HL300水轮机转轮水力模型开发方案研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,越来越多的研究人员将计算流体动力学——CFD技术运用在流体机械内部流场分析与水力模型的研究和开发中。该方法已成为流体机械水力模型设计与开发的主流。CFD数值计算技术能较准确地获得流体机械内部流场分布及过流部件内部流动状态信息,为研究流体机械水力性能与稳定性提供理论基础,是成功设计出高性能的流体机械和对现有的流体机械进行优化改型的有效手段。
     对开发较低水头水能资源来说,在水轮机转轮的设计中,高比转速混流式水轮机转速高、体积小、效率高且高效区宽、结构紧凑等优势,是一种经济、适宜的水轮机型式。现阶段我国对水力资源的开发持续升温,技术成熟、经济可行的中小水电尤其受到青睐。为此,开发出性能优良的高比转速混流式水轮机水力模型,能更加合理、充分和有效地利用水力资源,把潜在的资源优势转化成经济效益和社会效益,意义十分重大。
     本课题的主要研究内容和所做的主要工作如下:
     1、参照水头段和比转速相近、性能优良的已有转轮水力模型全流道的几何参数,采用二元理论ω=0的方法,遵照转轮要满足在一定使用水头下,有尽可能高的转速和尽可能大的过流能力、较高的最高效率和平均效率,要有良好的空蚀性能、工作稳定性和对变工况的适应能力等的要求,设计出了HL300的翼型和叶栅及转轮的初始方案。
     2、对初始转轮方案进行精确的全流道三维实体造型和网格划分,这为提高过流部件内部流动CFD数值模拟精度及其性能预测的准确性奠定可靠的基础。
     3、CFD数值模拟,采用雷诺时均Navier-Stockes方程和RNGk-ε湍流模型,利用SIMPLEC算法对初始转轮设计方案进行模拟计算,并以模拟结果获得的流场信息为据,对初始转轮叶栅与翼型进行修型和调整,以及对其它过流部件进行适当修型或对某些参数进行相应地调整,直到满意为止确定最终方案,在其运行中的典型工况(大流量工况、最优工况和小流量工况)共25个计算工况点的运行状况进行了数值模拟,给出了HL300的转轮水力模型方案并绘制出木模图。
     本项课题研究工作中的主要创新点:
     1、提出了尾水管弯肘部分基于Pro/E的拆分组装设计的新方法,解决了常用方法中存在的建模不够精确及制造工艺性差等问题。
     2、通过本课题的研究得到一个适用于20m水头段的预测性能良好的新转轮水力模型方案。
     由于时间、条件和本人经验不足所限,本课题做的工作有限,有很多工作目前还没有进行到位。文中给出的水力模型方案,还有很大的提升空间,有待于以后继续深入研究和探讨。
In recent years, more and more researchers use the computational fluid dynamics—CFD in the analysis of internal flow field of the fluid machine, as well as the study and development of the waterpower model. This way has been the artery in the study and development of the waterpower model. Numerical calculation technique of CFD can get the distributing of the internal flow field in the fluid machine and the information of the internal flow status in the flow-passing parts relatively accurate. This not only provide theoretical basis for the research of the performance and the stability of the fluid machine and the engineering hydraulic, and also is the efficiency measure of the designing high-powered fluid machine successfully and optimizing remodel of the existing fluid machine.
     For the development of low-head hydropower resources, In the design of turbine runner, High specific speed Francis turbine have the advantages of high-speed, small size, high efficiency and high-performance wide-area, compact structures, which is an economic and appropriate type of turbine. At the present, the development of China's water resources sustained increasing, the middle-mall hydropower that the technology is economically feasible and technologically is very popular. So, the development of High specific speed Francis turbine model which have excellent performance can use the water resources more reasonably, sufficiently and effectively. And it can transform the advantages of the potential resource into the benefit of the economy and society, which have great significance.
     The main research and the major work done in this paper as follows:
     1. The geometric parameters are designed according to the flow channel of the hydraulic model that has similar head and specific speed, as well as the excellent performance. Using the dualistic Theoryω= 0 , In accordance with the request that runner have the highest speed and conveyance capacity, the higher maximum efficiency and average efficiency, the good cavitations performance, stability and the adaptability for changing work condition .etc. Initial scheme about the airfoil, cascade and the runner is designed for the HL300.
     2. Initial program of the runner is modeled three-dimensionally and mesh accurately. This lay the reliable basis for the precision of the CFD simulation and the accuracy of the performance prediction of the internal flow in the flow-passing.
     3. In this paper, the numerical simulation on the initial runner has been done by using Reynolds average N-S equation and RNG k-εturbulence model and SIMPLEC algorithm. In this numerical simulation, there are all 25 calculation points been selected on typical working conditions that are the big flow condition the optimal condition and small flow condition. With the simulation results to repair and adjust the cascade and aerofoil of initial blades, and other flow parts until satisfaction, finally design out the HL300 hydraulic model and draw the form drawing.
     Main innovations in this research work:
     1. Put forward the new method of split and assembling of the elbow of the draft tube base on Pro/E and solve the problem that occurred during the mechanical processing and modeling by the usual method and etc.
     2. A new hydraulic model with suitable prediction and good energy performance of the water head of 20m has been designed in this topic research.
     Due to the limits of time and conditions and my lack of experience, there are a lot of work not done well. Its doesn' t satisfied that the Hydraulic model in this paper, and technical performance indicators are not enough advanced too. There has further room for further study.
引文
[1]常志鹏.我国水电资源开发不足30%专家建议大力发展水电.新华网
    [2]曹昆鵾,姚志民.水轮机原理及水力设计,清华大学出版社.1991
    [3]张克危.流体机械原理.北京:机械工业出版社 2000
    [4]齐学义.三维湍流流动计算方法在中小型混流式转轮增容改造中的应用.甘肃工业大学学报,2001,27(1):53-55
    [5]齐学义,常一乐,刘有余等.超低比转速轴流式转轮叶片的计算机辅助水力设计.中国动力工程学报,2005,25(1):26-29
    [6]万天虎,赵道利,梁武科等.基于CAD/CFD分析系统的流体机械翼型优化.流体机械,2005,33(11):33-39
    [7]郭鹏程,罗兴锜,郑小波等.混流式水轮机内三维定常湍流数值研究.水动力学研究与进展,2006,21(2):181-189
    [8]肖若福.中比转速混流式水轮机内流场数值模拟机性能改善研究:[华中科技大学博士学位论文].武汉:华中科技大学,2004,85-87
    [9]M.萨拉贝热尔等.在改造工程中加速混流式水轮机转轮设计的方法.马元玫.水利水电快报,2001,9:1-3
    [10]M.科尤斯顿等.法国采用CFD设计转桨式水轮机转轮.沙文彬.水利水电快报,2002,8:7-8
    [11]赖喜德,周云飞,严思杰.基于虚拟产品开发技术的叶轮优化设计.兵工自动化,2002,5:37-41
    [12]王福军.计算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社,2005,117
    [13]B.Rikard,L.Hakan,I.Karlsson.Report from Turbine 99-Workshop on draft tube flow.Proceedings of the 20th IAHR Symposium,Charlotte,United States,2000
    [14]SCHILLING R(德国)等.采用多级CFD技术进行水力机械叶片优化设计.国外大电机,2003年第4期,55-58
    [15]Hermod Brekke(挪威).关于混流式水轮机的损失、动态特性和空化的研讨.国外大电机,2005年第3期,61-65
    [16]Romeo SUSAN-RESIGA(罗马尼亚).混流式水轮机初生空化的数值分析.国外大电机,2004年第4期,62-64
    [17]Nilsson,L.Davidson.Validations of CFD against detailed velocity and pressure measurements in water turbine runner flow.International Journal for Numerical Methods in Fluids,Volume 41,Issue 8,Date:20 March 2003,Pages:863-879
    [18]Inanc Senocak,Wei Shyy.Interfacial dynamics-based modelling of turbulent cavitating flows,Part-1:Model development and steady-state computations.International Journal for Numerical Methods in Fluids Volume 44,Issue 9,Date:30 March 2004,Pages:975-995
    [19]Inanc Senocak,Wei Shyy.Interfacial dynamics-based modelling of turbulent cavitating flows,Part-2:Time-dependent computations.International Journal for Numerical Methods in Fluids Volume 44,Issue 9,Date:30 March 2004,Pages:997-1016
    [20]Coutier-Delgosha,J.L.Reboud,Y.Delannoy.Numerical simulation of the unsteady behaviour of cavitating flows.International Journal for Numerical Methods in Fluids,Volume 42,Issue 5,Date:20 June 2003,Pages:527-548
    [21]Coutier-Delgosha,R.Fortes-Patella,J.L.Reboud,N.Hakimi,C.Hirsch.Numerical simulation of cavitating flow in 2D and 3D inducer geometries.International Journal for Numerical Methods in Fluids Volume 48,Issue 2,Date:20 May 2005,Pages:135-167
    [22]赵永智,韦彩新.葛州坝水电站水轮机ZZ500转轮的CFD分析及翼型优化.四川水力发电,2003年第17卷第4期,214-217
    [23]张双全,符建平,段开林,万鹏.三峡水轮机尾水管涡带的CFD数值模拟.华中科技大学学报,2006年7月第34卷第7期,19-23
    [24]唐宏芬,张梁,邵奇,刘树红,吴玉林,戴江.三峡右岸机组水力性能数值模拟.工程热物理学报,2004年7月第25卷第4期,597-599
    [25]石清华,Stuart Coulson(加拿大).三峡左岸厂房水轮机的水力设计.东方电气评论,2005年12月第19卷第4期,169-177
    [26]彭丹霖.水布垭水电站水轮机的水力设计.武汉大学学报,2002年6月第35卷第3期,43-46
    [27]陈林.桐柏抽水蓄能电站水泵水轮机导水机构安装.水电站机电技术,2006年6月第29卷第3期,37-40
    [28]孙鸿秉,何帆.龙滩水电站水轮机参数选择评述.水电站机电技术,2006年4月第29卷第2期,1-3
    [29]齐学义,杨建明,吴玉林.混流式转轮三维湍流流动计算方法.水利学报,2000年第1期,67-71
    [30]万天虎,赵道利,梁武科,李军.基于CAD/CFD分析系统的流体机械翼型优化.流体机械,2005年第33卷第11期,33-39
    [31]刘宁,吴伟章,吴玉林,陶星明,刘树红,张梁.混流式模型水轮机全流道三维定常湍流计算.大电机技术,2003年第2期,38-42
    [32]任静,吴玉林.水力机械转轮内的CFD分析及优化设计.工程热物理学报,2000(5):316-320
    [33]Tomas L,Pedretti C,Chiappa T.Automated design of a Francis turbine runner using global optimization algorithms A.Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems.Lausanne,Switzerland:EPFL/STI/LMH,2002:315-325
    [34]M.Sallaberger,M.Fisler.The design of Francis turbine runners by 3D Euler-simulations coupled to a breeder genetic algorithm.Proceedings of the 20th IAHR Symposium,Charlotte,United State,2000
    [35]Bernard Mass(?),Maryse Page,Improving efficiency of a 195 MW Frances turbine using numerical simulation tools.Proceedings of the 20th IAHR Symposium,Charlotte,United States,2000
    [36]Ales Skotak,Josef Mikulasek,Pavel Troubil.Unsteady flow in the draft tube with elbow.Part A.Experimental investigation.Proceedings of the loth International Meeting on the Behavior of Hydraulic Machinery under Steady Oscillatory Conditions.Trondheim,Norway,2001,26-28
    [37]Carvalho,I.S.,Heitor.M.V.,Visualization of vortex breakdown in turbulent unconfinedjet flows,Journal Optical Diagnostics in Engineering,1996,Vol 1(2):22-30
    [38]Deton J D.Loss Mechanisms in Turbomachines.ASME Journal of Turbomachinery,1993,115:621-656
    [39]刘洁,久保田乔,韩凤琴.数值模拟冲击式水轮机内部非定常流动.华中理工大学学报,2000(11):14-16
    [40]刘小兵,增永忠,黄虎.基于大涡模型水轮机压力脉动的数值预测.西华大学学报(自然科学版),2005(1):1-6
    [41]桂中华,唐澍,潘罗平.混流式水轮机尾水管非定常流动模拟及不规则压力脉动预测.中国水利水电科学研究院学报,2006(1):68-73
    [42]刘树红,邵奇,杨建明等.三峡水轮机的非定常湍流计算及整机压力脉动分析.水力发电学报,2004(5):97-101
    [43]杨建明.用大涡模拟方法计算尾水管内非定常周期性湍流.水力学报,2001(8):79-84
    [44]张双全,符建平,段开林等.三峡水轮机尾水管涡带的CFD数值模.华中科技大学学报(自然科学版),2006(7):19-23
    [45]刘宇,杨建明,戴江等.混流式水轮机三维非定常湍流计算.水力发电学报,2004(8):102-105
    [46]王钊宁,郭鹏程,罗兴镝.尾水管涡带非定常涡旋流动数值模拟.水力发电,2006(5):52-54
    [47]韩凤琴,范春学,桂中华等.非定常流弯肘型尾水管不规则压力脉动预测.水力发电,2006(2):49-51
    [48]刘树红,吴晓晶,吴玉林.水轮机转轮泄水锥形状对机组内部流动影响分析.水力发电学报,2006(1):67-75
    [49]Schilling R et al.Rapid prototyping of hydraulic machinery.In:Proc of 18th IAHR Symposium.Belgrade.Kluwer Academic Publishers,1996,40-57
    [50]吴玉林,梅祖彦.第18届IAHR国际水力机械和空蚀学术会议介绍.水力发电学报,1997(3):156-163
    [51]戴会超,槐文信,吴玉林等.水利水电工程水流精细模拟理论与应用.北京:科学出版社.2006,515-517
    [52]Stantal O et al.Hydraulic analysis of flow computation results.Proc.Of 16th IAHR Symposium,545-554,1992
    [53]HorinA J,Numerical Solution of the Navier-Stokes equations.Mathematics of Computation,1968,22(1):745-762
    [54]Amsden A A,Harlow F H.A simplified MAC technique for incompressible fluid flow calculation.Comp.Phys.,1970,6(2):322-325
    [55]Patankar S.U.and Spalding D.B.A calculation procedure for heat,mass,and momentum transfer in three-dimensional parabolic flows.International Journal of Heat and Mass Transfer,Vol.15,1972:1787-1806
    [56]Gallus H E,Hah C,Schulz H D.Experimental and numerical investigation of three-dimensional viscous flows and vortex motion inside an annular compressor blade row.Journal of Turbomachinery,1991,113(2):198-206
    [57]林斌良,许协庆.水轮机转轮中的三维黏性和湍流计算.水利学报,1989,(8):113-125
    [58]Vanka S P,Leaf G K.An efficient finite-difference calculation procedure for multi-dimensional fluid flow.In:proc of AIAA/SAE/ASME 20th Joint propulsion Conference,Cincinnati,1984,AIAA-84-1242
    [59]吴玉林,陈学纯,胡泽明.分块隐式有限差分法计算弯管湍流.应用力学学报,1992,9(4):103-107
    [60]齐学义.流体机械设计理论与方法.北京:中国水利水电出版社,2008
    [61]宋文武,符杰,杨佐卫等.轴流式水轮机转桨叶片操作系统的三维结构设计.农业机械学报,2005,36(12):165-166
    [62]刘大恺.水轮机.北京:中国水利水电出版社,1997,44-45
    [63]侯祎华,齐学义,常一乐等.基于PRO/E的水轮机转轮三维造型.排灌机械,2006,24(1):14-16
    [64]齐学义,江良荣,张新杰,张文军,季炜.基于PRO/E的混流式水轮机叶片的三维造型.兰州理工大学学报,2008,34(2):41-44
    [65]陈华.水电站尾水管CAD的参数化实体造型方法及实现.西安工业学院学报,1996(12):321-325
    [66]江良荣.30M水头段高性能水力模型的开发:[兰州理工大学硕士学位论文].兰州:兰州理工大学,2008
    [67]刘金生.新型尾水管的设计与应用研究.武汉水利电力大学学报,1996,29(5):48-52
    [68]于泳强.水轮机尾水管涡带与压力脉动的关系:[西安理工大学博士学位论文].西安:西安理工大学,2006
    [69]林清安.Pro/ENGINEER Wildfire2.0零件设计基础篇.北京:清华大学出版社,2005
    [70]张静,齐学义,冀宏等.双流道污水泵叶轮三维设计方法.农业机械学报,2008,39(10):65-70
    [71]Kao K H and Liou M S.Advance in overset grid schemes:from chimera to DRAGON grids.AIAAJ,1995,33(10):1809-1815

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700