土壤盐分对棉田土壤微生物活性和土壤肥力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国土壤盐渍化面积日益扩大,严重影响了我国农业的发展,因此盐碱化土地的合理利用和改良对农业发展具有重要的意义。本研究采用盆栽方法模拟滨海混合盐土成分,以耐盐品种中棉所44和盐敏感品种苏棉12号为材料,于2008-2009年在江苏南京(118°50'E,32°02'N)南京农业大学牌楼试验站设置盐浓度处理(0:1.25 dS m-1、0.35%:5.80 dS m-1、0.60%:9.61 dS m-1、0.85%:13.23 dS m-1和1.00%:14.65 dS m-1)和水分处理(土壤相对含水量分别为75%和55%)试验,研究在正常灌水和轻度干旱条件下,不同程度盐胁迫对棉田土壤养分、土壤微生物生物量、土壤微生物群落多样性及土壤微生物数量、土壤酶活性的影响,探索盐胁迫抑制棉花生长的土壤生物学机制,为盐碱地棉花高产栽培调控提供理论依据。主要结果如下:
     1土壤盐分对棉田土壤微生物生物量和土壤养分的影响
     土壤盐胁迫显著抑制棉花生长,随着盐浓度的升高,棉株生物量、根重、铃数、铃重及籽棉产量均呈显著下降的趋势。在棉花整个生育期,棉田土壤微生物量碳、氮、土壤基础呼吸强度均随着盐浓度的升高而呈逐渐显著降低趋势,花铃期达到最大,而微生物量碳氮比则随盐浓度程度的增加有所增大。土壤中有机质、全氮、速效氮、有效磷、速效钾等养分含量的变化趋势与土壤微生物量碳、氮基本一致,但降幅较小。土壤微生物量碳与土壤有机碳的比值、土壤微生物量氮与土壤全氮的比值均随着盐浓度的升高而呈逐渐下降趋势。正常灌水条件下不同盐度处理的各项指标值均显著高于相应干旱处理的,干旱加重了盐分对土壤微生物量和土壤养分的抑制效应。相关分析表明:土壤微生物量与土壤速效氮、速效钾、有效磷之间呈显著正相关关系,与土壤pH值之间存在显著负相关关系。总体来说,土壤微生物量碳、氮受盐胁迫的影响大于土壤有机碳和全氮,土壤微生物对土壤有机碳和全氮转化效率显著降低。两个品种之间也存在一定的差异,在不同的盐分处理之下,中棉所44要比苏棉12号的各指标值要高一些。
     2土壤盐分对棉田土壤微生物群落多样性的影响
     采用Biolog微平板方法分析盐胁迫下棉田土壤微生物群落结构与代谢功能的变化,结果表明随着盐浓度的升高,土壤微生物群落平均吸光度值(AWCD)逐渐降低,棉田土壤微生物群落多样性Shannon指数和丰富度指数均随着盐浓度的升高而逐渐降低,各处理之间达到显著差异,说明盐胁迫引起土壤微生物群落发生明显变化,土壤微生物种类减少、代谢活性和功能多样性降低。正常灌水处理的AWCD值高于相应干旱处理,中棉所44的AWCD值高于苏棉12号,并且棉花花铃期的AWCD值要高于吐絮期。主成分分析表明:六大类碳源在各盐分处理之间利用率不一样,其中碳水化合物和氨基酸和羧酸三类碳源被利用的最多。对照处理要比各盐分处理利用的碳源种类多,正常灌水处理利用的碳源种类也要高于相应的干旱处理。
     3土壤盐分对棉田土壤微生物数量和土壤酶活性的影响
     盐胁迫加重了土壤中Na+、K+ Cl-、Mg2+、Ca2+的含量。棉田土壤微生物数量(细菌、真菌、放线菌、氨化细菌)均是随着盐浓度的升高而呈逐渐降低趋势,棉田土壤脲酶、碱性磷酸酶、过氧化氢酶均是随着盐浓度的升高而呈下降趋势。土壤水分的亏缺加重了盐胁迫的程度,中棉所44在不同盐分处理下各指标均要高于苏棉12号。相关分析表明:土壤微生物数量(细菌、真菌、放线菌、氨化细菌)、土壤酶(脲酶、碱性磷酸酶、过氧化氢酶)、土壤微生物量在棉花花铃期与棉田土壤Na+、K+、Cl-、Mg2+、Ca2+呈显著负相关关系。
Soil salinization more and more stress in the china, and the soil salinization is a key environmental stress factor that limits crop growth and population development, it is very important to exploit and utilize this soil. Two cotton cultivars with different salt-tolerance (CCRI-44, Sumian 12) were used, and five salinity rates (0:1.25 dS m-1、0.35%:5.80 dS m-10.60%:9.61 dS m-1、0.85%:13.23 dS m-1 and 1.00%:14.65 dS m-1), standing for five levels respectively were applied. The study focused on:(1) Effects of salinity stress on cotton field microbial biomass and soil nutrient content at different growth stages in cotton field; (2) Effects of salinity stress on cotton field soil microbial community diversity at different growth stages in cotton field; (3) Effects of salinity stress on cotton field soil iron content and microbe quantity and soil enzyme activity at different growth stages in cotton field. The main results were as follows:
     1 Effects of salinity on soil microbial biomass and soil nutrient content at different growth stages in cotton field
     Under the same soil water treatment, with increasing of soil salinity, the content of soil microbial biomass C, N was decreased. At the same time, the growth of cotton was inhabited by soil salinity stress. Root dry weight, biomass, and seed cotton yield all declined with the increase of soil salinity, and the soil organic matter, total nitrogen, available nitrogen, available phosphorus and rapidly available potassium was decreased, but soil metabolic quotient was go up with the increase of soil salinity. Under the same soil salinity, the content of soil nutrient were much higher in well-watering treatment than in water stress treatment. Compared to Sumian 12, CCRI-44 was less affected by soil salinity at different growth stages of cotton. Correlation analysis showed that the soil microbial biomass C,N had a significant positive correlation with soil nutrient content(available nitrogen, available phosphorus and rapidly available potassium), and had a significant negative correlation with soil pH.
     2 Effects of salinity on soil microbial community diversity at different growth stages in cotton field
     Under the same soil water treatment, the average well color development with incubation times was increased, but average well color development, shannon index and richness index were decreased with increasing of soil salinity. Under the same soil salinity, the average well color development, shannon index and richness index were much higher in well-watering treatment than in water stress treatment. Soil water stress aggravated the effects of soil salinity stress. Compared to Sumian 12, CCRI-44 was less affected by soil salinity at different growth stages of cotton. Principal component analysis showed that six kinds of carbon source utilization rate was not the same affected by soil salinity at different growth stages of cotton, the carbohydrate was most.
     3 Effects of salinity on soil iron content, soil microbe quantity, soil enzyme activity at different growth stages in cotton field
     Under the same soil water treatment, with increasing of soil salinity, the Na+, K+,C1-,Mg2+,Ca2+ content increased. But the the number of bacteria, fungi and actinomyces, ammonifying bacteria, the activity of urease, phosphatase, catalase decreased. At the same time, the growth of cotton was inhabited by soil salinity stress. Under the same soil salinity, the activity of soil enzyme, soil microbe quantity were much higher in well-watering treatment than in water stress treatment. Soil water stress aggravated the effects of soil salinity stress. Compared to Sumian 12, CCRI-44 was less affected by soil salinity at different growth stages of cotton. Correlation analysis showed that the activity of soil enzyme, soil microbe quantity had a significant negative correlation with soil Na+,Cl-, K+,Mg2+,Ca2+ content.
引文
[1]房朋,任丽丽,张立涛,等.盐胁迫对杂交酸模叶片光合活性的抑制作用[J].应用生态学报,2008,19(10):2137-2142.
    [2]Munns R. Comparative physiology of salt and water stress Plant [J]. Cell and Environment,2002,25: 239-250.
    [3]Enrico Brugnoli and Marco Lauteri. Effects of Salinity on Stomatal Conductance, Photosynthetic Capacity, and Carbon Isotope Discrimination of Salt-Tolerant(Gossypium hirsutum L.) and Salt-Sensitive (Phaseolus vulgaris L.) C3 Non-Halophytes [J]. Plant Physiology,1991,95:628-635.
    [4]李海波,陈温福,李全英.盐胁迫下水稻叶片光合参数对光强的响应[J].应用生态学报,2006,17(9):1588-1592.
    [5]刘正鲁,朱月林,胡春梅.氯化钠胁迫对嫁接茄子生长、抗氧化酶活性和活性氧代谢的影响[J]应用生态学报,2007,18(3):537-541.
    [6]Martino C D, Delfine S, Pizzuto R, et al. Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress [J]. New Phytologist,2003,158(3):455-463.
    [7]Chen H X, Li W J, An S Z, et al. Characterization of PSII photochemistry and thermo stability in salt-treated Rumex leaves [J]. Journal of Plant Physiology,2004,161:257-264.
    [8]朱义,谭贵娥,何池全,等.盐胁迫对高羊茅(Festuca arundinacea)幼苗生长和离子分布的影响[J].生态学报,2008,27(12):5447-5453.
    [9]Wang Y, Ni N. Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress [J]. The Journal of Horticultural Science and Biotechnology,2000,75:623-627.
    [10]弋良朋,马健,李彦.盐胁迫对3种荒漠盐生植物苗期根系特征及活力的影响[J].中国科学D辑,2006,36(11):86-94.
    [11]郑青松,刘兆普,刘友良,等.渗的盐分和水分胁迫对芦荟幼苗生长和离子分布的效应[J].植物生态学报,2004,28(6):823-827.
    [12]Zheng Y H, Wang Z L, Sun X Z, et al. Higher salinity tolerance cultivars of winter wheat relieved senescence at reproductive stage [J]. Environmental and Experimental Botany,2008,62:129-138.
    [13]A. Levent Tuna, Cengiz Kaya. et al. The effects of calcium sulp hate on growth, membrane stability and nutrient up take of tomato plants grown under salt stress [J]. Environmental and Experimental Botany,2007,59:173-178.
    [14]Meloni D A, Oliva M A, Ruiz H A, et al. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress [J]. Journal of Plant Nutrition,2001,24(3):599-612.
    [15]辛承松,杨晓英,杨劲松,等.盐胁迫条件下不同栽培措施对棉花生长的调控作用研究[J].土壤,2005,37(1):65-68
    [16]Drihem K, Pilibeam D J. Effect of salinity on accumulation of mineral nutrients in wheat grown with nitrate-nitrogen or mixed ammonium:nitrate-nitrogen [J]. Journal of Plant Nutrition,2002, 25(10):2091-2094.
    [17]陈国安.钠对棉花生长及钾钠吸收的影响[J].土壤,1992,24(4):201-204
    [18]Jafri A Z, Ahmad R. Plant growth and ionic distribution in cotton(Gossypium hirsutum L.) under saline environment [J]. Pakistan J Bot,1994,26:105-114.
    [19]Raia N A, Azimov R A. Effect of NaCl solutions on germination and seedling growth [J]. Uzbek Biol,1988,2:22-224.
    [20]Zhon G H, RE LAUCHLI. Spatial and temporal aspects of growth in the primary root of cotton seedlings. Effect of NaCl and CaCl2 [J]. journal experimental botany,1993,4(44):763-771.
    [21]蒋玉蓉,吕有军,祝水金.棉花耐盐机理与盐害控制研究进展[J].棉花学报,2006,18(4):248-254
    [22]李向前,王艳,张富春.棉花耐盐性及抗氧化性研究进展[J].生物技术通报,2009,(6):20-24.
    [23]候彩霞,汤章城.细胞相溶性物质的生理功能及其作用机制[J].植物生理学通讯,1999,35 (2):127.
    [24]Diego A M, Marco A O, Carlos A M, et al,. Environmental and Experimental Botany [M].2003, (49):69-76.
    [25]Garratt L C, Basangouda S J, Kenneth C L, et al,. Free Radical Biology&Medicine [M].2002,33 (4):502-511.
    [26]郑洪元,张德生.土壤动态生物化学研究[M].科学出版社,1982.
    [27]李阜棣.土壤微生物学[M].北京:中国农业出版社,1996,131.
    [28]张宪武.土壤微生物研究——理论、应用、新方法[M].沈阳出版社,1993,483-504.
    [29]李延茂,胡江春,汪思龙.森林生态系统中土壤微生物的作用与应用[J].应用生态学报.2004,15(10):1943-1946.
    [30]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,29(2):61-69.
    [31]樊军,郝明德.长期轮作施肥对土壤微生物碳氮的影响[J].水土保持研究,2003,10(1):85-87.
    [32]李新爱,肖和艾,吴金水,等.喀斯特地区不同土地利用方式对土壤有机碳、全氮以及微生物生物量碳和氮的影响[J].应用生态学报,2006,17(10):1827-1831.
    [33]刘恩科,赵秉强,李秀英,等.长期施肥对土壤微生物量及土壤酶活性的影响[J].植物生态学报,2008,32(1):176-182.
    [34]薛萐,刘国彬,戴全厚,等.黄土丘陵区退耕撂荒地土壤微生物量演变过程[J].中国农业科学2009,42(3):943-950.
    [35]谢正苗,卡里德,黄昌勇,等.镉铅锌污染对红壤中微生物生物量碳氮磷的影响[J1.植物营养与肥料学报,2000,6(1):69-74.
    [36]Anderson Traute-Heidi, Joergensen G R. Relationship between SIR and FE estimates of microbial biomass C in deciduous forest soils at different pH [J]. Soil Biology and Biochemistry,1997,29(7): 1033-1042.
    [37]Kemmitt S J, Wright D, Goulding K W T, et al. pH regulation of carbon and nitrogen dynamics in two agricultural soils [J]. Soil Biology and Biochemistry,2006,38(5):898-911.
    [38]王涵,王果,黄颖颖,等.pH变化对酸性土壤酶活性的影响[J].生态环境,2008,17(6):2401-2406.
    [39]Waldle D A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil [J]. Biological Reviews,1992,67(3):321-358.
    [40]魏天凤,任艳林,曾辉,等.降水改变对樟子松人工林土壤微生物量碳及微生物商动态变化的影响[J].北京大学学报,2008(4):245-249.
    [41]Vitousek P M, Aber J D, Howarth R W, et al,. Human alteration of the global nitrogen cycle: Sources and consequences [J]. Ecological Applications,1997,7:737-750.
    [42]姚槐应,何振立,黄昌勇.红壤微生物量氮的周转期及其研究意义[J].土壤学报,1999,36(3):387-394.
    [43]唐玉霞,孟春香,贾树龙.土壤肥力水平对肥料氮生物固定的影响[J].华北农学报,2003,18(院庆专辑):136-138.
    [44]任天志.持续农业中的生物指标研究[J].中国农业科学,2000,33(1):68-75.
    [45]林启美,吴玉光,沈方科,等.北京菜园土土壤微生物生物量碳、氮与土壤一些性质的关系[J].中国农业大学学报,1997,2(增刊):43-48.
    [46]王光华,金剑,韩晓增,等.不同土地管理方式对黑土土壤微生物量碳和酶活性的影响[J].应用生态学报,2007,18(6):1275-1280.
    [47]杨刚,何寻阳,王克林,黄继山,等.不同植被类型对土壤微生物量碳氮及土壤呼吸的影响[J].土壤通报,2008,39(1):44-45.
    [48]王会利,毕利东,张斌.退化红壤马尾松恢复林地土壤微生物生物量变化及其控制因素研究[J].土壤学报,2008,45(2):313-320.
    [49]沈其荣,余玲,刘兆普.有机无机肥料配合施用对滨海盐土土壤微生物态氮及土壤供氮特征的影响[J].土壤学报,1994,31(3):45-48.
    [50]李世清,任书杰,李生秀.土壤微生物体氮的季节性变化及其与土壤水分和温度的关系[J].植物营养与肥料学报,2004,10(1):18-23.
    [51]许月蓉.不同施肥条件下潮土中微生物量及其活性[J].土壤学报,1995,32(3):45-47.
    [52]DAVID C, MARK D, JOHN H. Soil respiration from four aggrading forested watersheds measured over a quarter century [J]. Forest. Ecol. Manag,2002,157:247-253.
    [53]易志刚,蚁伟民,周丽霞,等.鼎湖山主要植被类型土壤微生物生物量研究[J].生态环境,2005,14(5):727-729.
    [54]毛瑢,崔强,赵琼,等.不同林龄杨树农田防护林土壤微生物生物量碳、氮和微生物活性[J].应用生态学报,2009,20(9):2079-2084
    [55]Liao J D, Boutton T W. Soil microbial biomass response to woody plant invasion of grassland [J]. Soil B iology and Biochemistry,2008,40:1207-1216
    [56]Islam K R, Weil R R. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh Agriculture [J]. Ecosystems and Environment,2000,79:9-16
    [57]Zeng D H, Hu Y L, Chang SX, et al,. Land cover change effects on soil chemical and biological properties after Planting Mongolian pine (Pinus sylvestris var. m ongolica) in sandy lands in Keerqin, northeastern [J]. China. Plant and Soil,2009,317:121-133
    [58]傅伯杰,陈利顶,邱扬,等.黄土丘陵沟壑区土地利用结构与生态过程[M].北京:商务印书馆.2002.
    [59]张立芙,吴凤芝,周新刚,等.盐胁迫下黄瓜根系分泌物对土壤养分及土壤酶活性的影响[J].中国蔬菜,2009(14):6-11
    [60]余海英,李廷轩,周健民.设施土壤次生盐渍化及其对土壤性质的影响[J].土壤,2005,37(6):581-586.
    [61]Grattan S R, Grieve C M. Salinity-mineral nutrient relations in horticultural crops [J]. Scientia Horticulturae,1999,78:127-157
    [62]郭文忠,刘声锋,李丁仁,等.设施蔬菜土壤次生盐渍化发生机理的研究现状与展望[J].土壤,2004,36(1):25-29
    [63]董合忠,辛承松,唐薇,等.山东东营滨海盐渍棉田盐分与养分的季节性变化及对棉花产量的影响[J].棉花学报,2006,18(6):362-366.
    [64]弋良朋,马健,李彦.荒漠盐生植物根际土壤盐分和养分特征[J].生态学报,2007,9(27):3565-3571.
    [65]Broughton L.C. and Gross. K.L. Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field [J]. Oecologia,2000,1(3):420-427.
    [66]Zak J C, Willig M R, Moorhead D L,et al. Functional diversity of microbial communities:A quantitative approach [J]. Soil Biology and Biochemistry,1994,26(1):101-108.
    [67]Pankhurst C.E, Yu S, Hawke B.G. Capacity of fatty acid profiles and substrate utilization patterns to describe differences in soil microbial communities associated with increased salinity or alkalinity at three locations in South Australia [J]. Biology and Fertility of soils,2001,33(3):204-217.
    [68]Staddon W.J. Duchesne..L.C. Microbial Diversity and Community Structure of Post disturbance Forest Soils as Determined by Sole-Carbon-Source Utilization Patterns [J]. Microbial Ecology, 2003,34(2):25-30.
    [69]丁成,王世和,杨春生.草浆废水灌溉对海涂湿地土壤及芦苇生长的影响[J].生态环境,2005,14(1):21-25.
    [70]平淑珍,林敏,安道昌.耐盐联合固氮菌在盐渍化土壤改良中的应用[J].高技术通讯,1999,12(9):60-62.
    [71]杨芳,徐秋芳.土壤微生物多样性研究进展[J].浙江林业科技,2002,22(6):39-43.
    [72]罗明,邱沃.新疆平原荒漠盐渍草地土壤微生物生态分布的研究[J].中国草地,1995,(5):29-33.
    [73]张瑜斌,王文卿,庄铁诚.厦门西港西南部潮间带光滩土壤微生物的数量变化[J].台湾海峡,2000,19(1):54-60.
    [74]罗明,邱沃,孙健光.种草改良苏打硫酸盐草甸盐土对土壤微生物区系的影响[J].八农学院学报,1995,18(3):35-39.
    [75]黄韶华,王正荣,周华荣.新疆荒漠区土壤微生物与土壤环境关系的初步探讨[J].新疆环境保护,1997,19(1):81-85.
    [76]周国英,何小燕,李河.锌镉污染区植物根际与非根际土壤微生物区系研究[J].湖南林业科技,2005,32(5):31-33.
    [77]张凤华,马富裕,郑重,等.不同水肥处理膜下滴灌棉田根际微生物及棉花生长发育的研究[J].新疆农业大学学报2000,23(4):56-58
    [78]关松荫.土壤酶及其研究法[M].农业出版社,1986.
    [79]陈峻,李传涵.杉木幼林地土壤酶活性与土壤肥力[J].林业科学研究,1993,6(3):321-326.
    [80]许景伟,王卫东,李成.不同类型黑松混交林土壤微生物、酶及其与土壤养分关系研究[J].北京林业大学学报,2000,22(1):51-55.
    [81]严昶升.土壤肥力研究方法[M].北京农业出版社,1988:234-276.
    [82]焦如珍,杨承栋,屠星南.杉木人工林不同发育阶段林下植被、土壤微生物、酶活性及养分的变化[J].林业科学研究,1997,10(4):373-379.
    [83]杨涛,徐慧,李慧.樟子松人工林土壤养分、微生物及酶活性的研究[J].水土保持学报,2005,19(3):50-53.
    [84]张鼎华,陈由强.森林土壤酶与土壤肥力[J].林业科技通讯,1987(4):25-31.
    [85]张咏梅,周国逸,吴宁.土壤酶学的研究进展[J].热带亚热带植物学报,2004,12(1):83-90.
    [86]郑文教,王良睦,林鹏.福建和溪亚热带雨林土壤活性的研究[J].生态学杂志,1995,14(2):16-20.
    [87]樊盛菊,齐树亭,武洪庆,等.盐生植物根际对土壤中微生物数量和酶活性的影响[J].河北大学学报(自然科学版),2006,26(1):33-36.
    [88]弋良朋,马健,李彦.荒漠盐生植物根际土壤酶活性的变化[J].中国生态农业学报,2009,17(3):23-26.
    [89]王友保,张莉,刘登义.灰渣场土壤酶活性与植被和土壤化学性质的关系[J].应用生态学报,2003,14(1):110-112.
    [90]Turner B L, Haygarth P M. Phosphatase activity in temperate pasture soils:Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity [J]. Science of the Total Environment,2005,344(1-3):27-36.
    [91]唐莉娜,熊德中.酸性土壤施石灰对土壤性质与烤烟品质的影响[J].中国生态农业学报,2003,11(3):81-83.
    [92]Acosta-Martinez V, Tabatabai M A. Enzyme activities in a limed agricultural soil [J]. Biology and Fertility of Soils,2000,31(1):85-91.
    [93]Munns R. Genes and salt tolerance:bringing them together [M]. New Phytologist,2005,167: 645-663
    [94]关元秀,刘高焕,刘庆生.黄河三角洲盐碱地遥感调查研究[J].遥感学报,2001,5(1):46-52
    [1]房朋,任丽丽,张立涛,等.盐胁迫对杂交酸模叶片光合活性的抑制作用[J].应用生态学报,2008,19(10):2137-2142.
    [2]蒋玉蓉,吕有军,祝水金.棉花耐盐机理与盐害控制研究进展[J].棉花学报,2006,18(4):248-254.
    [3]廖震,陈金湘,廖振坤.棉花耐盐性研究现状与展望[J].作物研究,2008,22(5):460-465.
    [4]王俊娟,叶武威,周大云,等.盐胁迫下不同耐盐类型棉花的萌发特性[J].棉花学报,2007,19(4):315-317.
    [5]郑洪元,张德生.土壤动态生物化学研究[M].科学出版社,1982.
    [6]李阜棣主编.土壤微生物学[M].北京:中国农业出版社,1996,131.
    [7]张宪武主编.土壤微生物研究——理论、应用、新方法[M].沈阳出版社,1993,483-504.
    [8]Parfitt R L, Yeates G W, Ross D J, et al,. Relationships between soil biota, nitrogen and phosphorus availability, and pasture growth under organic and conventional management [J]. Applied Soil Ecology,2005,28:1-13.
    [9]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,29(2):61-69.
    [10]樊军,郝明德.长期轮作施肥对土壤微生物碳氮的影响[J].水土保持研究,2003,10(1):85-87.
    [11]谢正苗,卡里德,黄昌勇,等.镉铅锌污染对红壤中微生物生物量碳氮磷的影响[J].植物营养与肥料学报,2000,6(1):69-74.
    [12]李新爱,肖和艾,吴金水,等.喀斯特地区不同土地利用方式对土壤有机碳、全氮以及微生物生物量碳和氮的影响[J].应用生态学报,2006,17(10):1827-1831.
    [13]刘恩科,赵秉强,李秀英,等.长期施肥对土壤微生物量及土壤酶活性的影响[J].植物生态学报,2008,32(1):176-182.
    [14]刘娟,韩春丽,高旭梅,等.耕作措施对新疆绿洲棉田土壤微生物量及酶活性的影响[J].石河子大学学报(自然科学版),2009,5(27):558-562.
    [15]弋良朋,马健,李彦.不同土壤条件下荒漠盐生植物根际盐分特征研究[J].土壤学报,2007,44(6):1139-1143
    [16]余海英,李廷轩,周健民.设施土壤次生盐渍化及其对土壤性质的影响[J].土壤,2005,37(6):581-586
    [17]章家恩主编.《生态学常用实验研究方法与技术》[M].北京:化学工业出版社,2006
    [1]Dehaan R L, Taylor G R. Field—derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil saltinization [J]. Remote Sensing of Environment,2002,80:406-418.
    [2]Verma K, St Saxena R K, Barthwal, et al.Remote sensing technique for mapping salt affected soils [J]. International Journal of Remote Sensing,1994,15 (9):1901-1914.
    [3]Mettemieht G I, Zinck J A. Remote sensing of soft salinity:potentials and constraints [J]. Remote Sensing of Environment,2003,85:1-20.
    [4]肖丽.土壤盐度和滴灌施肥方式对棉花生长于氮肥利用率的影响[D].新疆石河子大学学位论文.
    [5]郑元元.盐胁迫下解盐促生菌提高棉花耐盐性及其促生机理的研究[D].新疆石河子大学学位论文.
    [6]陈华葵.土壤微生物学[M].上海:上海科学技术,1981.
    [7]周桔,雷霆.土壤微生物多样性影响因素及研究方法的现状与展望[J].生物多样性,2007,15(3):306-311
    [8]蒋先军,骆永明,赵其国.重金属污染土壤的微生物学评价[J].土壤,2000,32(3):130-134.
    [9]滕应,黄昌勇.重金属污染土壤的微生物生态效应及修复研究进展[J].土壤与环境,2002,11(1):85-89.
    [10]胡可,王利宾.BIOLOG微平板技术在土壤微生态研究中的应用[J].土壤通报,2007,38(4):819-821.
    [11]Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization [J]. Applied Environmental Microbiology,1991,57:2351-2359.
    [12]Garland J 1. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization [J]. Soil Biology and Biochemistry,1996,28: 213-221.
    [13]Choi K H, Dobbs F C. Comparison of tow kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities [J]. Journal of Microbiological Methods, 1999,36:203-213
    [14]郑华,欧阳志云,方治国,等.BIOLOG在土壤微生物群落功能多样性研究中的应用[J].土壤学报,2004,41(3):456-461.
    [15]Fisk M C, Ruether K F, Yavitt J B. Microbial activity and functional composition among northern peatland ecosystems [J]. Soil Biology and Biochemistry,2003,35 (4):591-602.
    [16]Bronwyn D H, Raymond L C. Using the Gini coefficient with BIOLOG substrate utilization data to provide an alternative quantitative measure for comparing bacterial soil communities [J]. Journal of Microbiological Methods,1997,30:91-101
    [1]马丽.不同滴灌方式下土壤盐度对棉花生长和养分吸收的影响[D].硕士学位论文,新疆:石河子大学,2008,1-3
    [2]蔺娟,地里拜尔苏力坦,艾尼瓦尔·买买提.新疆盐渍化区土壤养分的空间结构和分布特征 [J].干旱区资源与环境,2007,21(11):113-117
    [3]蒋玉蓉,吕有军,祝水金.棉花耐盐机理与盐害控制研究进展[J].棉花学报,2006,18(4):248-254
    [4]Razzouk S. Effects of salinity on cotton yield and quality [J]. Field Crop Research,1991,26: 305-314.
    [5]廖震,陈金湘,廖振坤.棉花耐盐型研究现状与发展[J].作物研究,2008,22(5):461-465
    [6]范君华,龚明福,刘明,等.棉花连作对土壤养分、微生物及酶活性的影响[J].塔里木大学学报,2008,20(3):36-41
    [7]郑诗樟,肖青亮,吴蔚东,等.丘陵红壤不同人工林型土壤微生物类群、酶活性与土壤理化性状关系的研究[J].中国生态农业学报,2008,16(1):57-61.
    [8]J.C. Garcl a-Gil, C. Plaza, P. Soler-Rovira. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass [J]. Soil Biology & Biochemistry,2000 (32):1907-1913
    [9]曾繁富,赵同谦,徐华山,等.滨河湿地土壤微生物数量及多样性研究[J].环境与科学,2009,32(10):13-18
    [10]时唯伟,支月娥,王景,等.土壤次生盐渍化与微生物数量及土壤理化性质研究[J].水土保持学报,2009,23(6):166-170
    [11]Chen G C, He Z L, Wang Y J. Impact of p H on microbial biomass carbon and microbial biomass phosphorus in red soils [J]. Pedosphere,2004,14 (1):9-15.
    [12]Zhang X J, Liu J H, LiL J. Effects of different conservation tillage on soilmicrobes quantities and enzyme activities in dry cultivation [J]. Journal ofMaize Sciences,2008,16 (1):91-95,
    [13]李智,杨在娟,岳春雷.人工湿地基质微生物和酶活性的空间分布[J].浙江林业科技,2005,25(3):1-5.
    [14]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986.
    [15]周礼恺.土壤酶学[M].北京:科学出版社,1987.
    [1]Friedel J K, Munch J C, Fischer W R. Soil microbial properties and the assessment of available soil organic matter in a haplicluvisol after several years of different cultivation and crop rotation [J]. Soil Biol Biochem,1996,28:479-488
    [2]D N. Rietz, R.J. Haynes. Effects of irrigation-induced salinity and sodicity on soil microbial activity [J]. Soil Biology & Biochemistry,2003,35:845-854
    [3]Yuan Bing cheng, Xu Xue gong, Li Zi zhen, et al. Microbial biomass and activity in alkalized magnesic soils under aridconditions [J]. Soil Biology & Biochemistry,2007,393:3004-3013.
    [4]王国栋,褚贵新,刘瑜,等.干旱绿洲长期微咸地下水灌溉对棉田土壤微生物量影响[J].农业工程学报,2009,25(11):44-48.
    [5]Waldle D A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen in soil [J]. Biological Reviews,1992,67 (3):321-358
    [6]魏天凤,任艳林,曾辉,等.降水改变对樟子松人工林土壤微生物量碳及微生物商动态变化的影响[J].北京大学学报,2008(4):52-59
    [7]董合忠,辛承松,唐薇,等.山东东营滨海盐渍棉田盐分与养分的季节性变化及对棉花产量的影响[J].棉花学报,2006,18(6):362-366.
    [8]弋良朋,马健,李彦.荒漠盐生植物根际土壤盐分和养分特征[J].生态学报,2007,27(9):3565-3571.
    [9]安登第.天然草原的另类资源-土壤微生物[J].草业科学,2003,20(12):68-71.
    [10]徐永刚,宇万太,马强,等.长期不同施肥制度对潮棕壤微生物生物量碳、氮及细菌群落结 构的影响[J].应用生态学报,2010,21(8):2078-2085
    [11]Sun H Y, Deng S P, Raun W R. Bacterial community structure and diversity in a century-old manure-treated agroecosystem [J]. Applied and Environm ental Microbiology,2004,70:5868-5874
    [12]Barrett J E, Virginia R A, Hopkins D W, et al. Terrestrial ecosystem processes of Victoria Land, Antarctica [J]. Soil Biology and Biochemistry,2006,38:3019-3034
    [13]滕应,黄昌勇,骆永明,等.铅锌银尾矿区土壤微生物活性及其群落功能多样性研究[J].土壤学报,2004,41(1):113-119
    [14]周玲玲.土壤盐分胁迫对棉田土壤微生态的影响[D].南京农业大学硕士论文,2010
    [15]弋良朋,马健,李彦.荒漠盐生植物根际土壤酶活性的变化[J]中国生态农业学报,2009,17(3):500-505
    [16]王友保,张莉,刘登义.灰渣场土壤酶活性与植被和土壤化学性质的关系[J].应用生态学报,2003,14(1):110-112.
    [17]宋海燕,李传荣,许景伟,等.滨海盐碱地枣园土壤酶活性与土壤养分、微生物的关系[J].林业科学,2007,43(1):28-32
    [18]李志建,倪恒,周爱国.额济纳旗盆地土壤过氧化氢酶活性的垂向变化研究[J].干旱区自然与环境,2004,18(1):86-89
    [19]曹帮华,吴丽云.滨海盐碱地刺槐白蜡混交林土壤酶与养分相关性研究[J].水土保持学报,2008,22(1):128-133
    [20]周玲玲,孟亚利,周治国,等.盐胁迫对棉田土壤微生物数量与酶活性的影响[J].水土保持学报,2010,24(2):241-246
    [21]杨成德,陈秀蓉,龙瑞军,等.东祁连山高寒草地牧草返青期土壤酶活性特征[J].草地学报,2010,18(3):308-313
    [22]刘芳,叶思源,汤岳琴,等.黄河三角洲湿地土壤微生物群落结构分析[J].应用与环境生物学报,2007,13(3):691-696.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700