TY型商用车细高齿变速箱动态特性仿真及分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变速箱是汽车传动系统的重要组成部分,其结构对汽车的动力性、经济性、传动的平稳性与效率等都有直接的影响。而对于重型车,其装载质量大,使用条件复杂,人们则更加关注其变速箱产品的经济性、耐久性和可靠性。
     近年来随着汽车发动机的设计趋向大扭矩、高转速,对汽车变速箱工作性能也提出更高的要求。变速箱的结构振动噪声等动态特性作为其工作性能的重要指标之一,受到越来越多的关注。减小齿轮传动噪声,提高齿轮强度已成为目前重要的研究课题。“细高齿”齿轮是一种与标准渐开线齿轮相比,采用小模数、大齿顶高系数使齿形变瘦变高的齿轮,因此采用细高齿齿轮是目前实现高强度、低噪声的齿轮变速箱的有效途径。
     本文通过对采用细高齿齿轮的TY型重型商用车主副箱组合式机械变速箱进行分析,得到其变速箱齿轮的强度、寿命及固有频率,并通过试验加以验证。
     论文的主要内容如下:
     1)在齿轮传动多体动力学分析理论的基础上,应用Romax Designer软件建立TY型商用车细高齿主副箱组合式机械变速箱模型。由于Romax Designer软件在仿真的时候,一次只能设定一个齿套或者同步器的连接,因此该变速箱不能实现主箱在挂有一个挡位的同时副箱也挂有高挡或低挡,所以在建模时,根据副箱在高挡或者低挡时,预先设定好副箱中两种挡位的传递路线,然后分别连接一个主箱,得到两个变速箱模型,从而实现变速箱从1挡到10挡的速度变化;
     2)对TY型商用车细高齿变速箱模型进行稳态分析。通过对TY细高齿型变速箱强化试验的疲劳寿命仿真,得出仿真结果能较好地模拟实际强化试验结果,并通过公式计算验证了仿真结果;在此基础上,按照正常试验的扭矩与时间对TY型细高齿变速箱进行疲劳寿命仿真,结果表明该变速箱可以通过疲劳试验;通过对副箱中危险齿轮的齿面修形,改善齿面的受载情况,使齿面的单元载荷有一定的降低,增加了齿轮寿命。
     3)对TY型商用车细高齿变速箱模态分析。通过对TY细高齿型变速箱的固有频率进行仿真与试验,得出仿真仿真结果与固有频率锤击试验结果基本一致;通过分析在变速箱输入转速为1300r/min时振动信号频谱图,验证了TY型细高齿变速箱模态分析仿真结果的正确性;计算了变速箱输入转速为2200r/min时的特征频率,结合模态分析仿真结果和试验结果,对箱体在经济转速下可能会发生振动甚至共振的挡位及特征频率进行了预测;通过分析Campbell图,得到在TY型细高齿变速箱的整个转速范围内,可能引起共振的输入转速及挡位。
Transmission is an important part of the automotive driveline, whose structure affects the vehicle dynamics, fuel economy, riding quality and efficiency directly.
     In recent years, with the high-torque and high-speed designing of automotive engines, more and more requirements were given on the capacity and reliability of the transmission. Being one of the most important indicators of the performance, transmission structural vibration and noise are taken more and more attention. So how to reduce the noise and improve the gear strength has become an important research subject currently. Comparing to involute gear, the fine-pitch gear is one of small modulus and large addendum coefficient to make the gear tooth thinner and higher. So using fine-pitch gear is the most effective way to attain high strength and low noise.
     In this paper, the gear's strength, life and natural frequency will be obtained by analysing the TY fine-pitch gear transmission which is primary and secondary box combined, and the analysis is verified by experiment.
     The main work of the thesis is as follows:
     1) Multi-body dynamics theory of gear is analysed, and on this basis, the fine-pitch gear transmission model is build by Romax Designer software. Because only one range or synchronous can be set one time in the simulation of Romax, it's impossible to hang two gears in the main and vice box at the same time. So it is need two model to enable the transmission change the range from1to10, which only differ about the transmission line.
     2) Steady-state analysis of transmission model is carried out. The results of the fatigue life of simulation can simulate the results of the fatigue life of experiment well, which is also verified by formula. A new simulation with normal torque and time is worked based on results above, and the results indicate the transmission is safe. In addition, by modifying the tooth profile, the load per unit on the tooth surface decrease and the gear life increase.
     3) The mode of the fine-pitch gear transmission is also analysed in this paper, and the results of natural frequency between hammering test and simulation are almost the same. And then using the spectrum validates the correctness of the results above when the input speed is1300r/min. It also analyses the inherent characteristics when the input speed is2200r/min, and predict the potential frequency and block under which the vibration may occur. Finally, by analysing the Campbell diagram, the potential frequency and block causing vibration in the entire speed range of the transmission is obtained.
引文
[1]陈静.基于有限元方法的重型车变速箱整体动态模拟与寿命预测研究[D].吉林:吉林大学,2009.
    [2]黄鹏.重卡双中间轴13档手动变速箱关键问题研究[D].上海:上海交通大学,2010.
    [3]庄中.“细高齿”齿轮的设计应用探讨[J].汽车工艺与材料,2007(3):41-44.
    [4]陆尧.重型变速箱多元化产品技术发展现状及趋势分析[J].上海汽车,2010,12:38-43.
    [5]刘盛强.国际重型汽车技术现状综述与对策[J].重型汽车,2008,(6):7-9.
    [6]吴修义.国内组合式机械变速箱的现状和发展[J].重型汽车,2003,(6):12-13.
    [7]P.D. McFadden. Low frequency vibration generated by gear tooth impacts[J]. NDT International,1985,5:279-282.
    [8]M.A. Sahir Arikan, Bilgin Kaftanoglu Dynamic Load and Root Stress Analysis of Spur Gears [J].CIRP Annals-Manufacturing Technology,1989,2:171-174.
    [9]G.Dalpiaz. Monitoring fatigue cracks in gears [J].NDT & E International,1991,3: 303-306.
    [10]F.K.Choy. Analysis of the effects of surface pitting and wear on the vibration of a gear transmission system[J].Tribology International,1996,2:77-83.
    [11]D.Richards, D.J.Pines. Passive reduction of gear mesh vibration using a periodic drive shaft[J].Journal of Sound and Vibration,2003,4:317-342.
    [12]Chinmaya Kar, A.R. Mohanty. Monitoring gear vibrations through motor current signature analysis and wavelet transform[J]. Mechanical Systems and Signal Processing,2006, 4:158-187.
    [13]David M. Blunt.Detection of a fatigue crack in a UH-60A planet gear carrier using vibration analysis[J].Mechanical Systems and Signal Processing,2006,6:2095-2111.
    [14]W.D.Mark. Stationary transducer response to planetary-gear vibration excitation with non-uniform planet loading[J]. Mechanical Systems and Signal Processing,2009:1366-1381.
    [15]N. Saravanan. Vibration-based fault diagnosis of spur bevel gear box using fuzzy technique[J].Expert Systems with Applications,2009,7:3119-3135.
    [16]J. Rafiee, M.A. Rafiee, P.W.Tse. Application of mother wavelet functions for automatic gear and bearing fault diagnosis[J].Expert Systems with Applications,2010,8:4568-4579.
    [17]Miroslav Byrtus. Vladimir Zeman.On modeling and vibration of gear drives influenced by nonlinear couplings[J].Mechanism and Machine Theory,2011,3:375-397.
    [18]方宗德,沈允文.斜齿轮传动动态特性的理论与实验研究[C].中国机械工程学会第二届,齿轮动力学会议论文集.武汉,1991,1:52-59.
    [19]刘更,沈允文等.齿轮参数对斜齿轮传动振动特性的影响[J].西北工业大学学报,1992,10(1):67-73.
    [20]唐增宝,钟毅芳.直齿圆柱齿轮传动系统的振动分析[J].机械工程学报,1992,28(4):23.25.
    [21]邓季贤等.双圆弧齿轮端面齿廓方程及其啮合过程[J].煤矿机械,2003,1:19-21.
    [22]张瑞亮,王铁等.双圆弧弧齿锥齿轮啮合的动力学仿真[J].机械设计(增刊),2009.
    [23]武志斐,王铁等18Cr2Ni4WA齿轮接触疲劳特性试验研究[J].兵工学报,2010,5:598-602.
    [24]张瑞亮,王铁等.双圆弧弧齿锥齿轮齿面接触分析[J].机械设计,2011,7:80-83.
    [25]李红梅,王铁等.双圆弧齿轮齿面啮合特性的仿真分析[J].煤矿机械,2011,10:78-80.
    [26]常志权.汽车变速器齿轮啮合瞬态性能分析研究[D].重庆:重庆大学,2005.
    [27]仙波正庄.高强度齿轮设计[M].北京:机械工业出版社,1981:36-68.
    [28]何俊波.细高齿斜齿轮的测绘与计算[J].机械设计与制造,2001:42-43.
    [29]方宗德,蒋孝煜等.大重合度齿轮的性能研究[J].机械传动,1987,(01):27-32.
    [30]朱廷波.降低减速器振动与噪声的途径和方法[J].机械设计与制造工程,2001,(2):53-54.
    [31]赵富强.细高齿齿形优化设计及有限元强度分析[D].太原:太原理工大学,2009.
    [32]Zhao Fu Qiang, Wang Tie,etc.Fuzzy optimization design method on fine-pitch tooth profile[J]. Advanced Materials Research,2010, (3):156-157.
    [33]Wang Tie, Zhao Fu Qiang, Zhang Ruiliang, etc. Optimization design method of noise control on fine-pitch gear[J].Open Mechanical Engineering Journal,2011, (5):103-107.
    [34]Zhao Fu Qiang, Wang Tie. Multi-objective optimization of fine-pitch gear based on variable-grain strategy [J].Applied Mechanics and Materials.2011, (44-47):4191-4195.
    [35]李志豪.四足步行机器人的步态研究与动力学仿真[D].上海:华东理工大学,2009.
    [36]万燕波.基于高卸状态下ZL50G装载机工作装置作业运动特性研究[D].重庆:重庆交通大学,2009.
    [37]魏玉东.滚筒洗衣机动态性能研究[D].天津:天津大学,2008.
    [38]周凡利.约束机械系统动力学积分方法研究与系统实现[D].武汉:华中科技大学,2001.
    [39]李润方,王建军.齿轮系统动力学[M].北京:科学出版社,1997:3-18.
    [40]鲁文龙.面齿轮传动的齿面温度分布与动态特性研究[D].南京:南京航空航天大学,2000.
    [41]Romax Technology Company. Transportation:Romax Designer [EB/OL]. http://www.romaxtech.com/Simulation-Technology.2011-06-14.
    [42]濮良贵,纪名刚.机械设计[M].北京:高等教育出版社,2006:198-204.
    [43]程文东,曹岩.直齿轮啮合疲劳强度的有限元仿真与失效分[J].西安:西安工业大学学报,2010,30(3):239-242.
    [44]张红磊.大型风电机组齿轮箱疲劳特性数值模拟[D].北京:华北电力大学,2009.
    [45]李喜梅.2009,风电机组传动系统失效分析与动态设计方法初步研[D].北京:华北电力大学,2009.
    [46]韩国胜.汽车变速器振动噪声控制研究[D].重庆:重庆大学,2007.
    [47]童双双.齿轮箱动态响应分析和噪声预测[D].大连:大连理工大学,2008.
    [48]成伟.风电变桨减速机振动噪声控制仿真研究[D].长沙:湖南大学,2011.
    [49]黎勇.汽车变速器振动噪声控制研究[D].重庆:重庆大学,2004.
    [50]杨成云.齿轮传动系统耦合振动响应及抗冲击性能研究[D].重庆:重庆大学,2006.
    [51]王祁波.考虑摩擦和间隙的轮齿冲击行为建模与分析[D].长沙:中南大学,2011.
    [52]藤瑞品.乘用车传动系统NVH研究与控制[D].长沙:湖南大学,2011.
    [53]东方振动和噪声技术研究所.DASP 软件[EB/OL].http://www.coinv.com/pro.php?id=9.2011-08-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700