富含DHA的裂殖壶菌的工业化生产试验、脂肪酸提取及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文主要对海洋真菌裂殖壶菌(Schizochytrium limacinum OUC88)的发酵培养,脂肪酸提取及其饵料效果进行了研究。主要探讨了发酵条件对细胞生长和产物形成的影响,并对菌株在发酵中的动力学特性进行了分析,分别在10L、100L微生物发酵罐中进行了扩大实验。利用有机溶剂进行了裂殖壶菌胞内脂肪酸的提取研究。随后,进行了裂殖壶菌对轮虫卤虫营养强化及大菱鲆育苗的饵料实验。
     结果表明:
     1利用10L生物反应器优化裂殖壶菌的发酵条件。首先进行单因子优化试验,试验因子有温度、pH、通气量、搅拌转速、接种量、发酵时间、接种菌龄,分别对试验因子设立一系列水平梯度,结果得到一条包含拐点的曲线,得出单个试验因子的最佳水平;
     依据单因子优化试验,对发酵温度,通气量,pH,转速,接种量,发酵体积,发酵压力,接种菌龄,发酵时间等条件进行Plackett-Burman试验设计,得到对裂殖壶菌发酵产量起决定作用的因子是发酵时间,通气量,转速和接种菌龄;接下来对这四个因子进行旋转中心组合设计并结合响应面曲线得到最佳的发酵条件;
     得到最佳发酵条件后,对裂殖壶菌的发酵动力学进行了初步研究,利用数学公式对试验结果进行非线性拟合获得了裂殖壶菌发酵过程中的菌株生长的动力学模型,产物生成的动力学模型和底物消耗的动力学模型。
     利用100L生物反应器进行裂殖壶菌发酵的中型试验,基本证实了小试得到的结论,中试取得了较好的结果。
     最终产率为每升发酵液获得24.1g裂殖壶菌干粉并含有二十二碳六烯酸(DHA)4.7g。建立的菌株生长动力学模型为:产物生成动力学模型为:
     2用裂殖壶菌干粉强化轮虫卤虫,提高饵料体内不饱和脂肪酸特别是DHA的含量,增加饵料的营养价值。高压气相色谱检测显示:经过12小时的强化,饵料体内的DHA含量都显著提高,分别达到9.36mg/g和15.8mg/g。用强化后的饵料进行大菱鲆育苗时,仔鱼的成活率达到12%和正常体色率85%,较之原来都有显著提高。
     3用有机溶剂和CO2超临界两种方法萃取细胞内的脂肪酸。利用正交试验设计分别获得两种提取方法的最佳条件组合。两种方法各有优点,有机溶剂法能提取细胞内全部的脂肪酸且萃取率较高,而CO2超临界法可以得到单一的DHA组分,没有有机溶剂残留,安全可靠。
This thesis is about a heterotrophic marine fungal Schizochytrium limacinum OUC88. It mainly studied the effect envirmental factors on both the bacterial cell growth and products synthesis in suspension culture. In order to industrialize the whole process, the middle-scale culture in 10L、100L fermentor and the extraction methods were studied. The result are as follow:
     1. Fermentation parameters for biomass and DHA production of Schizochytrium limacinum OUC88 in a fermenter (working volume 7 L) were optimized using Plackett-Burman and central composite rotatable design. Out of 10 factors studied by Plackett-Burman design, four influenced the biomass production significantly. Central composite rotatable design was used to optimize the significant factors and response surface plots were generated. Using these response surface plots and point prediction, optimized values of the factors were determined as follows temperature 23℃, aeration rate 1.48 L min-1 L-1, agitation 250 rpm and inoculum cells in mid-exponential phase, the maximum yield of DCW and DHA were 24.1 g L-1 and 4.7 g L-1, respectively. These predicted values were also verified by validation experiments. The kinetic equation of bacterium cultured was: X=9.19*e0.08t/(24.46-0.37*e0.08t); The kinetics of DHA production was P = -0.25 + 0.2X
     2. The rotifer and Artemia were harvested at 3, 6, 9, 12, 18 and 24 h intervals, analyzed for their fatty acid composition, and compared with the control which fed on yeast only. The highest DHA content resulted from the enrichment period of 12 h for both fed organisms, reached to 13.4% and 10.9% of the total fatty acids (TFAs) in rotifers and Artemia nauplii, respectively, and the DHA level has reduced sharply if enrichment time longer than 12 h. The pseudoalbinism rate of turbot Scophthatmus maximus juveniles which fed on enriched rotifers and Artemia nauplii has reduced significantly (40% lower than in control group), suggesting that enriched rotifers and Artemia nauplii by DHA-rich Schizochytrium limanium OUC88 may provide a practical strategy for fish juveniles in aquaculture.
     3. In DHA extraction process, the optimum values of parameters of the extraction were determined by Orthogonal design experiment.
引文
北京师范大学生物系生物化学教研室,基础生物化学实验[M].北京:高教出版社, 1986
    常青,梁萌青.大菱鲆的饲料与投喂.饲料工业2001, 22(10):13-14.
    陈爱军,朱耀明,杨振华. DHA在人乳腺癌中对阿霉素活性的影响与脂质过氧化作用的关系.中国肿瘤临床与康复, 2002, 9:22-29.
    陈德富,邱其樱.冷冻酵母培养S型褶皱臂尾轮虫的效果[J].福建水产,1996,6(2):30-32.
    陈峰,姜悦.微藻生物技术[M].北京:中国轻工业出版社,1999, 226- 227.
    陈立新,葛国昌.卤虫幼虫n-3HUFA的营养强化研究.海洋通报1996, 15(5):25-32.
    陈兆芳.轮虫的室内高密度培养与营养强化[J].中国水产,1999,8:40-41.
    崔晓俊,江波,冯骉.乳酸菌SK 005发酵产GABA(γ-氨基丁酸)的条件优化.食品研究与开发2005, 26(6):64-69.
    戴传超,袁生,李霞等.培养条件对头孢霉菌丝脂肪酸组分的影响.微生物学报, 2001, 41:87-93.
    邓立红,张扬,马润宇,王艳辉.采用响应面法优化木糖醇发酵培养基.食品与发酵工业2005, 31(6):59-61.
    丁永钦.卤虫的培养技术.致富之友1998, 10:10.
    樊云真,李荷芳,刘发义.海洋微藻高度不饱和脂肪酸的研究——Ⅲ.高度不饱和脂肪酸从海洋微藻向卤虫传递的研究.海洋科学集刊1998, 00:166-171.
    付启伟,王永红,庄英萍,储炬,张嗣良.中心组合设计优化必特螺旋霉素合成培养基.中国抗生素杂志2005, 30(9):521-526.
    宫春光.褶皱臂尾轮虫室内培养及在牙鲆育苗中的应用[J].水产科学,2004,23(4):24-26.
    杭晓敏,唐涌廉,柳向龙.多不饱和脂肪酸的研究进展[J].生物工程进展, 2001, 21(4):
    何国庆,熊皓平,阮晖,陈启和,徐莹.啤酒花多酚类化合物提取工艺的优化研究.农业工程学报2005, 21(4):163-166.
    何舒宁,刘鑫,曾令珂,黄成,吴岷.卤虫在不同饵料培养介质中的生长规律.水产养殖2001, 06:20-22.
    华雪铭,周洪琪,丁卓平.温度对微藻的生长、总脂含量及脂肪酸组成的影响.上海水产大学报,1999, 8(4):309-315.
    黄磊,詹勇,许梓荣.饵料中高不饱和脂肪酸在海水鱼苗培育中的作用.齐鲁渔业2003,20(12):10-13.
    黄丽金,陆兆新,袁勇军.响应面法优化唾液链球菌嗜热亚种增殖培养基.食品与发酵工业2005, 31(5):27-31.
    姜悦,陈峰,陈远童.多不饱和脂肪酸及其保健食品[J].中国食品, 1999,6:
    蒋汉明.优化海产微藻多不饱和脂肪酸生产条件的研究.硕士学位论文,汕头大学, 2003.
    况成宏,张学成,张晓青,朱路英.不同抗氧化剂对裂殖壶菌菌粉抗氧化的研究.中国海洋大学学报.2007, 37(5):117-120.
    雷霁霖,马爱军,刘新富,强门.大菱鲆(Scophthalmus maximus L.)胚胎及仔稚幼鱼发育研究海洋与湖沼2003, 34(1):9-18.
    李孱,白景华,蔡昭铃,欧阳藩.细菌素发酵培养基的优化及动力学初步分析.生物工程学报2001, 17(2):187-192.
    李季伦,张伟心,杨启瑞等.微生物生理学.北京:北京农业大学出版社,1993. 227-231.
    梁英,麦康森,孙世春,于道德.硝酸钠浓度对三角褐指藻(Phaeodactylum tricornuturn )MACC/B226生长及脂肪酸组成的影响.海洋科学,2002, 26(5): 48-51.
    廖启斌,李芊,李文权,陈清花.光辐射对海洋微藻脂肪酸含量的效应.海洋技术, 2002, 21:46-48.
    廖启斌.海洋微藻脂肪酸的气相色谱分析[J].海洋通报,2000,19(6):66-70.
    林雅弘,户田享次.纤细裸藻及其对轮虫、卤虫的营养强化.福建水产1994, 1:85-87.
    林元烧,曹文清,郑爱榕,李文权,陈清花.几种饵料浮游动物脂肪酸组成分析及营养效果评价台湾海峡2001, 20:164-168.
    刘吉华,袁生,戴传超.轮枝霉产生EPA、AA发酵条件的初步研究.食品与发酵工业, 2000,26:9-12.
    刘吉华,袁生,戴传超.影响真菌发酵过程中多不饱和脂肪酸积累的条件.微生物杂志, 1997, 17:52-55.
    刘镜恪,雷霁霖,宫怀孔.海水仔稚鱼对脂类的需求[J].齐鲁渔业,1996,13(1):19-21.
    刘敏,陈世杰.国外仔鱼饵料研究新技术.台湾海峡1996, 15增刊:91-94.
    刘少友,甄卫军,李振江.中心组合设计优化红花油脂肪酸单甘酯的合成条件.食品工业科技2005, 8:144-146.
    刘文善.大菱鲆育苗要点.齐鲁渔业2000, 17(3):27.
    刘玉军.鱼油二十碳五烯酸和二十碳六烯酸的生物效应与作用机理[J].生理科学进展,1987, 24: 117-225.
    陆开宏,林霞.13种饵料微藻脂肪酸组成特点及在河蟹育苗中的影响.宁波大学学报(理工版),2001a, 14(3): 27-32.
    陆开宏,林霞.海、淡水驯化对5种微藻脂肪酸组成的影响.水生生物学报,2001b, 25(2): 179-184.
    马爱军,陈四清,雷霁霖,胡建成,孙宗哲,贺知德.大菱鲆幼鱼几种饲料的分析与对比试验.饲料工业2000, 21(7):17-19.
    马爱军,雷霁霖,陈四清,张秀梅.大菱鲆营养需求与饲料研究进展[J].海洋与湖沼, 2003,34(4): 450-459.
    门强,雷霁霖,王印庚.大菱鲆的生物学特性和苗种生产关键技术.海洋科学2004, 28(3):1-4.
    穆俊山.大菱鲆养殖实用技术.中国水产2001, 5:60.
    宁正祥.食品成分分析手册[M].北京:中国轻工业出版社, 1998
    邱小琮,周洪琪,曾庆华,黄旭雄,叶昌树,周辉,兰汉冰.营养强化的轮虫、卤虫对牙鲆仔鱼的成活、生长及体脂肪酸组成的影响.水产科学2004, 23(2):4-8.
    任其龙,苏宝根,熊任天,吴平东. EPA和DHA在超临界流体色谱柱中的传质动力学.化工学报2001, 52(9):788-792.
    沈娟,陆兆新,别小妹,吕凤霞,黄现青. Bacillus sp. fmbj224发酵产新型抗菌肽培养基的优化研究.生物工程学报2005, 21(4):609-614.
    沈小婉.脂肪酸的测定[M].北京:北京大学出版社,1992,57-60.
    宋晓金,张学成,朱路英,李荻尔.用富含DHA的裂殖壶菌对轮虫进行营养强化的研究.海洋科学. 2007,31(12): 43-46
    苏云,任其龙,苏宝根,熊任天,吴平东. EPA-乙酯和DHA-乙酯在超临界二氧化碳中色谱容量因子与溶解度的关系.高校化学工程学报2002, 16(3):242-246.
    隋丽英,辛乃宏,赵曙.卤虫卵及卤虫中高级不饱和脂肪酸的分析方法海湖盐与化工1994, 23(04):36-38.
    孙存祯,李青,刘修业,王良臣.几种藻对卤虫养殖效果的比较研究.南开大学学报(自然科学版) 1995, 28(1):102-104.
    孙易,刘风岐,孙广明.卤虫的营养强化及其在水产养殖上的应用.内陆水产1999, 04:4-6.
    王菊芳,梁世中,吴振强,谭字榴,陈峰.碳氮比对隐甲藻总脂及DHA含量的影响.华南理工大学学报(自然科学版),2000, 28(10): 29-31.
    王秀良,陆晨临,张学成.PH对眼点拟绿球藻的生长、总脂含量及脂肪酸组成的影响.海洋科学,2002, 26(5): 63-67.
    王秀英,邵庆均,磊黄. n-3HUFA强化培养的卤虫无节幼体在日本川鲽幼苗养殖中的应用效果.水利渔业2003, 23(4):31-33.
    王永华,梁世中,杨博.碳、氮源对隐甲藻油脂和DHA积累的影响.中国油脂,2001, 26(6): 52-56.
    王堉,梁亚全.褶皱臂尾轮虫繁殖和培养的研究[J].海洋水产研究,1980,卷(1):27-48.
    王允祥,吕凤霞,陆兆新.杯伞发酵培养基的响应曲面法优化研究.南京农业大学学报2004, 27(3):89-94.
    魏东,张学成,邹立红,徐年军.细胞生长时期对两种海洋微藻总脂含量和脂肪酸组成的影响.青岛海洋大学学报,2000b, 30(3): 503-509.
    温少红,李叙凤,鞠宝,王长海.微藻高度不饱和脂肪酸的研究.海洋通报,2000, 19(4): 86-91.
    吴克刚,杨连生.利用海生真菌发酵生产DHA研究概况.海洋科学, 2000, 24:19-21.
    武洪庆,田黎,张久明,温占波. RSM方法用于产红色素发酵培养基优化.海洋学报2005, 27(3):142-146.
    熊坂清弘.“海洋酵母”和EPA·DHA强化饲料[J].养殖(日),1993,30(12):108-109.
    徐年军,张学成.温度,光照,PH值对后棘藻生长及脂肪酸含量的影响.青岛海洋大学学报,2001, 31(4): 541-547.
    徐天宇.利用生物技术生产二十碳五烯酸和二十碳六烯酸.食品与发酵工业, 1995, 1: 56-64.
    徐秀兰,蒋企洲,胡磊军,伊静.卤虫中蛋白质和脂肪酸组成的研究.中国生化药物杂志1997, 18(06):289-291.
    杨革,王玉萍,李翔太等.多价不饱和脂肪酸发酵条件的初步研究.食品与发酵工业, 1997,23: 8-13.
    杨光,蔡含筠,侯林.中国六个盐湖卤虫品系生物学特征的研究.海洋湖沼通报1995, 3:39-47.
    杨慧明,吴康敏.多不饱和脂肪酸与婴幼儿的健康和疾病[J].国外医学儿科学分册, 2002,29(3):108-121.
    杨永涛,涂国全.响应面法优化弗氏链霉菌S-221变种发酵培养基.生物加工过程2005, 3(2):36-40.
    于大国.轮虫、卤虫营养强化应注意的几个问题.齐鲁渔业2002, 19(2):11-12.
    张道南.利用啤酒酵母活菌株培养褶皱臂尾轮虫的研究[J].水产学报,1983,7(2):30-32.
    张登沥,刘其根.饵料对卤虫生长和生殖的影响.上海水产大学学报2000, 9(2):93-96.
    张利民,常建波,张秀珍,等.50DE微囊营养强化轮虫DHA的研究[J].中国水产科学,1997,4(5):44-49.
    张利民,常建波,张秀珍,等.n-3多价不饱和脂肪酸营养强化轮虫技术研究[J].水产学报,1997,21(4):415-421.
    张利民.稚鱼生物饵料的DHA营养强化[J].齐鲁渔业,1996,13(5):36-38.
    张闰生,王睿,徐振康.培养密度对卤虫生长与繁殖的影响.南开大学学报(自然科学版) 1994, 4:83-87.
    张汐,曹国锋. EPA和DHA的提取和富集Ⅱ.富集方法.中国油脂1998, 23(1):60-62.
    张学成,谭桂英.耐低温轮虫的大规模培养[J].海洋科学,1993,5(3):1-3.
    赵明日,孙世春,麦康森,江海华. 7株海洋微藻强化褶皱臂尾轮虫效果的研究.青岛海洋大学学报2002, 32(1):32-38.
    赵忠宪,高玉荣,曹宏.藻类-卤虫-对虾系统深度处理含盐含汞化工废水的模拟试验研究.环境科学学报1995, 15(3):347-353.
    郑智莺,苏跃中,游岚,翁忠钗.轮虫的营养强化对大黄鱼生长及成活率影响的试验.台湾海峡1996, 15增刊:6-10.
    朱礼祥.海水鱼育苗中营养强化的重要性及方法.中国水产1994, 8:36-37.
    朱路英,张学成,宋晓金等.碳、氮源浓度和培养时间对裂殖壶菌生长和脂肪酸组成的影响.中国海洋大学学报. 2007,37(2): 293-298
    朱路英,张学成,宋晓金等. n-3多不饱和脂肪酸DHA、EPA研究进展.海洋科学. 2007,31(11): 78-85
    朱艺峰,郭小强.不同氮磷硅含量和接种密度对三角褐指藻生长的影响.中国水产科学,2001,7(4): 47-51.
    Abril R, Garrett J, Zeller S G, et al. Safety assessment of DHA-rich microalgae from Schizochytriumsp. Part V: target animal safety/toxicity study in growing swine.Regulatory Toxicology and Pharmacology, 2003, 37:73-82.
    Achman R G, Jangaard P M, Hoyle R J, et al. Origin of marine fatty acids. Analysis of the fatty acids produced by the diatom Skeletonema costatum. J Fish Res Board Can, 1964, 21:747-756.
    Barclay W R, Meager K M, Abril J R. Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol,1994,6:123-9.
    Barclay W, Zeller S. Nutritional Enrichment of n-3 and n-6 Fatty Acids in Rotifers and Artermia Nauplii by Feeding spray-dired Schizochytrium sp.. J. World Aquacult. Soc.. 1996; 27(3): 314-322.
    Barclay WR. Process for the heterotrophic production of products with high concentrations of omega-3 highly unsaturated fatty acids. World patent WO91/07498, 1991.
    Chakravarti R, Sahai V. Optimization of compactin production in chemically defined production medium by Penicillium citrinum using statistical methods. Proc Biochem 2002;38:481–486.
    Chen F, Michael RJ. Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J Appl Phycol, 1991,3: 203-209.
    Chi Z, Liu J, Zhang W. Trehalose accumulation from soluble starch by Saccharomycopsis fibuligera sud. Enzyme Microb Technol. 2001;28:240-245.
    Chu WL, Phang SM, Goh SH. Environmental effects on growth and biochemical composition ofNitzschia inconspicua Grunow. J Appl Phycol. 1996, 8: 389-396.
    Cohen Z, Vonshak A, Richmond A. Effect of environmental conditions on fatty acid composition of the red alga Porphyridiniu cruentum: correlation to growth rate. J Phycol, 1989, 24: 328-332.
    Copeman L A, Parrish C C, Brown J A. Effects of docosahexaenoic, eicosapentaenoic and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellow-tail flounder (Limanda ferruginea): a live food enrichment experiment. Aquaculture, 2002, 210:285-304.
    Crawford M A. The requirements of long-chain n-6 and n-3 fatty acids for the brain. Proc Am Oil Chem Soc, 1987, 24:270-295.
    Das UN, Fams MD. Long-chain polyunsaturated fatty acids in the growth and development of thebrain and memory. Nutrition 2003;19:62–65.
    Day G, Tsavalos AJ. An investigation of the heterotrophic culture of the green alga Devresse B, Leger P, Sorgeloos P, Murata O, Nasu T, Ikeda S, Rainuzzo J, Reitan K, Kjorsvik E, Olsen, Y. Improvement of flatfish pigmentation through the use of DHA -enriched rotifers and Artemia. Aquaculture. 1994; 124: 287–288.
    Dunstan GA, Volkman JK, Barett SM, Leroi JM, Jeffrey SW. Essential polyunsaturated fatty acids from 14 species of diatom(Bacillariophyceae). Phytochemistry, 1994, 35(1): 155-161.
    Dyerberg J, Bang HO. Observations on populations in Greeland and Denmark, in Estevez A, Kanazawa A. Effect of (n-3) PUFA and vitamin A enrichment on pigmentation success of turbot, Scophthalmus maximus (L.). Aquaculture Nutrition (United Kingdom). 1995; 1(3): 159–168.
    Fan KW, Chen F, Jones EBG, Vrijmoed LLP. Eicosapentaenoic and docosahexaenoic acids production by and okara-utilizing potential of thrarstochytrids. J Ind Microbol Biotechnol,2001,27:199-202.
    Fan KW, Vrijmoed LLP, Jones EBG. Physiological studies of subtropical mangrove Thraustochytrids. Bot. Mar. 2002;45: 50–57.
    FernandaVolken C., Hickmann S., Ayub M. Optimization of medium composition for the production of transglutaminase by Bacillus circulans BL32 using statistical experimental methods. Proc Biochem 2006;41:1186-1192.
    Francis F, Sabu A, Nampoothiri K. M., Ramachandran S, Ghosh S, Szakacs G, Pandey A. Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochemical Engineering Journal. 2003;15: 107-115.
    Gill I, Valivety R. Polyunsaturated fatty aicds. Part I: Occurrence biological activities and application. Trends in Biotechnol, 1997, 15: 401-409.
    Giusto N M, Pasquare S J, Salvador P I, et al. Lipid metabolism in vertebrate retinal rod outer segments. Prog Lipid Res, 2000, 39:315-391.
    Gong H, Lun S. The kinetics of lysine batch fermentation. Chin. J. Biotechnol. 1996;12 (Suppl.): 219–225.
    Gounot AM, Russell NJ. Physiology of cold-adapted microorganisms. In: Margesin R, Schinner F,editors. Cold-adapted organisms. Ecology, physiology, enzymology and molecular biology, New York:Springer, 1999:33-55.
    Hammond B G, Mayhew D A, Holson J F, et al. Safety Assessment of DHA-Rich Microalgae from Schizochytrium sp.: II. Developmental Toxicity Evaluation in Rats and Rabbits. Regulatory Toxicology and Pharmacology, 2001, 33:205-217.
    Hammond B G, Mayhew D A, Kier L D, et al. Safety Assessment of DHA-Rich Microalgae from Schizochytrium sp.: IV. Mutagenicity Studies. Regulatory Toxicology and Pharmacology, 2002, 35:255-265.
    Hammond B G, Mayhew D A, Naylor M W, et al. Safety Assessment of DHA-Rich Microalgae from Schizochytrium sp.: I. Subchronic Rat Feeding Study. Regulatory Toxicology and Pharmacology, 2001, 33:192-204.
    Hammond B G, Mayhew D A, Robinson K, et al. Safety Assessment of DHA-Rich Microalgae from Schizochytrium sp.: III. Single-Generation Rat Reproduction Study. Journal of Archaeological Science, 2001, 33:356-362.
    Harel H, Koven W, Lein I, Bar Y, Behrens P, Stubblefield J. Advanced DHA, EPA and ArA enrichment materials for marine aquaculture using single cell heterotrophs. Aquaculture. 2002; 213: 347-362.
    Hatate H. Accumulation of fatty acids in Chaetoceros gracilis during stationary growth phase. Fisheries Science, 1998, 64(4): 578-581.
    Hayashi M, Matsumoto R, Yoshimatsu T, Tanaka S, Shimizu S. Isolation of highly DHA-accumulated Labyrinthulales and their utilization for nutritional enrichment of rotifers and Artemia. Nippon Suisan Gakkaishi. 2002; 68 (5): 674-678.
    Hirano M, Mori H, Miura Y.γ-linolenic acid production by microalgae. Appl Biochem Biotechnol, 1990, 24: 183-191.
    Honda D, Yokochi T, Nakahara T, Erata M, Higashihara T. Schizochytrium limacinum sp. nov., a new thraustochytrid from a mangrove area in the west Pacific Ocean. Mycol. Res.. 1998; 102 (4): 439-448.
    Horrocks LA, Yeo YK. Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 1999;40:211–225.
    Hu LY, Zhang XC, Ji L, Song XJ, Kuang CH. Changes of lipid content and fatty acid compositionof Schizochytrium limacinum in response to different temperatures and salinities. Proc Biochem. 2006; in press. PRBI 8072.
    Iida I, Nakahara T, Yokochi T, Kamisaka Y, Yagi H, Yamaoka M, Suzuki O. Improvement of Docosahexaenoic Acid Production in a Culture of Thraustochytrium aureum by Medium Optimization. J. Ferment. Bioeng.. 1996; 81(1): 76-78.
    Izquierdo MS, Socorro J, Arantzamendi L, Hernandez-Cruz CM. Recent advances in lipid nutrition in fish larvae. Fish Physiol. Biochem.. 2000; 22: 97–107.
    James M J, Beringer C, Kless T. Dietary polyunsaturated fatty acid and Jian ZL, Li PW, Qian LZ, Hong NJ, Liang A. A mathematical model for glucinic acid fermentation by Aspergillus niger. Biochem. Eng. 2002;3669: 1–5.
    Johnathan A N. Plumbing the depths of PUFA biosynthesis: a novel polyketide synthase-like pathway from marine organisms. Trends in Plant Science, 2002, 7: 51-54.
    Kanazawa A. Effects of docosahexaenoic acid and phospholipids on stress tolerance of fish. Aquaculture. 1997; 255: 129-134.
    Kanazawa A. Importance of DHA in organisms. Pros. Puslitbangkan. 1993; 18: 62-70.
    Kang JX, Leaf A. The cardiac antiarrhythmic effects of polyunsaturated fatty acid. Lipids. 1996;31: 41-44.
    Khuri AI, Cornell JA. Response Surface Methodology. New York: ASQC Quality press, 1987:116.
    Kiessling A. and Askbrandt S. Nutritive value of two bacterial strains of single-cell protein for rainbow trout (Oncorhynchus mykiss). Aquacultrue. 1993; 109: 119-130.
    Kis M, Zsiroso O, Farkas T, Wada H, Nagy F, Gombos, Z. Light-induced expression of fatty acid desaturase genes. Proc Natl Acad Sci USA, 1998, 95: 4209-4214.
    Kiy T, Rusing M, Fabritius D. Production of docosahexaenoic acid (DHA) by the marine microalga, Ulkenia sp, in: Z. Cohen, C. Ratledge (Eds.), Single Cell Oils, American Oil Chemists’Society, Champaign, IL, USA, 2005.
    Koueta N, Boucaud C E, Noel B. Effect of enriched natural diet on survival and growth of juvenile cuttlefish Sepia ctficinalis. Aquaculture, 2002, 203:293-310.
    Kromann N, Green A. Epidemiological studies in the Upernavik district, Greenland. Incidence of some chronic diseases 1950-1974. Acta Med Scand.. 1980; 208: 401-406.
    Li ZY, Ward OP. Production of docosahexaenoic acid by Thraustochytrium roseum. J Ind Microbiol 1994;13:238–241.
    Liang Y, Mai K, Sun S. Total lipid and fatty acdi composition of eight strains of marine diatoms. Chinese J of Oceanoloy and Limnology, 2000, 4(18): 345-349.
    Liu C, Liu Y, Liao W, Wen Z, Chen S. Application of statisticallybased experimental designs for the optimization of nisin production from whey. Biotechnol Lett 2003;25:877–882.
    Liu JZ, Weng LP, Zhang QL, Xu H, Ji LN. A mathematical model for gluconic acid fermentation by Aspergillus niger. Biochem Eng J 2003;14: 137–141.
    Lubzens E, Marko A, Tietz A. De novo synthesis of fatty acids in the rotifer Brachionus plicatilis. Aquaculture. 1985; 134: 101-112.
    Makoto S, Takio S, Kanji O. Low temperature-induced accumulation of eicosapentaenoic acid in Marchantia polymorpha cells. Phytochemsitry, 1999, 52: 367-372.
    Metz J G, Roessler P, Facciotti D, et al. Production of polyunsaturated fatty acids by polyketide synthetases in both prokaryotes and eukaryotes. Science, 2001, 293: 290-295.
    Millamena OM, Bombeo RF, Jumalon NA, Simpson KL. Effects of various diets on the nutritional value of Artermia sp. as food for the prawn Penaeus monodon. Mar. Biol.. 1988; 98: 217-221.
    Muralidhar RV, Chirumamila RR, Marchant R, Nigam P. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochem Eng J 2001;9:17–23.
    Murat E, Ferda M. A kinetic model for actinorhodin production by Streptomyces coelicolor A3 (2), Proc Biochem. 1999;34: 625–631.
    Nakahara T, Yokochi T, Hifashihara T, Tanaka S, Yaguchi T, Honda D. Production of docosahexaenoic and docosapentaenoic acids by Schizochytrium sp. Isolated from Yap Islands. J Am Oil Chem Soc, 1996,73:1421-1426.
    Othmane B, Salah H, Fatiha B. Batch kinetics and modelling of Pleuromutilin production by Pleurotus mutilis. Biochem Eng J 2007;36: 14–18.
    Plackett RL, Burman JP. The design of optimum multifactorial experiments. Biometrika 1946;33:305–325.
    Prakash G, Srivastava A. K. Statistical media optimization for cell growth and azadirachtinproduction in Azadirachta indica (A. Juss) suspension cultures. Proc Biochem. 2005;40: 3795-3800.
    Pujari Venugopal, Chandra T.S. Statistical optimization of medium components for enhanced riboflavin production by a UV-mutant of Eremothecium ashbyii. Proc Biochem 2000;36:31-37.
    Rainuzzo JR, Olsen Y, Rosenlund G. The effect of enrichment diets on the fatty acid composition of the rotifer Brachionus plicatilis. Aquaculture. 1989; 79: 157-161.
    Ratledge C, Kanagachandran K, Anderson AJ, et al. Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source. Lipids, 2001, 36:1241-1246.
    Ratledge C. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 2004, 86:807-815.
    Reitan KI, Rainuzzo JR, Olsen Y Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol, 1994, 30: 972-979.
    Riches CM, Rolph CE, Greenway DLA, Robinson PK. Efects of environmental factors and metals on Selenastrum icornutum lipids. Phytochemistry, 1998, 49(5): 1241-1247.
    Rieper M. Bacteria as food for marine harpaticoid copepods. Mar. Biol.. 1978; 45: 337-345.
    Robert Puskeiler, Dirk Weuster-Botz. Combined sulfite method for the measurement of the oxygen transfer coefficient kLa in bioreactors. J. Biotechnol 2005;120:438-438.
    Robin JH, Vincent B. Microparticulate diets as first food for gilthead sea bream larva (Sparus aurata): study of fatty acid incorporation. Aquaculture. 2003; 255: 463-474.
    Rodriguez C, Perez JA, Izquierdo MS, Cejas JR, Bolanos A, Lorenzo A. Improvement of the nutritional value of rotifers by varying the type and concentration of oil and the enrichment period. Aquaculture. 1996; 147: 93-105
    Rodriguez C, Perez JA, Lorenzo A, Izquierdo MS, Cejas JR. n-3 HUFA requirement of larval gilthead seabream Sparus aurata when using high levels of eicosapentaenoic acid. Comp. Biochem. Physiol.. 1994; 107A: 693-698.
    Russell NJ. Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends Biochem, 1984,9:108-112.
    Sajbidor J. Effect of some environmental factors on the content and composition of microbialmembrane lipids. Crit Rev Biotechnol,1997,17:87-103.
    Sakamoto M, Holland DL, Jones, DA. Modification of the nutritional composition of Artermia by incorporation of polyunsaturated fatty acids using micro-encapsulated diets. Aquaculture. 1982; 28: 311-320.
    Sauer LA, Dauchy RT, Blask DE. Polyunsaturated fatty acids, melatonin, and cancer prevention. Biochem Pharmacol 2001;61:1455–1462.
    Servel M O, Claire C, Derrien A, et al. Fatty acid composition of some marine microalgae. Phytochemistry, 1994, 36:691-693.
    Shu C H, Lung M Y. Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorate in batch cultures. Process Biochem, 2004, 39:931-937.
    Sijtsma L, de Swaaf ME. Biotechnological production and applications of theω-3 polyunsaturated fatty acid docosahexaenoic acid. Appl. Microbiol. Biotechnol. 2004;64:146–153.
    Somashekar D, Venkateshwaran G, Sambaiah K, Lokesh BR. Effect of culture conditions on lipid and gamma-linolenic acid production by mucroaceous fungi. Process Biochem,2002,38:1719-1724.
    Song XJ, Zhang XC, Guo N, Zhu LY, Kuang CH. Assessment of marine thraustochytrid Schizochytrium limacinum OUC88 for mariculture by enriched feeds. Fisheries Sci. 2007;73(3): 565-573.
    SONG XJ, Zhang XC, Kuang CH, Zhu LY, Guo N. Optimization of fermentation parameters for the biomass and DHA production of Schizochytrium limacinum OUC88 using response surface methodology. Process biochemistry. 2007, 42: 1391-1397.
    Sorgeloos P, Leger P. Improved larviculture outputs of marine fish, shrimp and prawn. J. World Aquacult. Soc.. 1992; 23: 251-264.
    Steo A, Wang HL, Hessenltine CW. Cultured conditions affect eicosapentaenoic acid content of Chlorella minutissima. J Am Oil Chem Soc, 1984, 61(5): 892-894.
    Stoll BA. N-3 fatty acids and lipid peroxidation in breast cancer inhibition. Brit. J. Nutr. 2002;87: 193–198.
    Suutari M, Laakso S. Microbial fatty acids and thermal adaptation. Crit Rev Microbiol, 1994, 20:285-328.
    Swaaf M E, Pronk J T, Sijtsma L. Fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii on ethanol. Appl Microbiol Biotechnol, 2003, 61:40-43.
    Swaaf M E, Rijk T C, Eggink G, et al. Optimisation of docosahexaenoic acid production in batch cultivations by Crypthecodimium cohnii. J Biotechnol, 1999, 70:185-192.
    Swaaf M E, Sijtsma L, Pronk J T. High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng, 2003, 81:666-672.
    Swaaf M E. Docosahexaenoic acid production by the marine alga Crypthecodinium cohnii. PhD thesis, Technical University Delft, Delft, 2003.
    Takeuchi T, Toyota M, Satoh S, Watanabe T. Requirement of juvenile red bream Pagrus major for eicosapentaenoic and docosahexaenoic acids. Nippon Suisan Gakkaishi. 1990; 56: 1263-1269.
    Tan CK, Jhons MR. Screening of diatoms for hetertrophic eicosapentaenoic acid production.J Appl Phycol, 1996, 8:59-64.
    Tetraselmas. J Appl Phycol, 1996, 8: 73-77.
    Unagul P, Assantachai C, Phadungruengluij S, Suphantharika M, Tanticharoen M, Verduyn C. Coconut water as a medium additive for the production of docosahexaenoic acid (C22:6 n3) by Schizochytrium mangrovei Sk-02. Bioresource Tech. 2007;98:281–287.
    Vaidya R, Vyas P, Chhatpar H.S. Statistical optimization of medium components for the production of chitinase by Alcaligenes xylosoxydans. Enzyme and Microbial Technology. 2003;33:92-96.
    Vasconcelos AFD, Barbosa AM, Dekker RFH, Scarminio IS, Rezende MI. Optimization of laccase production by Botryosphaeria sp. in the presence of veratryl alcohol by the response-surface method. Proc Biochem 2000;35:1131–1138.
    Viso AC, Marty JC. Fatty acids from 28 marine microalage. Phytochemsitry, 1993, 34(6):1521-1533.
    Wang YX, Lu ZX. Optimization of processing parameters for the mycelial growth and extracellular polysaccharide production by Boletus spp. ACCC 50328. Proc Biochem 2005;40:1043-1051.
    Ward OP, Singh A. Omega-3/6 fatty acids: Alternative sources of production. Proc. Biochem. 2005;40: 3627–3652.
    Watanabe T. Importance of Docosahxaenoic acid in marine larval fish. J. World Aquacult. Soc.. 1993; 24: 152-161.
    Wen-yar L, Chi-chang H. The Optimal Sulfonation Conditions of Self-doped Polyaniline Obtained by Using Experimental Strategies. Elec chem 2005, 11(4):360-368.
    Whyte JNC, Nagata WD. Carbohydrate and fatty acid composition of the rotifer, Brachionus plicatilis, fed monospecific diets of yeast or phytoplankton. Aquaculture. 1990; 89: 263-272.
    Wu ST, Lin LP. Application of response surface methodology to optimize docosahexaenoic acid production by Schizochytrium sp. S31. J. Food Biochem. 2003;27: 127-139.
    Wu ST, Yu ST, Lin LP. Effect of culture conditions on docosahexaenoic acid production by Schizochytrium sp. S31. Proc Biochem. 2005;40: 3103–3108.
    Xiong YH, Liu JZ, Song HY, Ji LN. Enhanced production of extracellular ribonuclease from Aspergillus niger by optimization of culture conditions using response surface methodology. Biochem Eng J. 2004;21:27-32.
    Yaguchi T, Tanaka S, Yokochi T, Honda D, Higashihara T. Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. J. Am. Oil Chemists' Soc.. 1997; 74 (11): 1431-1434.
    Yokochi T, Honda D, Higashihara T, Yaguchi T, Tanaka S. Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21[J]. Appl. Microbiol. Biotechnol.. 1998; 49 (1): 72-76.
    Yong-xu C, Wu W, Jia-min W, Xian-qing H. Effects of dietary lipid sources on fatty acid composition of rotifer Brachionus plicatilis. Journal of fishery sciences of China 2001, 8(4):52-57.
    Yumoto I, Hirota K, Iwata H, Akutsu M, Kusumoto K, Morita N. Temperature and nutrient availability control growth rate and fatty acid composition of facultatively psychrophilic Cobetia marina strain L-2. Arch Microbiol,2004,181:345-351.
    Zhu LY, Zhang XC, Ji L, Song XJ, Kuang CH. Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures andsalinities. Proc Biochem. 2007; 42: 210–214.
    Zhukova NV, Aizdaicher NA. Fatty acid composition of 15 species of marine microalgae. Phytochemistry, 1995, 39(2): 351-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700