土壤盐分胁迫对棉田土壤微生态的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化是限制农业生产发展的一个重要因素,合理利用及改善开发盐渍土地资源对农业发展具有重要意义。本研究采用盆栽方法,以耐盐品种中棉所44和盐敏感品种苏棉12号为材料,于2008-2009年在江苏南京(118°50'E,32002'N)南京农业大学牌楼试验站进行盐分水平(0%,非盐渍土壤;0.35%,轻盐渍土壤;0.60%,中盐渍土壤;0.85%,重盐渍土壤;1.00%,盐土)试验和水盐互作试验,研究目的是明确:(1)盐分胁迫对棉田土壤养分含量的影响;(2)盐分胁迫对棉田土壤微生物数量的影响;(3)盐分对棉田土壤酶活性的影响。
     主要结果如下:
     1.盐分胁迫对棉(Gossypium hirsutum L.)田土壤养分的影响
     土壤盐分胁迫显著降低了棉花生物量和籽棉产量,中棉所44受土壤盐分影响略小于苏棉12号。在棉花的整个生育期,土壤有机质、速效氮、速效钾、有效磷含量均随土壤盐分水平的提高呈逐渐下降趋势。相关性分析表明,土壤养分与棉花产量、棉株生物量呈显著或极显著正相关。说明盐分不利于土壤养分的分解转化与吸收,进一步抑制了棉花的生长及产量形成。同时,土壤干旱加重了盐害胁迫。
     2.盐分胁迫对棉(Gossypium hirsutum L.)田土壤微生物数量的影响
     从苗期到吐絮期,两个品种的根系活力、土壤细菌、真菌和放线菌数量均随土壤盐分的增加呈现逐渐下降的一致趋势,处理间差异均达显著水平。土壤水分亏缺加重盐胁迫影响,相同盐分水平下,正常灌水处理的土壤微生物数量显著高于相应干旱处理。耐盐性品种中棉所44各项测定指标的下降幅度均小于苏棉12号。相关性分析表明,各菌类数量与土壤有机质、速效氮、速效钾及有效磷含量之间均存在极显著的正相关关系,另外,各菌类数量之间、各养分含量之间的相关系数也达到极显著水平说明土壤微生物数量与土壤养分含量关系密切,是盐胁迫下棉花显著减产的一个重要原因,可作为土壤盐胁迫过程中的重要指标。
     3.盐分胁迫对棉(Gossypium hirsutum L.)田土壤酶活性的影响
     从苗期到吐絮期,两个品种的土壤脲酶、蔗糖酶、碱性磷酸酶、纤维素酶活性均随土壤盐分的增加呈现逐渐下降的一致趋势,处理间差异均达显著水平。土壤水分亏缺加重盐胁迫影响,相同盐分水平下,正常灌水处理的土壤酶活性显著高于相应干旱处理。耐盐性品种中棉所44各项测定指标的下降幅度均小于苏棉12号。相关性分析表明,土壤微生物数量、土壤酶活性与大多数土壤养分含量、棉花生物量、籽棉含量、根系活力和根冠比呈显著或极显著正相关关系。说明土壤微生物数量、土壤酶活性与土壤养分含量、棉花产量关系密切,是盐胁迫下棉花显著减产的一个重要原因,可作为土壤盐胁迫过程中的重要指标。
Soil salinization is a key environmental stress factor that limits crop growth and population development, it is very important to exploit and utilize this soil. Two cotton cultivars with different salt-tolerance (CCRI-44, Sumian 12) were used, and five salinity rates (0%.0.35%.0.60%,0.80%,1.00%), standing for five levels respectively were applied. The study focused on:(1) Effects of salinity stress on cotton field soil nutrient content at different growth stages in cotton field; (2) Effects of salinity stress on cotton field soil microbe quantity at different growth stages in cotton field; (3) Effects of salinity stress on cotton field soil enzyme activity at different growth stages in cotton field. The main results were as follows:
     1. Effects of salinity stress on cotton (Gossypium hirsutum L.) field soil nutrient content at different growth stage
     Under the same soil water treatment, with increasing of soil salinity, the content of soil organic matter, available nitrogen, available phosphorus and rapidly available potassium decreased. At the same time, the growth of cotton was inhabited by soil salinity stress. Root vigor, root dry weight, biomass, and seed cotton yield all declined with the increase of soil salinity. but R/S-ratio improved. Under the same soil salinity, the content of soil nutrient were much higher in well-watering treatment than in water stress treatment. Soil water stress aggravated the effects of soil salinity stress. Compared to Sumian 12, CCRI-44 was less affected by soil salinity at different growth stages of cotton. Correlation analysis showed that the seed cotton yield had a significant positive correlation with soil nutrient content, and the biomass was closely related with seed cotton yield. Soil microbe and soil enzyme, which are sensitive to soil salinity stress and closely related with cotton yield, are the important reasons of cotton yield decreasing and important indices to extent of soil salinity stress. These results reveal that soil salinity not only influences the soil nutrient the decomposition to transform and to absorb, but also directly affects the growth of cotton and the vield of cotton.
     2. Effects of salinity stress on cotton (Gossypium hirsutum L.) field soil microbe quantity at different growth stage
     Under the same soil water treatment, with increasing of soil salinity, the number of bacteria, fungi and actinomyces decreased. Under the same soil salinity, the number of soil microbe and activity of soil enzyme were much higher in well-watering treatment than in water stress treatment. Soil water stress aggravated the effects of soil salinity stress. Compared to Sumian 12, CCRI-44 was less affected by soil salinity at different growth stages of cotton. Correlation analysis showed that the seed cotton yield had a significant positive correlation with soil microbe and soil nutrient content, and the number of soil microbe was closely related with soil nutrient content, including the content of soil organic matter, available nitrogen, available phosphorus and rapidly available potassium. Soil microbe, which are sensitive to soil salinity stress and closely related with soil nutrient content, are the important reasons of cotton yield decreasing and important indices to extent of soil salinity stress.
     3. Effects of salinity stress on cotton (Gossypium hirsutum L.) field soil enzyme activity at different growth stage
     Under the same soil water treatment, with increasing of soil salinity, the activity of urease, invertase, phosphatase, celluloytic enzyme decreased. At the same time, the growth of cotton was inhabited by soil salinity stress. Under the same soil salinity, the activity of soil enzyme were much higher in well-watering treatment than in water stress treatment. Soil water stress aggravated the effects of soil salinity stress. Compared to Sumian 12, CCRI-44 was less affected by soil salinity at different growth stages of cotton. Correlation analysis showed that the seed cotton yield, root vigor, root dry weight. R/S-ratio and biomass had a significant positive correlation with soil microbe and soil enzyme, and the number of soil microbe was closely related with activity of soil enzyme. Soil microbe and soil enzyme, which are sensitive to soil salinity stress and closely related with cotton yield, are the important reasons of cotton yield decreasing and important indices to extent of soil salinity stress.
引文
[1]中国农业科学院棉花研究所.《中国棉花栽培学》[M].上海:上海科学技术出版社,1983:70-80.
    [2]李少昆,王崇桃,汪朝阳,等.北疆高产棉花根系构型与动态建成的研究[J].棉花学报.2000.12(2):67-72.
    [3]李永山,冯利平,郭美丽,等.棉花根系的生长特性及其与栽培措施和产量关系的研究.棉花根系的生长和生理活性与地上部分的关系[J].棉花学报,1992,4(1):49-56.
    [4]戴敬.不同施肥水平的棉花根系生长及生理活性[J].上海农业学报.1998,14(2):56-60.
    [5]翁才浩.棉花根系的营养特点[J].中国棉花,1983,(3):23-25.
    [6]李少昆.王崇桃,张旺锋.等.栽培措施对北疆棉花根系及地上部生长的影响[J].中国棉花,2000,27(5):12-]3.
    [7]Cramer GR, Lauchli A. Epstein E. Effects of NaCl and CaCl2 on ion activities in complex nutrient and root growth of cotton [J]. Plant Physiol,1986,81:792-797.
    [8]Li P-Z, Fan S-H, Wang L-H. Productivity and turnover of fine roots in poplar tree and grass roots [J]. Chin J Appl Ecol,2001,12(6):829-832.
    [9]Zhang J F. Agroforestry and its application in amelioration of saline soils in eastern China coastal region [J]. For Study China,2004,6(2):27-33.
    [10]Zhang J F, Xing S J, Zhang XD.2004. Principles and practice of forestation in saline soil in China [J]. Chin For Sci Technol,3(2):62-70.
    [11]郭建华,李跃进,卢炜丽.3种盐胁迫对小麦苗期生长的影响[J].华北农学报,2007,22(3):148-150.
    [12]王淑芬,王文成,杜卫军,等.不同浓度盐胁迫对转基因饲用甜菜种子萌发及幼苗生长的影响[J].华北农学报.2007,22:25-28.
    [13]王素平,郭世荣,胡晓辉.焦彦生.盐胁迫对黄瓜幼苗根系生长和水分利用的影响[J].应用生态学报.2006,17(10):1883-1888.
    [14]张建锋,张旭东,周金星.盐分胁迫对杨树苗期生长和土壤酶活性的影响[J].应用生态学报,2005.16(3):426-430.
    [15]JAFRI A Z, Ahmad R. Plant growth and ionic distribution in cotton (Gossypium hirsutum L.) under saline environment [J]. Pakistan J Bot,1994.26:105-114.
    [16]Raia, N A. Azimov R A. Effect of NaCl solutions on germination and seedling growth [J].Uzbek BiolJ,1988,2:22-24.
    [17]ZHON G H. Lauchli A. Spatial and temporal aspect s of growth in the primary root of cotton seedlings. Effect of NaCl and CaCl2 [J]. Expl Bot,1993,44:763-771.
    [18]辛承松,董合忠,唐薇,等.不同肥力滨海盐土对棉花生长发育和生理特性的影响[J].棉花学报.2007,19(2):124-128.
    [19]刘洪展,郑风荣,慈秀芹,等.海水胁迫下外源生长素对小麦萌发期幼苗生理特性的影响[J].华北农学报,2006,21(2):79-82.
    [20]Gouia H et al. Effects of NaCl on flows of N and mineral ions and on NO-3 reduction rate with in whole plants of salt-sensitive bean and salt-tolerant cotton [J]. Plant Physiol,1994,105:409-1418.
    [21]Leidi E O et al. Effect of salinity on cotton plants grown under nitrate or ammonium nutrition at different calcium levels [J]. Field Crops Res,1991,26:35-44.
    [22]傅伯杰,陈利顶,邱扬.等.黄土丘陵沟壑区土地利用结构与生态过程[J].北京:商务印书馆.2002.
    [23]张世贵,刘冬青,曲道明.浅析棉花早衰与土壤养分含量的关系[J].中国棉花,1996,23(1):19-21.
    [24]杨玉玲,盛建东,田长彦,文启凯.盐化灌淤土壤速效氮、磷、钾空间变异性与棉花生长关系初步研究[J].中国农业科学,2003,36(5):542-547.
    [25]王学德,俞碧霞,黄秀国,等.影响棉花纤维品质的土壤养分[J].棉花学报,1993,5(2):45-48.
    [26]董合忠,辛承松,唐薇,等.山东东营滨海盐渍棉田盐分与养分的季节性变化及对棉花产量的影响[J].棉花学报,2006,18(6):362-366.
    [27]D.N. Rietz, R.J. Haynes. Effects of irrigation-induced salinity and sodicity on soil microbial activity [J]. Soil Biology & Biochemistry,2003,35:845-854.
    [28]Sudipta Tripathi, Sabitri Kumari. Ashis Chakraborty, et al. Microbial biomass and its activities in salt-affected coastal soils [J]. Biol Fertil Soils.2006,42:273-277.
    [29]弋良朋,马健,李彦.荒漠盐生植物根际土壤盐分和养分特征[J].生态学报,2007,27(9):3566-3571.
    [30]张建锋,孙启祥Franz Makeschin盐胁迫对柳树新无性系苗木生长和土壤酶活性的影响[J].水土保持学报.2005,19(3):125-129.
    [31]吕福堂,司东霞,张秀省.日光温室土壤盐分和养分的变化趋势[J].中国蔬菜.2004,3:14-16.
    [32]李宽意,刘正文,胡耀辉.等.影响盐碱地作物产量的土壤化学特征分析[J].江苏农业科学,2002.3:76-78.
    [33]吴忠红.刘凤兰.设施土壤养分和盐分累积状况研究[J].中国农学通报.2007,4:237-240.
    [34]丁成.王世和.杨春生.草浆废水灌溉对海涂湿地土壤及芦苇生长的影响[J].生态环境, 2005.14(1):21-25.
    [35]于海英,李延轩,周健民,等.设施土壤次生盐渍化及对土壤性质的影响[J].土壤学报,2005,37(6):581-586.
    [36]王龙昌,玉井理,永田雅辉,等.水分和盐分对土壤微生物活性的影响[J].垦殖与稻作,1998,3:40-42.
    [37]范君华,刘明,黄伟.南疆温室和菜地土壤微生物学特性比较[J].土壤肥料,2002,(3):31-33.
    [38]张瑜斌,王文卿,庄铁诚,等.厦门西港西南部潮间带光滩土壤微生物的数量变化[J].台湾海峡,2000,19(1):54-60.
    [39]刘长霞,谭天伟,翟洪杰.盐碱条件对真菌解磷能力的影响[J].微生物学通报,2003,30(5):69-72.
    [40]Oren, A. Bioenergetic aspects of halophilism [J]. Microbiology and Molecular Biology Reviews 1999,65:34-348.
    [41]Mafalda Sardinha, Torsten Muller, Helge Schmeisky.Rainer Georg Joergensen. Microbial performance in soils along a salinity gradient under acidic conditions [J]. Applied Soil Ecology, 2003,23:237-244.
    [42]Sudipta Tripathi. Sabitri Kumari. Ashis Chakraborty, et al. Microbial biomass and its activities in salt-affected coastal soils [J]. Biol Fertil Soils,2006,42:273-277.
    [43]汤树得.土壤耕作对白浆土生物学活性的影响[J].土壤肥料,1982,3:13-15.
    [44]张瑜斌,林鹏,魏小勇,等.盐度对稀释平板法研究红树林区土壤微生物数量的影响[J].生态学报,2008,28(3):1287-1295.
    [45]马冬云,郭天财,宋晓,等.尿素施用量对小麦根际土壤微生物数量及土壤酶活性的影响[J].生态学报.2007,27(12):5222-5228.
    [46]罗宾 Б A(陈恺元等译).棉花生理学[M].上海:上海科技出版社,]983.
    [47]罗明邱沃.新疆平原荒漠盐渍草地土壤微生物生态分布的研究[J].中国草地.1995(5):29-33.
    [48]黄韶华,王正荣.周华荣.等.新疆荒漠区土壤微生物与土壤环境关系的初步探讨[J].新疆环境保护,1997,19(1):8]-85.
    [49]张薇,魏海雷.高洪文.等.土壤微生物多样性及其环境影响因子研究进展[J].生态学杂志,2005.4(1):48-52.
    [50]Shang-Shyng Yang, Hsiao-Yun Fan, Chiun-Kai Yang, et al. Microbial population of spruce soil in Tatachia mountain of Taiwan [J]. Chemosphere,2003, (52):1489-1498.
    [51]Newell. S.Y., Porter. D. Microbial secondary production rom saltmarsh-grass shoots, and its known and potential ates [J]. Concepts and Controversies in Tidal Marsh Ecology.2000,59-185.
    [52]Mafalda Sardinha, Torsten Muller. Helge Schmeisky.Rainer Georg Joergensen. Microbial performance in soils along a salinity gradient under acidic conditions [J]. Applied Soil Ecology, 2003.23:237-244.
    [53]Zahran. H.H. Diversity, adaption and activity of the bacterial flora in saline environments [J]. Biol Fertil Soils,1997.25:211-223.
    [54]Bandyapadhyay BK, Maji B, Sen HS, Tyagi NK.Coastal soils of West Bengal—their nature, distribution and characteristics [J]. Central Soil Salinity Research Institute,2003.1-62.
    [55]Sarig, S., Fliessbach, A., Steinberger, Y. Microbial biomass reflects the nitrogen and phosphorus economy of halophytes grown in salty desert soil [J]. Biol Fertil Soils,1996,21:128-130.
    [56]Batra. L., Manna. M.C. Dehydrogenase activity and microbial biomass carbon in salt-affected soils of semiarid and arid regions [J]. Arid Soil Res. Rehabil.1997,11:295-303.
    [57]D.N. Rietz, R.J. Haynes. Effects of irrigation-induced salinity and sodicity on soil microbial activity [J]. Soil Biology & Biochemistry,2003,35:845-854.
    [58]Weretilnyk EA, Alexander KJ, Drebenstedt M, et al. Maintaining methylation activities during salt stress. The involvement of adenosine kinase. Plant Physiol [J].2001,125 (2):856-865.
    [59]马献发,周连仁,陈然.快速修复苏打草甸碱土植被对土壤盐分和酶活性的影响[J].土壤学报.2007,44(4):761-763.
    [60]姚槐应,黄昌勇.土壤微生物生态学及其实验技术[A].2006.
    [61]王晓坤,王刃,周笑白,等.盐生植物根际微生物对含盐环境污染修复展望[J].土壤通报,2007.38(5):1003-1006.
    [62]李仲强,谭周进,夏海鳌.耕作制度对土壤微生物区系的影响[J].湖南农业科学,2001,2:24-25.
    [63]甄文超,代丽,胡同乐.等.连作草莓土壤微生物区系动态的研究[J].河北农业大学学报,2005,28(3):70-73.
    [64]孟亚利,王瑛,王立国,等.麦棉套作复合根系群体对棉花根系生长的影响[J].中国农业科学,2006,39(11):2228-2236.
    [65]谢慧.王兴祥.戴传超,等.花生与药材套种对土壤微生物区系的影响[J].应用生态学报,2007.18(3):693-696.
    [66]田慧,谭周进.屠乃美,等.少免耕土壤生态学效应研究进展[J].耕作与栽培.2006.5:10-12.
    [67]姜英范.粮草轮作中土壤酶活性与土壤肥力关系的初步研究[J].吉林农业大学学报,1983.4:65-68.
    [68]徐雄.张健,张猛,等.果一草人工生态系统中土壤微生物、土壤酶与土壤养分的关系 [J].水土保持学报,2005,19(6):178-181.
    [69]Jenkinson D.S. and Ladd J, N. Microbial biomass in soils:measurement and turnover [J]. In Paul, E.A and Ladd J.N (eds) [J]. Soil Biochemistry. Marcel Dekker, New York 1981.415-471.
    [70]范君华,刘明.塔里木海岛棉发育全程土壤微生物与酶活性的动态变化[J].中国农业科学,2005,21(4):202-205.
    [71]Pandey, S., Singh, D.K. Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soil [J]. Chemosphere.2004(55):197-205.
    [72]章家恩,刘文高,胡刚.不同土地利用方式下土壤微生物数量与土壤肥力的关系[J].土壤与环境,2002,11(2):140-143.
    [73]Henrot J..Vegetation removal in two soils of the humid tropics:Effect in microbial biomass. Soil Biochem [J].1994(26):111-116.
    [74]曹幼琴.六种有机污染物对土壤微生物的影响[J].土壤学报.1991.28(4):426-432.
    [75]任全.茶园不同培肥措施对土壤生境及微生物的影响[D].湖南农业大学学位论文,2007.
    [76]樊盛菊,齐树亭,武洪庆,等.盐生植物根际对土壤中微生物数量和酶活性的影响[J].河北大学学报(自然科学版).2006,1:38-41.
    [77]陈放鸣,李纯.土壤微生物活性对林地七壤磷有效性的影响[J].安徽农业大学学报,1993,20(4):292-297.
    [78]Chin W.T, Kroontie W. Soil Soc. Am Proc,1963,27:316-318.
    [79]孙翠玲,郭玉文,佟超然,等.杨树混交林地土壤微生物与酶活性的变异研究[J].林业科学,1997,33(6):488-497.
    [80]孙波,赵其国,张桃林,等.土壤质量与持续环境——Ⅲ.土壤质量评价的生物学指标[J].土壤,1997,5:225-234.
    [81]李志辉,李跃林,杨民胜,等.按树林地土壤酶分布特点及其活性变化研究[J].中南林学院学报,2000b,20(3):29-33.
    [82]余雪标.按树不同连栽代次人工林生产力及土壤性质的研究[D].博士学位论文,南京:南京林业大学.1998.29-49.
    [83]胡海波.张金池,高智慧,等.岩质海岸防护林土壤微生物数量及其与酶活性和理化性质的关系[J].林业科学研究,2001,15(1):88-95.
    [84]徐秋芳,姜培坤.有机肥对毛竹竹间及根区土壤生物化学性质的影响[J].浙江林学院学报2000,17(4):364-368.
    [85]徐强,程智慧,孟焕文,等.玉米-辣椒套作系统中土壤养分与根际土壤微生物、酶活性的关系[J].应用生态学报,2007,18(12):2747-2754.
    [86]Groffman PM, McDowellb WH. Myersc JC. et al. Soil microbial biomass and activity in tropical riparian forests [J]. Soil Biology and Biochemistry,2001.33:1339-1348.
    [87]Taylor JP, Wilson B, MillsMS. et al. Comparison of microbial numbers and enzymatic activities in surface and subsoil using various techniques [J]. Soil Biology and Biochemistry,2002,34:387-401.
    [88]周礼恺,张志明.土壤酶的测定方法[D].土壤通报,1980,11(5):37-38.
    [89]李淑云,棉花的抗盐性及提高抗盐性的途径[J].生物学通报,2001,36(1):18-19.
    [90]蒋玉蓉.吕有军,祝水金.棉花耐盐机理与盐害控制研究进展[J].棉花学报,2006,18(4):248-254.
    [1]李文炳.山东棉花[M].上海:上海科学技术出版社.2001:407-405.
    [2]蒋玉蓉,吕有军,祝水金.棉花耐盐机理与盐害控制研究进展[J].棉花学报.2006.18(4):248-254.
    [3]廖震,陈金湘,廖振坤.棉花耐盐性研究现状与展望[J].作物研究,2008.22(5):460-465.
    [4]王俊娟,叶武威,周大云等.盐胁迫下不同耐盐类型棉花的萌发特性[J].棉花学报,2007,19(4):315-317.
    [5]辛承松,董合忠,唐薇,温四民.棉花盐害与耐盐性的生理和分子机理研究进展.棉花学报,2005,17(5):309-313
    [6]董合忠,辛承松,李维江,唐薇,张冬梅,罗振.山东滨海盐渍棉田盐分和养分特征及对棉花出苗的影响.棉花学报,2009,21(4):290-295
    [7]弋良朋,马健,李彦.荒漠盐生植物根际土壤盐分和养分特征.生态学报,2007,27(9)3565-3571
    [8]董合忠,辛承松,唐薇,李维江.张冬梅,温四民.山东东营滨海盐渍棉田盐分与养分的季节性变化及对棉花产量的影响.棉花学报,2006,18(6):362-366
    [9]辛承松,董合忠,唐薇,李维江,张冬梅,罗振.不同肥力滨海盐土对棉花生长发育和生理特性的影响.棉花学报,2007,19(2):124-128
    [10]弋良朋,马健,李彦.不同土壤条件下荒漠盐生植物根际盐分特征研究[J].土壤学报,2007,44(6):1139-1143
    [11]张建锋,邢尚军.环境胁迫下刺槐人工林地土壤退化特征研究.土壤通报,2009,5:(40).1086-1091.
    [12]王国栋,褚贵新,刘瑜,等.干旱绿洲长期微咸地下水灌溉对棉田土壤微生物量影响[J].农业工程学报,2009,25(11):44—48.
    [13]L ILJERO TH E. BAA TH E,MA THIA SSON M. Root exudation and rhizoplane bacterial abundance of barley(Hordeum vulgare L.) in relation to nitrogen fertilization and root growth [J]. Plant Soil.,1990.127:81-89.
    [14]MARSCHN ER P, CROWL EY D E, HIGA SHIR M. Root exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper(Capsicum annuum L.) [J]. Plant Soil.,1997,18(9):11-20.
    [15]余海英,李廷轩.周健民.设施土壤次生盐渍化及其对土壤性质的影响[J].土壤.2005,37(6):581-586.
    [16]Abbott L K, Murphy D V.. Netherlands:Kluwer Academic Publishers [J]. Soil Biological Fertility,2003.
    [17]王学德.俞碧霞,黄秀国,等.影响棉花纤维品质的土壤养分[J].棉花学报,1993,5(2):45-48.
    [18]D.N. Rietz. R.J. Haynes. Effects of irrigation-induced salinity and sodicity on soil microbial activity [J]. Soil Biology & Biochemistry,2003.35:845-854.
    [19]杨玉玲,盛建东,田长彦,文启凯.盐化灌淤土壤速效氮、磷、钾空间变异性与棉花生长关系初步研究[J].中国农业科学,2003,36(5):542-547.
    [20]Sudipta Tripathi, Sabitri Kumari, Ashis Chakraborty, et al. Microbial biomass and its activities in salt-affected coastal soils [J]. Biol Fertil Soils,2006,42:273-277.
    [21]鲁如坤主编.土壤农业化学分析方法.北京:中国农业科技出版社,1999.252-254.
    [22]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社.2000
    [1]房朋,任丽丽,张立涛.等.盐胁迫对杂交酸模叶片光合活性的抑制作用[J].应用生态学报.2008,19(10):2137-2142.
    [2]蒋玉蓉,吕有军,祝水金.棉花耐盐机理与盐害控制研究进展[J].棉花学报,2006, 18(4):248-254.
    [3]廖震.陈金湘,廖振坤.棉花耐盐性研究现状与展望[J].作物研究,2008,22(5):460-465.
    [4]王俊娟,叶武威,周大云,等.盐胁迫下不同耐盐类型棉花的萌发特性[J].棉花学报,2007.19(4):315-317.
    [5]A HMAD S, Khan N, Iqbal MZ, et al. Salt tolerance of cotton (Gossypium hirsutum L.) [J]. Asian J Plant Sci, 2002,1(6):715-719.
    [6]孙小芳,刘友良,陈泌.棉花耐盐性研究进展[J].棉花学报,1998,10(3):118-124.
    [7]辛承松,董合忠,唐薇.棉花盐害与耐盐性的生理和分子机理研究进展[J].棉花学报,2005,17(5):309-313.
    [8]杨青华,韩锦峰,贺德先.液体地膜覆盖对棉田土壤微生物和酶活性的影响[J].生态学报,2005,25(6):1312-1317.
    [9]王瑛,孟亚利,陈兵林,等.麦棉套作棉花根际非根际土壤微生物和土壤养分[J].生态学报.2006.26(10):3485-3490.
    [10]Jenkinson D S, Ladd J N. Microbial biomass in soil:Measurement and turnover. In:Paul V E A, Ladd J N, eds. Soil Biochenistry. New York:Marcel Dekker,1981, (5):415-471.
    [11]Doran J W, Coleman D C, Stewart B A. Defining Soil Quality for a Sustainable Environment. Soil Science Society of America, Inc., American Society of Agronomy, Inc. Madison, Wisconsin, USA, 1994.
    [12]Bergstrom D W. Monreal C M, King D J.1998. Sensitivity of soil enzyme activities to conservation practices [J]. Soil Science Society of American Journal,62:1286-1295.
    [13]Abbott L K. Murphy D V. Soil Biological Fertility. Netherlands:Kluwer Academic Publishers, 2003.
    [14]项学敏,宋春霞,李彦生.等.湿地植物芦苇和香蒲根际微生物特性研究[J].生态与环境,2004,30(124):35-38.
    [15]李秀英,赵秉强,李絮花,等.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系.中国农业科学.2005,38(8):1591-1599
    [16]马冬云.郭天财.宋晓,等.尿素施用量对小麦根际土壤微生物数量及土壤酶活性的影响 [J].生态学报,2007,27(12):5222-5228.
    [17]李秀英,赵秉强,李絮花.等.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系[J].中国农业科学.2005.38(8):1591-1599
    [18]章家恩,刘文高,胡刚.不同土地利用方式下土壤微生物数量与土壤肥力的关系[J].土壤与环境.2002,11(2):]40-143.
    [19]张瑜斌,林鹏,魏小勇,庄铁诚.盐度对稀释平板法研究红树林区土壤微生物数量的影响[J].生态学报,2008.28(3):1287-1295.
    [20]周智彬,李培军.塔克拉玛干沙漠腹地人工绿地土壤中微生物的生态分布及其与土壤因子间的关系[J].应用生态学报.2003,14(8):1246-1250.
    [21]许光辉,郑洪元.土壤微生物分析方法手册.北京:农业出版社,1986.
    [1]石元春.盐碱土改良.北京,农业出版社,1986
    [2]蒋玉蓉,吕有军,祝水金.棉花耐盐机理与盐害控制研究进展[J].棉花学报,2006,18(4):248-254.
    [3]廖震,陈金湘,廖振坤.棉花耐盐性研究现状与展望[J].作物研究.2008,22(5):460-465.
    [4]王俊娟.叶武威,周大云,等.盐胁迫下不同耐盐类型棉花的萌发特性[J].棉花学报,2007.19(4):315-317.
    [5]A HMAD S. Khan N, Iqbal MZ. et al. Salt tolerance of cotton (Gossypium hirsutum L.) [J]. Asian J Plant Sci,2002,1(6):715-719.
    [6]张建锋,张旭东,周金星Franz Makeschin盐分胁迫对杨树苗期生长和土壤酶活性的影响[J].应用生态学报.2005.16(3):426-430.
    [7]张建锋,孙启祥Franz Makeschin盐胁迫对柳树新无性系苗木生长和土壤酶活性的影响[J].水土保持学报,2005,19(3):125-129
    [8]马献发,周连仁,陈然.快速修复苏打草甸碱土植被对土壤盐分和酶活性的影响[J].土壤学报,2007,44(4):761-763.
    [9]周兴元,曹福亮.土壤盐分胁迫对三种暖季型草坪草保护酶活性及脂质过氧化作用的影响[J].林业科学研究,2005,18(3):336-341.
    [10]Kramer S, Green D M. Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biology & Biochemistry,2000,32:179-188
    [11]王丽萍,崔美香,孟艳玲.NaCl胁迫对黄瓜幼苗生长及抗氧化系统的影响[J].西北农业学报,2007, 16(4):170-173.
    [12]王晓坤,王刃.周笑白,项学敏,周集体.盐生植物根际微生物对含盐环境污染修复展望[J].土壤通报.2007,38(5):1003-1006.
    [13]马冬云,郭天财,宋晓.等.尿素施用量对小麦根际土壤微生物数量及土壤酶活性的影响[J].生态学报.2007.27(12):5222-5228.
    [14]Weretilnyk EA, Alexander KJ, Drebenstedt M. et al.2001. Maintaining ethylation activities during salt stress. The involvement of adenosine kinase. Plant Physiol,125(2):856-865
    [15]JONES D L, KOCHIAN L V. A luminium-organic acid interactions in acid soil. I. Effect of root-derived organic acids on the kinetics of A 1 dissolution [J]. Plant Soil,1996,18(2):221-228.
    [16]HOFFLAND B. ROMHELD V,MARSCHNER H. Citric acid exudation and precipitation of calcium citrate in the rhizosphere of white lup in (L upinus albus L.) [J]. Plant Cell Environ. 1992,12:285-292.
    [17]NEUMAN B, ROMHELD V,MARSCHN ER H. Citric acid secretion and precitipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.) [J]. Plant Cell Environ.,1998, 12:285-292.
    [18]徐福利,梁银丽,张成娥,等.施肥对日光温室黄瓜生长和土壤生物学特性的影响[J].应用生态学报,2004.15(7):1127-1230
    [19]Tsugane K, Kobayashi, Nwam Y, et al. A recessive arabidopsis mutant that grows photo auto trpphically under salt stress shows enhanced active oxygen detoxificantion [J]. Plant Cell 1999,11: 1195-1206.
    [20]JONES D L, PETER R D. Role of root drived organic acids in the mobilization of nutrients from the rhizosphere [J]. Plant Soil,1995,16(6):247-257.
    [21]徐强,程智慧,孟焕文,等.玉米-线辣椒套作系统中土壤养分与根际土壤微生物、酶活性的关系[J].应用生态学报,2007,18(12):2747-2754.
    [22]吕可,潘开文,王进闯,等.花椒叶浸提液对土壤微生物数量和土壤酶活性的影响[J].应用生态学报,2006,17(9):1649-1654.
    [23]周礼恺.土壤酶学[M].北京:科学出版社,1987.
    [1]弋良朋,马健,李彦.荒漠盐生植物根际土壤盐分和养分特征.生态学报,2007,27(9):3565-3571.
    [2]王国栋.褚贵新,刘瑜,等.干旱绿洲长期微咸地下水灌溉对棉田土壤微生物量影响[J].农业工程学报,2009,25(11):44—48.
    [3]Hinsinger P. How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Advances in Agronomy,1998,64:225-265
    [4]张建锋,孙启祥,Franz Makeschin盐胁迫对柳树新无性系苗木生长和土壤酶活性的影响[J].水土保持学报,2005,19(3):125-129
    [5]王晓坤,王刃,周笑白,等.盐生植物根际微生物对含盐环境污染修复展望[J].土壤通报,2007,38(5):1003-]006.
    [6]张瑜斌,林鹏,魏小勇,等.盐度对稀释平板法研究红树林区土壤微生物数量的影响[J].生态学报,2008,28(3):1287-1295.
    [7]马献发,周连仁,陈然.快速修复苏打草甸碱土植被对土壤盐分和酶活性的影响[J].土壤学报,2007,44(4):761-763.
    [8]张建锋,张旭东,周金星,等.盐分胁迫对杨树苗期生长和土壤酶活性的影响[J].应用生态学报,2005,16(3):426-430.
    [9]马冬云,郭天财,宋晓,等.尿素施用量对小麦根际土壤微生物数量及土壤酶活性的影响[J].生态学报,2007,27(12):5222-5228.
    [10]徐强,程智慧,孟焕文,等.玉米-线辣椒套作系统中土壤养分与根际土壤微生物、酶活性的关系[J].应用生态学报,2007,18(12):2747-2754.
    [11]吕可,潘开文,王进闯,等.花椒叶浸提液对土壤微生物数量和土壤酶活性的影响[J].应用生态学报.2006,17(9):1649-1654.
    [12]NEUMAN B, ROMHELD V, MARSCHN ER H. Citric acid secretion and precitipitation of calcium citrate in the rhizosphere of white lup in(Lupinus albus L.) [J]. Plant Cell Environ.,1998, 12:285-292.
    [13]裘丽珍,黄有军,黄坚钦.等.不同耐盐性植物在盐胁迫下的生长与生理特性比较研究[J].浙江大学学报(农业与生命科学版).2006,32(4):420-427.
    [14]唐明星.基于高光谱遥感的盐土棉田棉花水、盐监测研究[D].南京:南京农业大学,2009.
    [15]Weretilnyk EA. Alexander KJ, Drebenstedt M. et al. Main-taining methylation activities during salt stress [J]. The involvement of adenosine kinase. Plant Physiol,2001.125(2):856-865.
    [16]Chen S-L. Li J-K, Eberhard F. et al. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress [J]. For Ecol Man,2002,168(1-3):217-230.
    [17]Klemedtsson L, Berg P, Clarholm M.1987. Microbial nitrogen transformation in the root environment of barley. Soil B iology and B iochem istry,19:551-558
    [18]Singh J S, RaghubanshiA S. Singh R S, et al.1989. Microbial biomass acts as a source of plant nutrients in dry trop ical forest and savanna. N ature,338:499-500
    [19]Srivastava S C, Singh J S.1991. Microbial C, N and P in dry trop ical forest soils:Effects of alternate land uses and nutrient flux. Soil B iology and B iochem istry,23:117-124
    [20]Groffman P M, McDowellb W H, Myersc J C, et al.2001.Soil microbial biomass and activity in trop ical riparian forests. Soil B iology and B iochem istry,33:1339-1348
    [21]Taylor J P, Wilson B. Mills M S, et al.2002. Comparison ofmicrobial numbers and enzymatic activities in surface and subsoil using various techniques. Soil B iology and B iochem istry,34:387-401
    [22]Vep s3/4l3/4 inen M, Erkomaal K, Kukkonen S, et al.2004.The impact of crop p lant cultivation and peat amendment on soilmicrobial activity and structure. Plant and Soil,264:273-286
    [23]Debosz K. Rasmussen pH, Pedersen AR.1999. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils:Effects of organic matter input. Applied Soil Ecology,13: 209-218
    [24]Garcia-Gil JC, Plaza C, Soler-Rovira P, et al.2000. Long-term effects of municipal solid waste compost application on soil enzyme activities end microbial biomass. Soil B iology and B iochem istry,32:1907-1913
    [25]Schloter M, Lebuhn M, Henlin T, et al.2000. Ecology and evolution of bacterialmicrodiversity. FEMS M icrobiology Review,24:647-660
    [26]陈恩凤.土壤肥力物质基础及其调控.北京:科学出版社,1990.
    [27]罗宾 Б A(陈恺元等译).棉花生理学[M].上海:上海科技出版社,1983,120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700