石油污染物在地下环境系统中运移的多相流模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油污染物造成的环境污染问题已引起了国内外水文地质学者和环境学者的广大关注,并成为地下环境污染控制研究中的热点和焦点问题。石油污染物对地下环境系统的污染是一个极其复杂的动力学过程,由于研究所涉及的问题是多学科的交叉点,加之问题的复杂性,所以,以往的研究多侧重于实验机理和污染治理方面的研究,很少从多相流流体理论和溶质运移动力学理论角度出发,对污染物质在土壤-水环境系统迁移转化的动力学行为进行定量化研究。为此,本文基于前人研究成果基础之上,借助相关学科的研究成果,深入研究了石油污染物在地下环境系统中迁移转化的规律、时空分布特征、控制多相流系统的本构模型以及污染去污过程滑逸耦合模型等方面的问题,从理论上建立油水气多相流动的渗流场和有机污染物迁移转化的浓度场耦合作用条件下动力学数学模型,并给出了数值解法,实现耦合系统的软件化,并以此为工具,来预测预报有机污染迁移转化的动态及过程,对于更科学地、更有效地控制石油泄漏带来的环境污染问题具有更重要的理论意义和实际意义。
    本论文的研究摘要有以下四个方面:
    采用室内土柱实验,开展了石油污染物在不同质地土壤介质中驱替实验以及含油废水淋滤物理模拟实验研究,揭示了石油污染物在土壤中淋滤深度与土壤质地之间有着密切的关系,在砂性土壤的石油污染物截留率为45.8%,而粘性土壤中其截留率为76.4%,这对于定量化研究石油污染物在土壤水环境系统中迁移转化规律提供基础资料。
    油气水多相流体系中毛细压力-饱和度-相对渗透率之间关系曲线的确定是研究石油污染物在地下环境系统中驱替机理和数值模型的关键性技术。本文应用渗流力学和参数反演最优化理论,给出了控制多相流系统之间的参数本构模型,采用约束变尺度方法对模型参数进行反演辨识,得出了待求参数的最优估计值。通过计算结果可以得出,采用本文数值方法求得的数值优化结果与实验测试结果吻合较好,表明文中所建立的数值方法是可行和可靠的,有效地克服了数值结果对参数初值的敏感性问题。
    在综合考虑有石油污染物在地下环境体系中扩散、吸附解吸、界面间分配以及微生物降解等化学反应条件下,建立了有机污染物在多孔介质迁移转化的多组分多相渗流动力学模型,并采用特征有限差分方法和隐式压力显式饱和度方法对耦合模型进行数值离散,编制了相应的计算软件(MCTS1.0);利用该软件对石油污染物在地下环境系统中运移机制进行定量化研究,研究结果表明:石油污染物在地表泄漏以后,将在重力和毛细力的作用下,产生水平位移和垂直位移,但其总体趋势为向下迁移。当污染物迁移到地下毛细管区后,其向下的运动将整体受到毛细张力的阻碍,污染
    
    
    物要想进入毛细饱和带必须克服油-水界面的进气压力,这时污染物在毛细饱和带顶部聚集以期获取压力,同时将产生以水平方向为主的迁移,最终随着污染物的压力超过其进气压力,导致污染物进入毛细饱和带,到达地下水位,此时污染物将沿地下水水流方向横向扩展开来,并在地下水水位上形成一个透镜体,这为定量研究石油污染物在地下环境系统中分配与归宿提供了可靠的理论依据,同时为土壤环境质量评价及污染预测、预报与污染防治提供科学的根据与途径。
    考虑气体滑脱效应条件下,提出了挥发性有机污染物去污过程的滑逸耦合模型,并给出了耦合动力学模型的有限差分格式。采用所建立的数值模型对抽排状态下有机污染物的释放过程进行数值模拟,并对不同质地的土壤和土壤含水率进行灵敏度分析。同时,对于挥发性污染物横向迁移问题采用摄动法及积分变换法进行了解析求解,定量研究填埋气体的压力分布特征。数值模拟结果表明:滑脱效应对污染气体释放过程有较大影响,抽气量越大,其差别越明显,在连续抽排条件下污染气体的分布范围和浓度均明显减小,抽排前期对气体浓度分布和气体产量有较大的影响,并且所得到的滑脱解与实测数值吻合较好,因此,研究挥发性污染气体释放时不能忽略滑脱效应。这不仅对于污染气体抽排系统工程设计及环境预测评价提供基础理论依据,而且可为油气田开发过程中污染的治理与恢复具有重要的参考价值。
    本文的研究成果不仅对于定量化研究有机污染物在地下环境系统中迁移归宿、环境质量评价及污染预测、预报与污染防治提供科学的理论根据与途径,而且对于完善和丰富地下水动力学、溶质运移动力学以及多孔介质渗流力学等理论做出贡献。
The environmental problems caused by petroleum pollutant have been studied by researchers in fields of hydrology and geology, environmental science in home and abroad, and they have become the focuses of research on subsurface environmental pollution control. Petroleum pollutant to subsurface environment is a very complex kinetic progress and because the problems considered are the multi-crossed disciplines and they are very complex, experimental mechanism and pollution prevention were often focused on in studies, and it is seldom to study the dynamic behavior quantitatively of pollutant transport and migration in subsurface environment based on the theories of multiphase flow and solute transport dynamics. Therefore, based on the study results before and using the research results in relative science, Petroleum pollutant transport and migration laws, its temporal and spatial distribution, the constitutive model controlling multiphase flow and the slippage and release coupled model in groundwater environment and so on are deeply discussed. And the coupled dynamic mathematical model of oil-water-gas multiphase flow seepage field and organic pollutant transport and migration concentration field is established theoretically, and the numerical method is given. In addition, the simulation code is developed, and the numerical model is used to predict the temporal and spatial distribution of organic pollutant concentration under the conditions of multi-field coupling effect. It has important theoretical significance and practical value for preventing pollution caused by oil spills more scientificly and effectively.
    The abstract of this paper includes the following four points:
    1. By the laboratory column tests, the petroleum pollutant displacement experiment and the physical modeling experiment of waste water with oil in different soils are designed and developed, the petroleum pollutant retention in sandy soil is 45.8%, and it is 76.4% in clays. It provides scientific basis for the quantitative studies of petroleum pollutant transport and migration in subsurface environment.
    2. Determination of capillary pressure-saturation-relative permeability relationship curve of oil-water-air flow system is the key technique in studies of petroleum pollutant displacement theories and numerical model in groundwater environment. The parameters’ constitutive model controlling multiphase flow is given based on seepage mechanics and parameter inversion optimization theory. And the optimized estimator is obtained by adopting
    
    
    constrained variable metric method to inverse the parameters. It shows that the optimized values by the numerical method in this paper is in good agreement with the experimental data, and the comparison analysis validates the reliability and practicability of numerical model, which solves the sensitivity of the values to the initial conditions.
    3. On the conditions of considering comprehensively the diffusion, absorption/desorption, distribution between phase surface and the biodegradation progresses, the multiphase and multicomponent model of the petroleum pollutant transport and migration has been established, and the characteristic finite difference method and implicit pressure explicit saturation method are adopted to discrete the coupled model. Moreover, the code (MCTS1.0)is developed to analyze petroleum pollutant transport and migration mechanism in different porous media. The results show after petroleum is leaked out on the earth surface, it will have displacement vertically and horizontally under the pressure of weight and capillary pressure, but the direction of its transport and migration is vertical as a whole. When the pollutant arrives the capillary saturated zone, the vertical movement is blocked by the capillary tension. The pollutant must overcome the oil-water surface inlet air pressure before it entering the capillary zone, and pollutant accumulates on the top of capillary saturated zone to obtain the necessary pressure, and meanwhile it transport and migrate horizontally. In the end
引文
[1] 联合国环境署.全球环境展望[M].中国环境科学出版社,1995.
    [2] 中国21世纪议程—中国21世纪人口、环境与发展白皮书[M].中国环境出版社,1994.
    [3] 吕贤弼.地下水污染的根源及防治[J].中国水利,1999,(3).
    [4] 中新网.中国约一半城市地下水污染比较严重,2003,10.30.
    [5] 陈梦熊.环境水文地质学的最新发展与今后趋向[J].地质科技管理,1995,(3):28-35.
    [6] 王连生.环境健康化学[M].北京:科学出版社,1994 .
    [7] Chrysikopoulos CV, Kim T-J. Local mass transfer correlations for nonaqueous phase liquid pool dissolution in saturated porous media[J]. Trans Porous Media, 2000,38(1–2):167-187.
    [8] Mercer, J.W., Cohen, R.M. A review of immiscible fluids in the subsurface: properties, models,characterization and remediation. Journal of Contaminant Hydrology, 1990,6:107-163.
    [9] Roeder, E., R.W. Falta, C.M. Lee, and J.T. Coates. DNAPL to LNAPL Transitions During Horizontal Cosolvent Flooding[J]. Ground Water Monitoring and Remediation, 2001.
    [10] Rao, P.S.C., Annabel, M.D., Kim, H. NAPL source zone characterization and remediation technology performance assessment: recent developments and applications of tracer techniques. Journal of Contaminant Hydrology, 2000,45(1–2):63-78.
    [11] Mayer, A.S., Miller, C.T., The influence of mass transfer characteristics and porous media heterogeneityon nonaqueous phase dissolution[J]. Water Resources Research, 1996,32:1551-1567.
    [12] Kueper, BH, Redman, D, Starr, RC, Reitsma, S and Mah, M. A Field Experiment to Study the Behavior of Tetrachloroethylene Below the Water Table: Spatial Distribution of Residual and Pooled DNAPL[J]. Ground Water GRWAAP, 1993,31(5):756-766.
    [13] J·贝尔著.许绢铭,李峻亭等译.地下水水力学[M].北京:地质出版社,1986.
    [14] Hunt, J.R., Sitar, N., Udell, K.S. Nonaqueous phase liquid transport and cleanup: 1. Analysis of mechanisms. Water Resources Research, 1988,24:1247-1258.
    [15] Sleep, B.E., Sykes, J.F. Compositional simulation of groundwater contamination by organic compounds: 1.Model development and verification[J]. Water Resources Research, 1993,29(6): 1697-1708.
    [16] Panday, S., Wu, Y.S., Huyakorn, P.S. and Springer, E.P. A three-dimensional multiphase flow model for assessing NAPL contamination in porous and fractured media: 2. Porous medium simulation examples, Journal of Contaminant Hydrology, 1994,16(2):131-156.
    [17] Kaluarachchi, J.J., Parker, J.C. Modeling multicomponent organic chemical transport in three-fluid phase porous media. Journal of Contaminant Hydrology, 1990,5:349-374.
    [18] Corapcioglu, M. Y. and A.L. Baehr. A Compositional Multiphase Model for Groundwater
    
    
    Contamination by Petroleum Products, 1, Theoretical Considerations[J]. Water Resources Research, 1987,23(1):191-200.
    [19] Wan, J and Wilson, JL. Visualization of the role of the gas-water interface on the fate and transport of colloids in porous media[J]. Water Resources Research, 1994,30(1):11-23.
    flow: 1.Saturation–pressure relations. Water Resources Research, 1987,23(12):2187-2196.
    [20] Lenhard, R.J., Parker, J.C., A model for hysteretic constitutive relations governing multiphase flow: 2.Permeability – saturation relations. Water Resources Research, 1987a,23(12):2197-2206.
    [21] Lenhard, R.J., Parker, J.C., Measurement and prediction of saturation– pressure relationships in threephaseporous media systems. Journal of Contaminant Hydrology, 1987b,1(4):407-424.
    [22]Oostrom, M., C. Hofstee, and J. H. Dane, Light nonaqueous-phase liquid movement in a variably saturated sand, Soil Sci. Soc. Am. J.,1997,61:1547-1554.
    [23] Hofstee, C., Dane, J.H., Hill, W.E., Three-fluid retention in porous media involving water, PCE and air. J.Contam. Transp. 1997,25:235-247.
    [24] Parker, J. C., R. J. Lenhard, and T. Kuppusamy, A parametric model for constitutive properties governing multiphase flow in porous media [J]. Water Resources Research, 1987,23(4):618-624.
    [25] Lenhard, R.J., Parker, J.C., Experimental validation of extending two phase saturation– pressure relations to three-fluid phase systems for monotonic drainage paths[J]. Water Resources Research, 1988,24(3):373-380.
    [26] Lenhard, R.J., Johnson, T.G., Parker, J.C. Experimental observations ofnon-aqueous-phase liquid subsurface movement. Journal of Contaminant Hydrology, 1993,12(1):79-101.
    [27] Oostrom, M., Lenhard, R.J. Comparison of relative permeability –saturation– pressure parametric models for infiltration and redistribution of a light nonaqueous-phase liquid in a sandy porous media[J]. Advances in Water Resources, 1998,21(2):145-157.
    [28] Van Geel, P.J., Sykes, J.F. Laboratory and model simulations of a LNAPL spill in a variably-saturated sand: 1. Laboratory experiment and image analysis techniques. Journal of Contaminant Hydrology, 1994,17(1):1-25.
    [29] Eckberg, D.K., Sunada, D.K. Nonsteady three-phase immiscible fluid distribution in porous media[J]. Water Resources Research, 1984,20(12):1891-1897.
    [30] 王秉忱,杨天行.地下水污染 地下水水质模拟方法[M].北京:北京师范大学出版社,1985.
    [31] 刘兆昌等编.地下水系统的污染与控制[M].北京:中国环境出版社,1991.
    [32] 刘新华,沈照理,钟佐燊.含油污水在微裂隙发育粘性土层中的迁移特征[J].1996,(3):20-23.
    [33] 郑西来,荆静,席临平.包气带中原油的迁移和降解研究[J].水文地质工程地质,1998,(1):35-37.
    
    [34] 侯杰.大庆市地下水石油类污染系统形成机制研究?[J].中国岩溶,1999,18(4):361-366.
    [35] 郑德凤,赵勇胜.轻非水相液体在地下环境中的运移特征与模拟预测研究?[J].水科学进展, 2002,13(3):321-325.
    [36] Ang, C.C., and A.S. Abdul. Aqueous surfactant washing of residual oil contamination from sandy soil[J]. Ground Water Monitoring Review, Spring 1991.
    [37] Reeves, P.C., and M.A. Celia. A functional relationship between capillary pressure, saturation, and interfacial area as revealed by a pore-scale network model[J]. Water Resources Research, 1996,32(8): 2345-2358.
    [38] Pantazidou, M. and N. Sitar. Emplacement of nonaqueous liquids in the vadose zone[J]. Water Resources Research,1993,29(3): 705-722.
    [39] Van Geel, P.J. and J.F. Sykes. The Importance of Fluid Entrapment, Saturation Hysteresis and Residual Saturations on the Distribution of a LNAPL in a Variably-Saturated Sand. Journal of Contaminant Hydrology, 1997,25(2):249-270.
    [40] Waddill, D.W., and J.C. Parker. Recovery of light, nonaqueous phase liquid from porous media: Laboratory experiments and model validation. Journal of Contaminant Hydrology, 1997,27(1):127-155.
    [41] Demond, A.H. and P.V. Roberts. Effect of interfacial forces on two-phase capillary
    pressure-saturation relationships[J]. Water Resources Research, 1991,27:423-437.
    [42] Demond, A.H. and P.V. Roberts. Estimation of two-phase relative permeability relationships for organic liquid contaminants[J]. Water Resources Research, 1993,29:1081-1090.
    [43] Busby, R.D., R.J. Lenhard, and D.E. Rolston. An investigation of saturation-capillary pressure relations in two- and three-fluid systems for several NAPLS in different porous media[J].Ground Water, 1995,33:570-578.
    [44] J. H. Dane,C. Hofstee. Simultaneous measurement of capillary pressure, saturation, and effective permeability of immiscible liquids in porous media [J]. Water Resources Research, 1998,34(12):3687-3692.
    [45] Zhou, D and Blunt, M (1997). Effect of spreading coefficient on the distribution of light nonaqueous phase liquid in the subsurface. Journal of Contaminant Hydrology, 1997,25(1-2):1-19.
    [46] 郭尚平. 物理化学渗流微观机理. 北京:科学出版社,1990
    [47] 刘慈群,宋付权.各向异性介质水驱油特征.周连第主编,第十三届全国水动力学学术会以论文集.北京,海洋出版社,1999,520-525
    [48] 武晓峰,唐杰.地下水饱和区中油水两相流饱和度的试验研究[M].2000,(10):7-9.
    [49] 魏开湄,吴维中.石油烃在沈抚灌区土壤中的生物降解模拟[J].环境科学报,1983,3(2):156-164.
    
    [50] 郑西来,钱会.地下水系统中石油污染物的吸附转移研究[J] .勘察科学技术1998,(1):26-30.
    [51] 郑西来,刘孝义,席临平.土壤对可溶性油的吸附作用及其影响因素分析[J].地球科学-中国地质大学学报, 2003,28(5):563-567.
    [52] 郑西来,刘孝义.土壤中油-水驱替机理研究[J].环境科学学报,1999,19(2):218-220.
    [53] 金彪,李广贺.吹脱技术净化石油污染地下水实验[J].环境科学,2000,(4):102-105.
    [54] 李习武,刘志培.石油烃类的微生物降解[J].微生物学报,2002,42(6):764-767.
    [55] 熊运实.油田开发区水体的非点源石油污染实验研究[J].地理研究,1993,12(4):23-31.
    [56] 王东海,李广贺.河滩包气带中残油静态释放模型研究[J]. 环境化学?,1999,18(4):294-301
    [57] 王东海,李广贺.包气带中残油动态释放实验研究[J].环境科学学报,2000,20(2):145-150.
    [58] 黄廷林,李仲恺,史红星.NAPL态石油类污染物在黄土中迁移的稳态数学模型[J].四川环境,
    2003,22(1):71-73.
    [59] 黄廷林,史红星.石油类污染物在黄土地区土壤中竖向迁移特性试验研究[J].西安建筑科技大学学报,2003,23(2):108-120.
    [60] Bresler,E. and Dagan,G. Solute dispersion in unsaturated heterogenous soil at field scale.Ⅱ:Applications. Soil Sci.Soc.Am.J.,1979,43:467-472.
    [61] Faust C R. Transport of immiscible fluids within and below the unsaturated zone: A numerical media [J]. Water Resources Research, 1985,21(4):587-596.
    [62] Mecarthy J F , Zachara J M. Subsurface transport of contaminants[J]. Environmental Science and Technology,1989,18:41-51.
    [63] Kandil H, Miller C T, Skaggs R W. Modelling long-term solute transport in drained unsaturated zone[J]s. Water Resources Research, 1992,28:2799~2809.
    [64] Smith D W,RoweR K,Booker J R. The analysis of pollutant migration through soil with linear hereditary time-dependent sorption. Int J Numer and Anal Methods in Geomechanics,
    1993,17:255~260.
    [65] James J.Deitsch. Modeling the Desorption of Organic Contaminants form Long-Term contaminated Soil Using Distributed Mass Transfer Rates [J]. Environ. Sci. Tchnol. 1997,31(6):1581-1588.
    [66] Mercer, JW and Cohen, RM. A review of immiscible fluids in the subsurface: properties, models, characterization and remediation. Journal of Contaminant Hydrology, 1990,6:107-163.
    [67] Faust, C.R., and J.W. Mercer. Groundwater modeling: Recent developments: Ground Water, 1980,18(6):1233-1242.
    [68] Karickhoff, S. W., D. S. Brown, and T. A. Scott. Sorption of hydrophobic pollutants on natural sediments[J]. Water Research, 1979,(10):241-248.
    [69] Karickhoff, S. W. Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils[J]. Chemosphere, 1981,(10): 833-846.
    
    [70] Karickhoff, S. W. Organic pollutant sorption on aquatic systems. Journal of Hydraulic Engineering, 1984,(10): 833-846.
    [71] Danzer, J. & Grathwohl, P. Coupled transport of PAH and surfactants in natural aquifer materials[J]. Phys. Chem. Earth 1998,23(2):237-243.
    [72] Grathwohl, P. Organic matter facies and equilibrium sorption of phenanthrene[J]. Environ. Sci. Tech. 1999,33(10):1637-1644.
    [73] Obeng Ofori, D. and Reichmuth, C. Bioactivity of eugenol, a major component of essential oil of Ocimum suave (Wild.) against four species of stored-product Coleoptera[J]. International Journal of Pest Management. 1997,43(1):89-94.
    [74] Kueper, Bernard H., Abbott, Wesley and Farquhar, Graham. Experimental observations of multiphase flow in heterogeneous porousmedia[J]. Journal of Contaminant Hydrology ,1989(5): 83-95.
    [75] Kueper, Bernard H. and McWhorter, David B.. The behavior of dense nonaqueous phase liquids in fractured clay and rock.[J]. Ground Water, 1991,29(5):716-728.
    [76] Kueper, Bernard H., Redman, David, Starr, Robert C., Reitsma, Stanley and Mah, May . A field experiment to study the behavior of tetrachloroethylene below the water table: Spatial distribution of residual andpooled DNAPL[J]. Ground Water,1993, 31(5): 756-766.
    [77] Faust, C.R., J.H. Guswa, and J.W. Mercer, Simulation of three-dimensional flow of immiscible fluids within and below the unsaturated zone[J]. Water Resources Research, 1989, 25(12):2449-2464.
    [78] Abriola, L. M., and K. Rathfelder. Mass balance errors in modeling two-phase immiscible flow: Causes and remedies[J]. Advances Water Resources, 1993,(16):223-239.
    [79] Abriola, L. M., T. J. Dekker, and K. D. Pennell, Surfactant-enhanced solubilization of residual dodecane in soil columns: 2. Mathematical modeling, Environ[J]. Sci. Tech., 1993, (27): 2341-2351.
    [80] Kaluarachchi, J. J., and J. C. Parker. An efficient finite element method for modeling multiphase flow[J]. Water Resources Research, 1989,25(1):43-54.
    [81] Kaluarachchi, J. J., J. C. Parker, and R. J. Lenhard, A numerical model for areal migration of water and light hydrocarbon in unconfined aquifers[J]. Adv. Water Resour., 1990,13(1): 29-40.
    [82] Kueper, B. H., and E. O. Frind, Two-phase flow in heterogeneous porous media: 1. Model development[J]. Water Resources Research, 1991,27(6) :1049-1057 .
    [83] Kueper, B. H., and E. O. Frind, Two-phase flow in heterogeneous porous media: 2. Model application[J]. Water Resources Research, 1991,27(6) : 1059--1070 .
    [84] 叶常明等.有机污染物在多介质环境的稳态非平衡模型[J].环境科学学报,1995,15(21):92-198.
    [85] 孙菽芬等.含裂隙含水层污染物生物降解数值方法[J].水利学报,1998,28(4):357-367.
    
    [86] 李锡夔,武文华.非饱和土中溶混污染物运移模型及特征线有限元法[J].岩土工程学报, 1999,21(4):428-437.
    [87] 邓英尔,刘慈群.低渗油藏非线性渗流规律数学模型及其应用[J]. 石油学报,2001,21(4):72-77
    [88] 刘凌,陆桂华.多氯联苯湿地生物降解规律预测及污染风险分析[J].水科学进展, 2001,14(1):79-84.
    [89] 宋汉周.地下水TCA污染及去除污染的数值模拟分析[J].水利学报,1999,7:46-52.
    [90] 赵文谦,晁晓波.泥沙吸附石油的数学模型与试验研究??[J].水利学报,1997,12:50-57.
    [91] 王洪涛,罗剑.石油污染物在土壤中运移的数值模拟初探[J].环境科学学报,2000,20(6):755-760.
    [92] 王洪涛,周抚生.数值模拟在评价含油污水对地下水污染中的应用[J].北京大学学报, 2000,36(6):865-872.
    [93] 韩大匡.油藏数值模拟基础[M].石油工业出版社,1993.
    [94] 陈家军,彭胜.非饱和带水气二相流动参数确定实验研究?[J].水科学进展,2001,12(4):467-472.
    [95]陈家军,奚成刚,王金生.非饱和带水气二相流数值模拟研究进展[J].水科学进展,2000,11(2):208-214.
    [96] 王金生,杨志峰.包气带土壤水分滞留特征研究[J].水利学报,2000,(2):1-6.
    [97] shakoglu, A. and Baytas, A. F. Measurement and evaluation of saturations for water, ethanol and a light non-aqueous phase liquid in a porous medium by gamma attenuation[J]. Appl.
    Radiat. Isot,2002,56:601-606.
    [98] Luckner, L. M.Th. van Genuchten, and D.R.Nielsen. A consistence set of parametric models for the two-phase flow of immiscible fluids in the subsurface[J]. Water Resources Research, 1989,25:2187-2193.
    [99] Seagren, EA, Rittmann, BE and Valocchi, AJ. An experimental investigation of NAPL pool dissolution enhancement by flushing. Journal of Contaminant Hydrology, 1999,37(1-2):111-137.
    [100] Powers, SE, Abriola, LM and Weber, WJ. An Experimental Investigation of Nonaqueous Phase Liquid Dissolution in Saturated Subsurface Systems: Steady State Mass Transfer Rates[J]. Water Resources Research, 1992,28(10):2691-2705.
    [101] Palmer, C.D. and Fish, W. Chemical Enhancements to Pump-and-Treat Remediation. U.S. EnvironmentalProtection Agency, EPA/540/S-92/001, 1992.
    [102] Guigard, S.E., Stiver, W.H., and Zytner, R.G. Retention Capacities of Immiscible Chemicals in Unsaturated Soils, Water, Air and Soil Pollution, 1996,89:277-289.
    [103].Isalou, M., B. E. Sleep, and S. N. Liss, Biodegradation of high concentrations of tetrachloroethene
    
    
    in a continuous column system[J]. Env. Sci. and Tech., 1998, 32(22):3579-3585.
    [104] Mackay, D.M.; Cherry, J.A. Groundwater contamination: Pump-and-treat remediation[J]. Environ. Sci. Technol. 1989, 23(6), 630–636.
    [105] Wood, A.L.; En.eld, C.G. In Situ Enhanced Source Removal, EPA/600/C-99/002, 1999
    [106] Jawitz, J.W., Rao, P.S.C. Methods for determining NAPL source zone remediation e.ciency of in situ .ushing technologies, inIn Situ Remediation of the Geoenvironment: Proceedings of the Conference, editedby J.C. Evans, pp. 271–283, ASCE, Minneappolis, MN, 1997.
    [107] Jin, M.; Delshad, C.E.; Jackson, R.E. Partitioning tracer tests for detection, estimation, and remediation performance assessment of subsurface nonaqueous phase liquids, Water Resources Research, 1995, 31(5), 1201–1211.
    [108] 黄国强,李鑫钢.地下水有机污染的原位生物修复进展[J].化工进展,2001,(10):13-16.
    [109] 武晓峰,唐杰.土壤、地下水中有机污染物的就地处置[J].环境污染治理技术与设备,2000,1(4):13-16.
    [110] Reddy, K.R., and Adams, J.A.In-Situ Air Sparging: A New Method to Remediate Groundwater. Geotechnical News, Vol.14, No.4, 1996, pp.27-32.
    [111] Semer, R., and Reddy, K.R. Mechanisms Controlling Toluene Removal from Saturated Soils During Air Sparging. Journal of Hazardous Materials, Vol.57, No.1-3, 1998, pp.209-230.
    [112] Semer, R., Adams, J.A., and Reddy, K.R. An Experimental Investigation of Air Flow Patterns in Saturated Soils During Air Sparging. Geotechnical and Geological Engineering Journal, Vol.16, No.1, 1998, pp.59-75.
    [113] U.S. Environmental Protection Agency (EPA). Soil Vapor Extraction Technology: Reference Handbook. Cincinnati, OH: Office of Research and Development. EPA/540/2-91/003,1991b.
    [114] Cho, J.S., and D.C. DiGiulio, Pneumatic Pumping Test for Soil Vacuum Extraction. Environ. Progress,
    1992, 11(3), 228-233.
    [115] Aelion, Marjorie C., Nikki Shaw. Biodegradation, Vapor Extraction, and Air Sparging in Low-Permeability Soils, In-Situ Aeration: Air Sparging, Bioventing, and Related Remediation Processes. Battelle Press: Columbus, 1995.
    [116] 金樑,顾宗濂.石油污染土壤及地下水的生物修复进展[J].应用与环境生物学报,
    1999,10(5):130-135.
    [117] 金樑,谢思琴.石油降解菌的分离、鉴定及其降解能力的研究[J].应用与环境生物学报,
    1999,10(5):127-129.
    [118] 赵荫薇,王世明.微生物处理地下水石油污染的应用研究[J].应用生态学报,
    1999,9(2):209-212.
    
    [119] 刘期松,杨桂芬.石油污染区微生物生态及其降解石油的研究[J].环境科学,1981,12(3):1-3.
    [120] 刘期松等.真菌产黄青霉对致癌物质苯并(a)芘的氧化[J].环境科学学报,1983,3(1):36—43.
    [121] 魏开湄,吴维中.石油烃在沈抚灌区土壤中的生物降解模拟[J].环境科学报,1983,3(2):156-164.
    [122] 吕荣湖,王嘉麟,陈琴仪,吴芳云.热碱水溶液清洗-气浮分离对原油污染土壤的处理[J].油气田环境保护,1994,4(3):3-8.
    [123] 谢飞,吴芳云,刘建刚,王嘉麟,史方.洗涤法处理含油土壤的研究[J].油气田环境保,
    1997,7(1):5-9.
    [124] 谢重阁.环境中石油污染物的分析技术[M].北京:中国环境科学出版社,1987.
    [125] Blunt, M, Zhou, D and Fenwick, D. Three Phase Flow and Gravity Drainage in Porous Media[J]. Transport in Porous Media, 1995,20:77-103.
    [126] Armstrong, JE, Frind, EO and McClellan, RD. Nonequilibrium mass transfer between the vapor, aqueous and solid phases in unsaturated soils during vapor extraction[J]. Water Resources Research, 1994,30(2):335-368.
    [128] Brusseau, ML, Rate-Limited mass transfer and transport of organic solutes in porous media that contain immobile immiscible organic liquids[J]. Water Resources Research, 1992,28(1):33-45.
    [129] Clement, T.P., Y.Sun, and J.N. Peterse.?Modeling Natural Attenuation of Contaminants in Saturated Groundwater. In: Proceedings of the Fourth International Symposium on In situ and On-site Bioremediation.?1997,37-42.?
    [130] Chrysikopoulos, CV and Lee, KY. Contaminant transport resulting from multicomponent nonaqueous phase liquid pool dissolution in three-dimensional subsurface formations. Journal of Contaminant Hydrology, 1998,31(1-2):1-21.
    [131] [美]M.霍纳波等.油藏相对渗透率[M].石油工业出版社,1989.
    [132] Demond, A. H., K. Rathfelder, and L. M. Abriola, Simulation of organic liquid flow in porous media using estimated and measured properties. Journal of Contaminant Hydrology, 1996,22(2):223-239.
    [133] van Dam, J.C., J.N.M. Stricker and P. Droogers. Inverse method to determine soil hydraulic functions from multistep outflow experiments[J]. Soil Sci. Soc. Amer. J. 1994,58:647-652.
    [134]van Genuchten, M.Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Sci. Soc. Amer. J. 1980,44:892-898.
    [135] Whitaker, S.A. Flow in porous media II: the governing equation for immiscible, two-phase flow[J]. Transport in Porous Media 1986,1:105-125.
    
    [136] Whitaker, S.A. The closure problem for two-phase flow in homogeneous porous media[J]. Chemical Engineering Science 1994,49:765-780.
    [137] Carrera , J., and S.P. Neuman. Estimation of aquifer parameters under transient and steady state conditions, 1. Maximum likelihood incorporating prior information[J]. Water Resources Research, 1986a,22:199-210.
    [138] Carrera , J., and S.P. Neuman, Estimation of aquifer parameters under transient and steady state conditions, 2. Uniqueness, stability, and solution algorithms[J]. Water Resources Research, 1986b,22:211-227 .
    [139] Celia, M. A., E. T. Bouloutas, and R. L. Zarba. A general mass-conservative numerical solution for the unsaturated flow equation[J]. Water Resources Research, 1990,26:1483-1496.
    [140] Kool, J.B., J.C. Parker, and M. Th. van Genuchten. Determining soil hydraulic properties from one-step outflow experiments by parameter estimation: I theory and numerical studies[J]. Soil Sci. Soc. Amer. J. 1985b,49:1348-1354.
    [141] Kool, J.B. and J.C. Parker. Analysis of the inverse problem for transient unsaturated flow[J].  Water Resources Research, 1988,24:817-830.
    [142] Pinder, George F. and Linda M. Abriola. On the Simulation of Nonaqueous Phase Organic Compounds in the Subsurface[J]. Water Resources Research, 1986,22(9), 109S-119S.
    [143] Powers, SE, Abriola, LM and Weber, WJ, Jr., An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: Transient mass transfer rates[J]. Water Resources Research, 1994,30(2):321-332.
    [144] Rathfelder, K. and Abriola, L.M. The influence of capillarity in numerical modeling of organic
    liquid redistribution in two-phase systems[J]. Advances in Water Resources, 1998,21(2):159-170
    [145] Powers, SE, Loureiro, CO, Abriola, LM and W. J. Weber, Jr. Theoretical study of the significance of nonequilibrium dissolution of non-aqueous phase liquids in subsurface systems[J]. Water Resources Research, 1991,27(4):463-477.
    [146] Celia, M.A., Russell, T.F., Herrera, I., and Ewing, R.E. An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation[J]. Advances in Water Resources, 1990,13(4):187-206.
    [147] 薛禹群主编,地下水动力学[M].北京:地质出版社,1997.
    [148] 杨天行,朱政嘉主编.水系统污染的数学模型及应用[M].长春:吉林大学出版社,1990.
    [149] 朱学愚,谢春红著.地下水运移模型[M].北京:中国建筑工业出版社,1990.
    [150] Tianfu Xu, Karsten Pruess. Modeling multiphase non-isothermal fluid flow and reactive geochemical
    
    transport in variably saturated fractured rocks: 1. Methodology.American Journal of Science, 2001,301(6):16-33.
    [151] 李金惠,马海斌.有机污染土壤通风去污技术研究进展环境[J].污染治理技术与设备,
    2001,2(4): 39-48.
    [152] Fisher, U., R. Schulin, M. Keller, and F. Stauffer. Experimental and numerical investigation of soil vapor extraction [J]. Water Resources Research, 1996,32(12):3413-3427.
    [153] Falta, R.W., K. Pruess, and D.A. Chestnut. Modeling advective contaminant transport during soilvapor extraction [J]. Ground Water, 1993,31,1011-1020.
    [154] Gierke, J.S., N.J. Hutzler, and D.B. McKenzie.Vapor transport in unsaturated soil columns:Implications for vapor extraction [J].Water Resources Research, 1992,28(2):323-335.
    [155] Huang, J. and M.N. Goltz. Solutions to equations incorporating the effect of rate-limitedcontaminant mass transfer on vadose zone remediation by soil vapor extraction[J]. Water Resources Research, 1999,35(3):879-883.
    [156] Kaleris, V. and J. Croisé. Estimation of cleanup time in layered soils by vapor extraction. Journal of Contaminant Hydrology, 1999,26,105-129.
    [157] Klinkenberg, L.J.The Permeability of Porous Media to Liquidsand Gases. API Drilling And Production Practice ,1941, 200-213.
    [158] Sampath, K. and Keighin, C.W. Factors Affecting Gas Slippagein Tight Sandstones of Cretaceous Age in the Uinta Basin, JPT, 1982, 2715-2720.
    [159] Molly S.Costanza-Robinson. Mark L.brusseau.Gas phase advection and dispersion in unsaturated porous media[J]. Water Resources Research, 2002,38(4):7-1-7-10.
    [160] Gomez-Lahoz, C, Garcia-Delgado, RA and Wilson, DJ. Model with mass transport limitations for pump and treat remediation of soils polluted with NAPL[J]. Environmental Monitoring and Assessment, 1994a,32(2):161-186.
    [161] Mendoza, C.A. and Frind, E.O. Advective-dispersive transport of dense organic vapors in the unsaturated zone 1. Model development[J].Water Resources Research, 1990,26(3):379-387.
    [162] Zaman, M.R. Subsurface Remediation by vacuum extraction for volatile organic chemicals: A Finite Element Model [D]. Ph.D. Dissertation, Department of Civil Engineering, Texas Tech University, Lubbock, TX, 1993.
    [163] Benson, D. A., Huntley, D., and Johnson, P. C. Modeling vapor extraction and general transport in the presence of NAPL mixtures and nonideal conditions [J]. Ground Water, 1993,31(3):437-445.
    [164]李金惠、聂永丰、马海斌等.油污染土壤气体抽排去污模型及影响因素[J].环境科学,2002,23(1):92-96.
    [165] 陈代珣.渗流气体滑脱现象与渗透率变化的关系[J].力学学报,2002,34(1):96-100.
    
    [166] R.E.科林斯著.流体在多孔材料中流动.北京:石油工业出版社,1981.
    [167] 王勇杰,王昌杰,高家碧.低渗透多孔介质中气体滑脱行为的研究[J].石油学报,1995,16(3):
    101-105.        
    [168] Kaluarachchi, J.J. and Parker, J.C. Modeling Multicomponent Organic Chemical Transport in Three-Fluid-Phase Porous Media. Journal of contaminant Hydrology, 1990(5):349-374.
    [169] K.C.巴斯宁耶夫,A.M.费拉索夫等.地下流体力学[M].张永一,赵碧华译.北京:石油工业出版社,1992.
    [170] 林宗池,周明儒.应用数学中的摄动方法[M].南京:江苏教育出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700