PCSK9 siRNA抑制ox-LDL诱导的THP-1源性巨噬细胞炎症因子表达与分泌
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     近年来,大量的研究表明动脉粥样硬化是一种慢性炎症性病理过程。动脉粥样硬化病变中不仅含有大量的脂质,而且有大量的炎症细胞浸润,并以单核/巨噬细胞和淋巴细胞的集聚为特征。动脉粥样硬化发生、发展中,这些炎症细胞可分泌大量的炎症因子,参与调节细胞的增殖或凋亡、细胞外基质的合成或降解以及血管的重塑等过程。
     PCSK9是2003年应用生物信息学方法和DNA微阵列技术发现的一个与血液胆固醇代谢调节相关的基因,最近的研究表明,PCSK9作为一种分泌性蛋白,除了降解LDLR,调节胆固醇代谢之外,可能还具有其他的一些生物学功能。我们前期研究发现PCSK9在兔动脉粥样硬化斑块以及THP-1源性巨噬细胞中高表达,LDL和ox-LDL都可以上调PCSK9在THP-1源性巨噬细胞中的表达。靶向PCSK9的RNA干扰能有效抑制ox-LDL诱导的THP-1源性巨噬细胞的凋亡作用,这提示ox-LDL在巨噬细胞中的生物学效应可以被PCSK9所影响。ox-LDL诱导巨噬细胞中炎症因子的表达与分泌是ox-LDL的重要生物学效应之一,研究PCSK9是否也能干预炎症因子的表达与分泌具有重要的科学意义。
     目的
     观察PCSK9 siRNA对ox-LDL诱导THP-1源性巨噬细胞分泌炎症因子的影响,为阐明PCSK9在动脉粥样硬化中的作用提供实验依据。
     材料与方法
     用不同浓度的ox-LDL (0,10,20,40,80μg/ml)处理经PMA诱导贴壁的THP-1源性巨噬细胞不同时间(0h,6h,12h,24h,48h),RT-PCR、ELISA、Western Blot分别检测炎症因子IL-1α、IL-6、TNF–α以及PCSK9 mRNA和蛋白的表达。应用Lipofectamine2000转染不同浓度的PCSK9 siRNA(20nmol/l,40nmol/l,80nmol/l )进入THP-1源性巨噬细胞24h,筛选出最有效的siRNA浓度,将此浓度siRNA转染THP-1源性巨噬细胞24h后,再加入ox-LDL处理24 h,RT-PCR、ELISA、Western Blot检测炎症因子IL-1α、IL-6、TNF–α表达以及NF-κB核位移。
     结果
     随着ox-LDL浓度的不断增加THP-1源性巨噬细胞炎症因子IL-1α、IL-6及TNF–αmRNA和蛋白的表达逐渐增加,同时RT-PCR、Western Blot检测发现PCSK9 mRNA、蛋白表达均增高。PCSK9 siRNA转染THP-1细胞后,再用ox-LDL处理,RT-PCR、ELISA、Western Blot检测发现与ox-LDL单独处理组相比,IL-1α、IL-6、TNF–αmRNA和蛋白表达都降低并且NF-κB核位移减少。
     结论
     PCSK9 siRNA能够抑制ox-LDL诱导的THP-1源性巨噬细胞炎症因子IL-1α、IL-6和TNF-α表达与分泌,其机制与抑制NF-κB核位移有关,提示PCSK9可能参与了炎症反应的调节。
Background
     In recent years, a lot of research shows atherosclerosis is a chronic inflammation disease. There are not only a lot of fat, but also a large number of infiltrated inflammatory cells in atherosclerosis lesion, which is especially characterized by the accumulation of monocytes/ macrophages cell and lymphocytes. During the occurrence and development of atherosclerosis, these inflammatory cells secrete lots of inflammatory factors, which involve in the process of cell proliferation or apoptosis, extracellular matrix synthesis and degradation, vascular regeneration and so on.
     PCSK9, a new gene, was discovered by the application of bio-information method and DNA array technology, which is related to the regulation of blood cholesterol metabolic. Recent research indicates that PCSK9, a secretory protein, playing a critical role in the degradation of LDLR and regulation of cholesterol metabolism, may still have some other biology function. We’ve already found that pcsk9 is highly expression in rabbit atherosclerosis plaque and THP-1 macrophages, and is up-regulated by LDL and ox-LDL in macrophages. Targeted interference of PCSK9 RNA can effective inhibit ox-LDL-induced apoptosis of THP-1 cells, which indicates that the ox-LDL biology function can be influenced by PCSK9 in macrophages. An important biology effect of ox-LDL is ox-LDL-induced expression and secretion of inflammatory factors in macrophages. Whether PCSK9 can intervene the secretion of inflammatory factors has not been reported.
     Objective
     To investigate the effect of PCSK9-siRNA on inflammatory factors expression in ox-LDL-induced THP-1 macrophage cells.
     Materials and Methods
     Human THP-1 cells were differentiated into macrophages by the addition of 160 nmol/L phorbol 12-myristate 13-acetate (PMA) for 24h. Macrophages were incubated with diffenrent concentrations of ox-LDL (0,10,20,40,80μg/ml) for different times(0,6,12,24,48h). RT-PCR was conducted to detect IL-1α, IL-6 and TNF-αmRNA. ELISA was used for analysis of IL-1α, IL-6 and TNF-αprotein level. RT-PCR and Western Blot were conducted to detect the expression of PCSK9.The siRNA for PCSK9 were designed and synthesized, then transfected into THP-1 derived macrophages by positive ion liposome Lipofectamine 2000. Transfection efficiency was assessed by fluorescence microscope assay. The most efficient siRNA was selected to transfected into THP-1 derived macrophages, after transfection for 24h, cells were treated with ox-LDL for 24h. RT-PCR detect the expression of IL-1α, IL-6 and TNF-αmRNA, ELISA analyse IL-1α, IL-6 and TNF-αprotein level, the nuclear translocation of NF-κB was detect by Western Blot.
     Results
     In THP-1 derived macrophages, ox-LDL increased IL-1α, IL-6 and TNF-αmRNA and protein expression. PCSK9 was upregulated with increasing concentration of ox-LDL, while 80μg/ml ox-LDL increased significantly. The RNA interference experiment showed that PCSK9 siRNA was successfully transfected into cells and 80 nmol/L as effectively suppressed dose of siRNA was selected by RT-PCR and Western Blot. Compared with 80μg/ml ox-LDL treatment group,the suppression of inflammation factors and NF-κB nuclear translocation in THP-1 derived macrophages transfected with 80 nmol/L siRNA for 24h and incubated with 80μg/ml ox-LDL for another 24h was detected by RT-PCR ,ELISA and Western Blot.
     Conclusions
     PCSK9 siRNA can inhibit ox-LDL induced inflammatory factor expression, such as IL1-α,IL-6 and TNF-αin THP-1 macrophage. Its mechanism is related to the inhibition of NF-κB nuclear translocation, which indicate that PCSK9 may be involved in the regulation of inflammatory reaction.
引文
[1]杨永宗主编,动脉粥样硬化性心血管病的基础与临床[M]。北京:科学出版社,2004,48-61.
    [2] Ross R. Atherosclerosis-an inflammatory disease[J]. N Engl J Med,1999,340(2): 115-126.
    [3] Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis[J]. Circulation, 2002,105(9):1135-1143.
    [4] Robbie L, Libby P. Inflammation and atherothrombosis[J]. Ann N Y Acad Sci,2001,947:167-179.
    [5] Vielama SA, Mironova M, Ku JR, et al. Oxidized LDL further enhances expression of adhesion molecules in Chlamydophila pneumonia-infected endothelial cells[J].J Lipid Res,2004,45(5):873-880.
    [6] Donato A J , Black A D, Jablonski KL, et al. Aging is associated with greater nuclear NF kappa B, reduced I kappa B alpha, and increased expression of proinflammatory cytokines in vascular endothelial cells of healthy humans[J]. Aging Cell,2008,7(6):805-812.
    [7] Seidah NG, Benjannet S, Wickham L, et al. The secretory proprotein convertase neural apoptosis -regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation[J]. Proc Natl Acad Sci U S A,2003,100(3):928-933.
    [8] Maxwell KN, Soccio RE, Duncan EM, et al. Novel putative SREBP and LXR target genes identified by microarray analysis in liver of cholesterol-fed mice[J]. J Lipid Res,2003,44 (11):2109-2119.
    [9] Elagoz A, Benjannel S, Mammarbassi A, et al. Biosynthesis and cellular trafficking of the convertase SKI-1/S1P: ectodomain shedding requires SKI-1 activity[J]. J Biol Chem,2002,277(13):11265-11275.
    [10] Grefhorst A, McNutt MC, Lagace TA et al. Plasma PCSK9 preferentially reduces liver LDL receptors in mice[J].J Lipid Res,2008,49(6):1303-1311.
    [11] Schmidt RJ, Beyer TP, Bensch WR, et al. Secreted proprotein convertase subtilisin/kexin type 9 reduces both hepatic and extrahepatic low-density lipoprotein receptors in vivo[J].Biochem Biophys Res Commun,2008,370(4): 634-640.
    [12] Poirier S, Mayer G, Benjannet S, et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and itsclosest family members VLDLR and ApoER2[J].J Biol Chem, 2008, 283 (4): 2363-2372.
    [13] Timms KM, Wagner S, Samuels ME,et al. A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree[J]. Hum Genet, 2004,114(4):349-353.
    [14] Shioji K, Mannami T, Kokubo Y, et al. Genetic variants in PCSK9 affect the cholesterol level in Japanese[J]. J Hum Genet,2004,49(2):109-114.
    [15] Damgaard D, Jensen JM, Larsen ML , et al. No genetic linkage or molecular evidence for involvement of the PCSK9, ARH or CYP7A1 genes in the Familial Hypercholesterolemia phenotype in a sample of Danish families without pathogenic mutations in the LDL receptor and apoB genes[J]. Atherosclerosis, 2004,177(2):415-422.
    [16] Leren TP. Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia[J].Clin Genet,2004,65(5):419-422.
    [17] Naoumova RP, Tosi I, Patel D, et al. Severe Hypercholesterolemia in Four British Families With the D374Y Mutation in the PCSK9 Gene: Long-Term Follow-Up and Treatment Response[J]. Arterioscler Thromb Vasc Biol, 2005, 25(12): 2654-2660.
    [18] Abifadel M, Rabes J P, Boilèau C, et al. [After the LDL receptor and apolipoprotein B, autosomal dominant hypercholesterolemia reveals its third protagonist: PCSK9] [J]. Ann Endocrinol (Paris),2007,68(2-3):138-146.
    [19] Cohen J, Pertsemlidis A, Kotowski I K, et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9[J]. Nat Genet,2005,37(2):161-165.
    [20] Mayne J, Dewpura T, Raymond A, et al. Plasma PCSK9 levels are significantly modified by statins and fibrates in humans[J].Lipids Health Dis,2008,7:22.
    [21] Zaid A, Roubtsova A, Essalmani R, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9): hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration[J].Hepatology,2008,48(2):646‐654.
    [22] Cohen JC, Boerwinkle E, Mosley TH, et al.Sequence variations in PCSK9, low LDL, and protection against coronary heart disease[J].N Engl J Med,2006,354 (12):1264-1272.
    [23] Huang CC, Fornage M, Lloyd-Jones DM, et al.Longitudinal association ofPCSK9 sequence variations with low-density lipoprotein cholesterol levels: the Coronary Artery Risk Development in Young Adults Study[J].Circ Cardiovasc Genet, 2009,2(4):354-361.
    [24]武春艳,唐志晗,刘录山,等。PCSK9的药理学筛选靶点[J]。中国生物化学与分子生物学报, 2009, 25 (11): 991-996
    [25] Seidah N G. PCSK9 as a therapeutic target of dyslipidemia[J]. Expert Opin Ther Targets,2009,13(1):19-28.
    [26]江璐,龚慧琴,刘录山。前蛋白转化酶枯草溶菌素9的生物学功能[J]。中国生物化学与分子生物学报,2010;26(12):1085-1089.
    [27] Lan H, Pang L, Smith M M, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9) affects gene expression pathways beyond cholesterol metabolism in liver cells[J].J Cell Physiol,2010,224(1):273-281.
    [28] Ranheim T, Mattingsdal M, Lindvall J M, et al. Genome-wide expression analysis of cells expressing gain of function mutant D374Y-PCSK9[J].J Cell Physiol,2008,217(2):459-467.
    [29] Feingold K R, Moser A H, Shigenaga J K, et al. Inflammation stimulates the expression of PCSK9 [J].Biochem Biophys Res Commun,2008,374(2):341-344.
    [30]唐志晗,刘录山,彭娟,等。NARC-1蛋白在新西兰兔动脉粥样硬化病变中的表达[J]。中国动脉硬化杂志,2009,17(6):439-443.
    [31]刘录山,程艳丽,谢闵,等。LDL、oxLDL对THP-1巨噬细胞PCSK9、LDLR表达的影响研究[J]。生物化学与生物物理进展,2008,35(5):540-547.
    [32]刘录山,谢闵,姜志胜,等。PCSK9 siRNA对ox-LDL诱导的THP-1源性巨噬细胞凋亡的影响[J]。生物化学与生物物理进展, 2009,36(3):323-330.
    [33] Libby P, Okamoto Y, Rocha VZ, et al. Inflammation in atherosclerosis: transition from theory to practice[J].Circ J, 2010, 74(2): 213-220.
    [34] Finn AV, Nakano M, Narula J, et al.Concept of vulnerable/unstable plaque[J].Arterioscler Thromb Vasc Biol, 2010, 30(7):1282-1292.
    [35] Saha P, Modarai B, Humphries J, et al.The monocyte/macrophage as a therapeutic target in atherosclerosis[J].Curr Opin Pharmacol, 2009,9(2):109-118.
    [36] Rodríguez G, Mago N, Rosa F,et al.Role of inflammation in atherogenesis[J]. Invest Clin, 2009,50(1):109-129.
    [37] Kleemann R, Zadelaar S, Kooistra T. Cytokines and atherosclerosis: acomprehensive review of studies in mice[J].Cardiovasc Res,2008,79(3):360-376.
    [38] Ridker PM, Rifai N, PfefferM, et al. Elevat ion of tumor necrosis factor-alpha and increased risk of recurrent coronary enents after myocardial infarction [J].Circulation,2000,101(18):2149-2153.
    [39] Ridker PM , Rifai N , Stampfer MJ, et al. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men [J].Circulation,2000,101(15):1767-1772.
    [40] Qin B,Anderson RA,Adeli K. Tumor necrosis factor-alpha directly stimulates the overproduction of hepatic apolipoprotein B100-containing VLDL via impairment of hepatic insulin signaling[J]. Am J Physiol Gastrointest Liver Physiol, 2008,294(5):G1120-1129.
    [41] Popa C,NeteaMG, van Riel PL, et al. The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk[J]. J Lipid Res,2007,48(4):751-762.
    [42] RizviAA. Inflammation markers asmediators of vasculo-endothelial dysfunction and atherosclerosis in the metabolic syndrome[J]. ChinMed J (Engl),2007,120 (21):1918-1924.
    [43] Zhang H, Park Y,Wu J , et al. Role of TNF-alpha in vascular dysfunction [J].Clin Sci (Lond),2009,116(3):219-230.
    [44] Hampton E N, Knuth M W, Li J, et al. The self-inhibited structure of full-length PCSK9 at 1.9 A reveals structural homology with resistin within the C-terminal domain[J].Proc Natl Acad Sci U S A,2007,104(37):14604-14609.
    [45] LehrkeM, ReillyMP, Millington SC, et al1 An inflammatory cascade leading to hyperresistinemia in humans[J].PLoS Med,2004,1(2):e45.
    [46] Axelsson J , Bergsten A, Qureshi AR, et al1 Elevated resistin levels in chronic kidney disease are associated with decreased glomerular filtration rate and inflammation, but not with insulin resistance[J].Kidney Int,2006,69 (3):596-604.
    [47] Tarkowski A, Bjersing J, Shestakov A, et al. Resistin competes with lipopolysaccharide for binding to toll-like receptor 4[J].J Cell Mol Med,2010, 14(6B):1419-1431.
    [48] Ando K, Hasegawa K, Shindo K, et al.?Human lactoferrin activates NF-kappaB through the Toll-like receptor 4 pathway while it interferes with the lipopolysaccharide-stimulated TLR4 signaling[J]. FEBS, 2010May; 277(9): 2051-2066.
    [1] Seidah N G, Benjannet S, Wickham L, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation[J]. Proc Natl Acad Sci U S A,2003,100(3):928~933
    [2] Poirier S, Mayer G, Benjannet S, et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2[J]. J Biol Chem,2008,283(4):2363~2372
    [3] Grefhorst A, McNutt M C, Lagace T A, et al. Plasma PCSK9 preferentially reduces liver LDL receptors in mice[J]. J Lipid Res,2008,49(6):1303~1311
    [4] Abifadel M, Rabes J P, Boilèau C, et al. [After the LDL receptor and apolipoprotein B, autosomal dominant hypercholesterolemia reveals its third protagonist: PCSK9] [J]. Ann Endocrinol (Paris),2007, 68(2-3): 138~146
    [5] Martin B, Solanas-Barca M, García-Otín A L, et al. An NPC1L1 gene promoter variant is associated with autosomal dominant hypercholesterolemia[J]. Nutr Metab Cardiovasc Dis,2010,20(4):236~242
    [6] Varret M, Abifadel M, Rabès J P, et al. Genetic heterogeneity of autosomal dominant hypercholesterolemia[J]. Clin Genet,2008,73(1):1~13
    [7] Lopez D. PCSK9: an enigmatic protease[J]. Biochim Biophys Acta, 2008, 1781 (4):184~191
    [8] Lambert G, Charlton F, Rye K A, et al. Molecular basis of PCSK9 function [J]. Atherosclerosis, 2009, 203 (1): 1~7
    [9] Homer V M, Marais A D, Charlton F, et al. Identification and characterization of two non-secreted PCSK9 mutants associated with familial hypercholesterolemia in cohorts from New Zealand and South Africa[J]. Atherosclerosis,2008,196(2):659~666
    [10] Hallman D M, Srinivasan S R, Chen W, et al. Relation of PCSK9 mutations to serum low-density lipoprotein cholesterol in childhood and adulthood (from The Bogalusa Heart Study) [J].Am J Cardiol ,2007, 100(1): 69~72
    [11] Cohen J, Pertsemlidis A, Kotowski I K, et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9[J]. NatGenet,2005,37(2):161~165
    [12] Mayne J, Dewpura T, Raymond A, et al. Plasma PCSK9 levels are significantly modified by statins and fibrates in humans[J]. Lipids Health Dis,2008,7:22
    [13] Zaid A, Roubtsova A, Essalmani R, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9): hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration[J]. Hepatology,2008,48(2):646~654
    [14]武春艳,唐志晗,刘录山,等。PCSK9的药理学筛选靶点[J]。中国生物化学与分子生物学报(Wu C Y, Tang Z H, Liu L S, et al. Pharmacology selecting Target of PCSK9. Chin J Biochem Mol Biol), 2009, 25 (11): 991~996
    [15] Seidah N G. PCSK9 as a therapeutic target of dyslipidemia[J]. Expert Opin Ther Targets,2009,13(1):19~28.
    [16] Bingham B, Shen R, Kotnis S, et al. Proapoptotic effects of NARC 1 (= PCSK9), the gene encoding a novel serine proteinase[J]. Cytometry A,2006,69(11):1123~1131
    [17] Alberghina L, Colangelo A M. The modular systems biology approach to investigate the control of apoptosis in Alzheimer's disease neurodegeneration[J]. BMC Neurosci,2006,7 Suppl 1:S2
    [18]刘录山,谢闵,姜志胜,等。pcsk9 siRNA对oxLDL诱导的THP-1源性巨噬细胞凋亡的影响[J]。生物化学与生物物理进展(Liu L S, Xie M, Jiang Z S, et al. Effects of pcsk9 siRNA on THP-1 Derived Macrophages Apoptosis Induced by oxLDL. Prog Biochem Biophys), 2009,36(3):323~330
    [19]刘录山,程艳丽,谢闵,等。LDL、oxLDL对THP-1巨噬细胞PCSK9、LDLR表达的影响研究[J]。生物化学与生物物理进展(Liu L S, Cheng Y L, Xin M, et al. Efects of LDL and oxLDL on Expression of PCSK9 and LDLR in THP-1 Macrophage. Prog Biochem Biophys), 2008,35(5):540~547
    [20] Poirier S, Prat A, Marcinkiewicz E, et al. Implication of the proprotein convertase NARC-1/PCSK9 in the development of the nervous system[J]. J Neurochem,2006,98(3):838~850
    [21] Rashid S, Curtis D E, Garuti R, et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9[J]. Proc Natl Acad Sci U S A,2005,102(15):5374~5379
    [22] Lan H, Pang L, Smith M M, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9) affects gene expression pathways beyond cholesterol metabolism in liver cells[J]. J Cell Physiol,2010,224(1):273~281
    [23] Hampton E N, Knuth M W, Li J, et al. The self-inhibited structure of full-length PCSK9 at 1.9 A reveals structural homology with resistin within the C-terminal domain[J]. Proc Natl Acad Sci U S A, 2007, 104 (37): 14604~14609
    [24] Ranheim T, Mattingsdal M, Lindvall J M, et al. Genome-wide expression analysis of cells expressing gain of function mutant D374Y-PCSK9[J]. J Cell Physiol,2008,217(2):459~467
    [25] Feingold K R, Moser A H, Shigenaga J K, et al. Inflammation stimulates the expression of PCSK9[J]. Biochem Biophys Res Commun,2008,374(2):341~344
    [26] Niesen M, Bedi M, Lopez D. Diabetes alters LDL receptor and PCSK9 expression in rat liver[J]. Arch Biochem Biophys,2008,470(2):111~115
    [27] Costet P, Cariou B, Lambert G, et al. Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c[J]. J Biol Chem,2006,281(10):6211~6218
    [28] Dubuc G, Tremblay M, ParéG, et al. A new method for measurement of total plasma PCSK9: clinical applications[J]. J Lipid Res,2010,51(1):140~149
    [29] Lakoski S G, Lagace T A, Cohen J C, et al. Genetic and metabolic determinants of plasma PCSK9 levels[J]. J Clin Endocrinol Metab,2009,94(7):2537~2543
    [30] Mbikay M, Sirois F, Mayne J, et al. PCSK9-deficient mice exhibit impaired glucose tolerance and pancreatic islet abnormalities[J]. FEBS Lett,2010,584(4): 701~706
    [31] Langhi C, Le May C, Gmyr V, et al. PCSK9 is expressed in pancreatic delta-cells and does not alter insulin secretion[J]. Biochem Biophys Res Commun,2009,390(4): 1288~1293

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700