu R K, Zhao A Z, Ji G L. Effect of low-molecular-weight organic anions on surface charge of variable charge soils[J]. Journal of Colloid and Interface Science, 2003, 264:322-326.
    [117] Xu R K, Li C B, Ji G L. Effect of low-molecular-weight organic anions on electrokinetic properties of variable charge soils[J]. Journal of Colloid and Interface Science, 2004, 277:243-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700