用户名: 密码: 验证码:
改变碳输入对樟树林土壤微生物数量和土壤酶活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤微生物是土壤的重要组成部分,在土壤有机质的分解和养分循环中起重要作用。土壤酶是土壤有机体代谢的动力,在生态系统中起着重要的作用,土壤酶活性能直接反映土壤生物化学过程的强度和方向,土壤中所进行的一系列的生物化学反应都是在土壤酶的催化作用下完成的,土壤微生物数量、有机质含量等都与土壤酶活性的大小密切相关。本研究以亚热带典型森林生态系统—樟树人工林为研究对象,设计了添加凋落物(LAR)、去除凋落物(LRR)、去根添加凋落物(LANR)、去根去除凋落物(LRNR)和去根(CNR)5种碳输入处理试验,同时设置对照(CK),在诊断土壤理化性质的基础上,测定了不同碳输入处理条件下樟树林土壤微生物数量及土壤酶活性,分析了土壤酶活性和微生物数量的相互关系,研究结果将为揭示森林土壤碳通量机制和人工林的可持续经营提供理论依据。
     (1)樟树林中土壤理化性质。对照(CK)样地土壤全C含量15.28mg·g-1全N含量1.49mg·g-1,C/N为10.20,含水率为22.46%。改变凋落物的质、量可导致土壤的全C含量、全N含量及C/N比发生改变。土壤全C含量为:LAR最大(23.94mg·g-1),CNR最小(13.85mg·g-1)。添加凋落物使土壤全C含量显著增加,去根使土壤全C显著减少。土壤全N含量为:LRNR最大(2.10mg·g-1)去根去凋落物使土壤全N含量显著增加。C/N大小为:LAR最大(12.69),CNR最小(8.64),与土壤全C含量变化趋势大致相同。土壤含水率大小:LANR最大(23.16%),添加凋落物后土壤含水率增加。
     (2)樟树林微生物数量分布特征。对照和去除凋落物处理,微生物数量为:细菌>放线菌>真菌。去根、去根去除凋落物、添加凋落物和去根添加凋落物处理,微生物数量为:细菌>真菌>放线菌。
     从微生物数量的年变化规律看,添加凋落物使细菌、真菌和微生物总数量增加(LAR>LRR、LANR>LRNR);去除根系可使真菌、放线菌和微生物总数量下降(LAR>LANR、LRR>LRNR、CK>CNR)。4月、7月、10月,去根处理增加了细菌数量(CNR>CK)。4月、7月、10月,去除凋落物后,根系对真菌数量呈负效应(LRNR>LRR)。1月、4月、10月,添加凋落物使放线菌数量减少(CK>LAR)。凋落物和根系同时作用时,加强了两者的相互作用,对微生物数量的影响更为显著。
     (3)樟树林土壤酶活性。从土壤蛋白酶、脱氢酶、酸性磷酸酶、脲酶活性总体年变化规律看,添加凋落物可以提高蛋白酶、脲酶、脱氢酶和酸性磷酸酶活性,减少凋落物降低蛋白酶、脲酶、脱氢酶和酸性磷酸酶活性(LAK>LRR、 LANR>LRNR);去根系处理会减低蛋白酶、脲酶、脱氢酶和酸性磷酸酶活性,根系正效应明显(CK>CNR)。凋落物和根系同时作用时,显著的增加蛋白酶、脲酶、脱氢酶、过氧化氢酶活性和酸性磷酸酶活性(LANR>LRNR)。去除凋落物和添加凋落物,根系对过氧化氢酶活性呈负效应(IANR>LAR、LRNR>LRR)。
     (4)土壤微生物数量与土壤理化性质的相关性。凋落物处理(LAR、LRR):放线菌数量与全C、全N和C/N呈负相关,且相关性显著。根系处理(CK、CNR):真菌数量与全C和C/N呈正相关,相关性显著。凋落物和根系交互处理(LANR、 LAR、LRNR、LRR):放线数量与全N相关性显著。5种处理微生物与含水率相关性表现出于对照样地相同的规律,即细菌、真菌、放线菌和微生物总数均与含水率呈正相关。樟树林中放线菌可作为土壤有机质的生物指标。
     (5)土壤酶活性与土壤理化性质的相关性。凋落物处理(LAR、LRR):酸性磷酸酶与全C和C/N呈正相关,相关性显著。根系处理(CK、CNR):蛋白酶、酸性磷酸酶和脱氢酶与C/N呈正相关,相关性显著。凋落物和根系交互处理(LANR、LAR、LRNR、LRR):过氧化氢酶和全C和C/N呈正相关。蛋白酶和含水率呈正相关,相关性显著。樟树林中酸性磷酸酶和过氧化氢酶可作为土壤有机质含量的生物指标。
     (6)土壤微生物数量与土壤酶活性的相关性。土壤微生物数量与蛋白酶、脲酶、脱氢酶和酸性磷酸酶4种土壤酶表现出不同程度的相关性,而与过氧化氢酶没有相关性。凋落物处理(LAR、LRR):微生物总数与4种土壤酶相关性显著。根系处理(CK、CNR):蛋白酶与真菌和放线菌相关性显著。脲酶、酸性磷酸酶、脱氢酶与真菌、放线菌和微生物总数相关性显著。凋落物和根系处理(LANR、LAR、LRNR、LRR):细菌、微生物总数与4种土壤酶相关性显著。樟树林中凋落物处理时4种土壤酶活性可作为微生物总数的生物指标。根系处理时4种土壤酶活性可作为的真菌和放线菌生物指标。凋落物和根系处理时4种土壤酶活性可作为细菌、微生物总数的生物指标。
Soil microorganism are main parts of the forestry ecosystem, and play vital roles in energy conversion, material cycling, development and maturation of soil. Soil enzyme plays an important role in the ecosystem, soil enzyme activity performance is a direct reflection of the strength and direction of soil biochemical processes. The number of microorganisms, organic matter content are closely related to the size of soil enzyme activity. Cinnamomum Camphor is a representative of subtropical evergreen broadleaf forest species. In this study, we treated with five treatments and control (CK), extra litter addition with root (LAR), litter removal with root (LRR), extra litter addition without root (LANR), litter removal without root (LRNR), control without root (CNR). We use traditional isolation methods to investigate soil properties, soil microorganism quantity, soil enzymes activity, and analysis the relation was conducted between the number of microorganism quantity and soil enzyme activity of the forest ecosystem,
     (1)CK:Total C (15.28mg-g-1), Total N (1.49mg-g-1), C/N (10.20), water content (22.46%). Total C:LAR reaches maximum value (23.94mg-g-1), CNR reaches minimum value(13.85mg-g-1). Soil total C content increased under add litter, soil total C content decrease without of roots. LRNR reaches maximum value (2.10mg·g-1), Soil total N content increase under litter removal without root. Soil C/N increase under add litter, LAR reaches maximum value (12.69). Soil C/N decreased under removal of roots, CNR reaches minimum value (8.64). Soil water content increase under add litter. LANR reaches maximum value (23.16%)
     (2) Microorganism quantities under CK, LRR showed that bacteria> actinomycetes>fungi; Microorganism quantities under LAR, LANR, LRNR, LRR show that bacteria>fungi>actinomycetes. Number of bacteria and fungi increased under add litter (LAR>LRR, LANR>LRNR); Number of bacteria and actinomycetes decreased under removal root (LAR>LANR, LRR> LRNR, CK>CNR). Number of bacteria under removal root decreased in April, July and October (CK>CNR); root has negative effect on number of fungi after removal litter in April, July, October (LRNR>LRR). Number of actinomycetes decreased under add litter (CK>LAR) The root and litter simultaneously effect on the number of microorganisms had obvious positive efficiency.
     (3) Protease, dehydrogenase, acidic phosphatase and urease activity improve under add litter (LAR>LRR, LANR>LRNR);protease, dehydrogenase, acidic phosphatease and urease activity declined under removal litter (CK>CNR). Root effect on Catalase activity had obvious negative efficiency under removal litter or add litter.
     (4) Correlation analysis of soil properties and microbial quantity showed that LAR, LRR:Actinomyces had significant negative correlation with total C, total N and C/N. CK, CNR:Fungi had significant positive correlation with total C and C/N. LANR, LAR, LRNR, LRR:Actinomyces had significant negative correlation with total N. Actinomyces, fungi and soil total microorganisms had positive correlation with soil water content under five treatments and CK. Therefore, actinomyces is suggested as the biological indicators of soil organic matter.
     (5) Correlation analysis of soil properties and enzyme activity showed that LAR, LRR:Acidic phosphatase has significant negative correlation with total C, total N and C/N. CK, CNR:Proteinase, Acidic phosphatase, dehydrogenase had significant positive correlation with C/N. LANR, LAR, LRNR, LRR:catalase had significant positive correlation with total C, C/N. Proteinase had positive correlation with soil water content under five treatments and CK. Therefore, catalase and Acidic phosphatase are suggested as the biological indicators of soil organic matter.
     (6) Correlation analysis of enzyme activity and microbial quantity showed that soil microbial quantity had correlation with four soil enzymes (Proteinase, dehydrogenase, urease, Acidic phosphatase), without catalase. LAR, LRR:soil microbial quantity had significant negative correlation with four soil enzyme. CK, CNR:Proteinase had significant correlation with actinomyces, fungi. Dehydrogenase, urease, Acidic phosphatase had significant correlation with actinomyces, fungi and total microbial quantity. LANR, LAR, LRNR, LRR:Bacteria, total microbial quantity had significant positive correlation with four soil enzymes. Therefore, soil enzyme activity is suggested as the biological indicators of microbial quantity.
引文
[1]Lipson D. A., Monson R. K. Plant-microbe competition for soil aminoacids in the alpine tundra:effects of freeze-thaw and dry-rewet events[J]. Oecologia, 1998, 113:406-414.
    [2]Kaye J. P., Hart S. C. Competition for nitrogen between plants and soil microorganisms[J]. Trends Ecology Evolution, 1997,12:139-143.
    [3]Devi N. B., Yadava P. S.. Seasonal dynamics in soilmicrobial biomass C, N and P in amixedoak forest ecosystem of Manipur, North-east India[J]. Applied Soil Ecology, 2006, 31:220-227.
    [4]Schipper L. A., Degens B. P., Sparling G. P.. Changes in microbial heterotrophic diversity along five plants successional sequences[J]. Soil Biology and Bio-chemistry, 2001,33:2093-2103.
    [5]Frank S., Christophe C. T.. A new approach to utilize PCR-single-strand-conformation polymorphism for 16sr RNA gene-based microbial community analysis[J]. Applied and Environmental Microbiology, 1998,64 (12):4870-4876.
    [6]Kate A. E., Jennifer M., Peter K. G, et al. Soil microbial and nutrient dynamics in a wet arctic sedge meadow in late winter and early spring[J]. Soil Biology and Biochemistry, 2006, 38 (9):2843-2851.
    [7]Barbhuiya A. R., Arunachalam A., Pandey H. N., et al. Dynamics of soil microbial biomass C, N and P in disturbed and undisturbed stands of a tropical wet-evergreen forest[J]. European Journal of Soil Biology, 2004, 40:113-121.
    [8]Torsrik V. L., Goksoyr J., Daae F. L.. High diversity in DNA of soil bacterial[J]. Applied and environmental Microbiology, 1999, 56 (3):782-787.
    [9]Sonu S., Nandita G, Singh K P.. Variations in soil microbial biomass and crop roots due to differ in resource quality inputs in a tropical dry land agroecosystem[J]. Soil Biology and Biochemistry, 2007,39:76-86.
    [10]许光辉,郑洪元.土壤微生物分析手册[M].北京:北京农业出版社,1986.
    [11]周碧青,陈成榕,张辉,等.不同覆被类型林地土壤微生物区系的差异性[J].福建农林大学学报(自然科学版),2009,38(5):542-547.
    [12]厉婉华.苏南丘陵区不同林分下根际根外土壤微生物区系及酶活性[J].生态学杂志,1994,23(6):11-14.
    [13]黄志宏,田大伦,梁瑞友,等.南岭不同林型土壤微生物数量特征分析[J].中南林业科技大学学报,2007,27(3):1-5.
    [14]许景伟,李春艳,王卫东,等.黄河下游滩地杨树人工林土壤微生物分析[J].东北林业大学学报,2007,35(9)52-55.
    [15]周智彬,李培军,徐新文,等.塔里木沙漠公路防护林土壤微生物的生态分布特征[J].水土保持学报,2002,16(3):47-51.
    [16]Wardle D. A.. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil[J]. Biological Reviews, 1992,67: 321-358.
    [17]郑华,陈法霖,欧阳志云,等.不同森林土壤微生物群落对Biolog-GN板碳源的利用[J].环境科学,2007,28(5):1126-1130.
    [18]李春艳,李传荣,许景伟,等.泥质海岸防护林土壤微生物、酶与土壤养分的研究[J].水土保持学报,2007,21(1):156-160.
    [19]李世清,任书杰,李生秀.土壤微生物体氮的季节性变化及其与土壤水分和温度的关系[J].植物营养与肥料学,2004,10(1):18-23.
    [20]杨凯,朱教君,张金鑫,等.不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化[J].生态学报,2009,2(10):5500-5507.
    [21]Xiong Y. M., Xia H. P., Li Z. A., et al. Impacts of litter and understory removal on soil properties in a subtropical A cacia mangium plantation in China[J]. Plant and Soil,2008,304 (1-2):179-188.
    [22]陆耀东,薛立.去除地面枯落物对加勒比松林土壤特性的影响[J].生态学报.2008,28(7):3205-3211.
    [23]Phillip R. E., Shirley H.. No-Tillage agriculture Principle and Practices[M]. New York:Van Nostrand Reihold Company, 1984.
    [24]王成秋,王树良,杨剑虹.紫色土柑桔园土壤酶活性及其影响因素研究[J].中国南方果树,1999,28(5):7-11.
    [25]张成娥,王栓全.作物秸秆腐解过程中土壤微生物量的研究[J].水土保持学报,2000,14(3):96-99.
    [26]杨玉盛,林德喜,李振问.杉木细柄阿丁枫混交林根际土壤的研究[J].福建 林学院学报,1997,17(1):11-15.
    [27]熊明彪,何建平,宋光煜.根分泌物对根际微生物生态分布的影响[J].土壤通报,2002,33(2):145-147.
    [28]张学利,杨树军,张百习.不同林龄樟子松根际与非根际土壤的对比[J].福建林学院学报,2005,25(1):1-4.
    [29]高子勤,张淑香.连做障碍与根际微生态研究Ⅰ:根系分泌物及其生态效应[J].应用生态学报,1998,9(5):549-554.
    [30]刘峰,温学森.根系分泌物与根际微生物关系的研究进展[J].食品与药品,2006,8(10):37-40.
    [31]Westover K. M., Bever J. D.. Mechanisms of plant species coexistence: complementary roles of rhizosphere bacteria and root fungal pathogens[J]. Ecology, 2001,82:3285-3294.
    [32]章家恩,刘文高,王伟胜.南亚热带不同植被根际微生物敦量与根际土壤养分状况[J].土壤与环境,2002,11(3):279-282.
    [33]李宝福,张金文,赖彦斌.巨尾桉根际与非根际土壤酶活性的研究[J].福建林业科学.1999,26(增刊):13-16.
    [34]陈大勋,陆集卿,李双霖.福建省几种土壤类型酶活性的研究[J].福建农学院学报,1986,15(1):78-85.
    [35]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    [36]周礼恺.土壤酶学[M].北京:科学出版社,1987.
    [37]郑洪元.土壤酶学研究进展[J].微生物学杂志,1984,4(3):45-49.
    [38]周礼恺.不同来源的植物物质在棕壤中的分解特征与土壤酶活性[J].土壤通报,1984,4:180-181.
    [39]武雪萍,刘增俊,赵跃华,等.施用芝麻饼肥对植物烟根际土壤酶活性和微生物碳、氮的影响[J].植物营养与肥料学报,2005,11(4):541-546.
    [40]Decker K. L. M., Boerner R. E. J., Morris S. J.. Scale dependent patterns of soil enzyme activity in a forest landscape[J]. Canadian Journal of Forest Research, 1999,29 (2):232-241.
    [41]沈其荣.土壤肥料学通论[M].高等教育出版社,2001.
    [42]Dick R. P., Rasmussen P. E., Kerle E. A.. Influence of long-term residue management on soil enzyme activities in relation to soil chemical properties of a wheat-fallow system[J]. Biology and Fertility of Soils, 1988,6:159-164.
    [43]Dick W. A., Cheng L.. Soil acid and alkaline phosphatase activity as pH adjustment indicators[J]. Soil Biology and Biochemistry, 2000, 32:1915-1917.
    [44]蔡少华,和文祥.六价铬对土壤脱氢酶活性的影响[J].西北农业学报,2008,17(5):208-214.
    [45]孟立君.设施不同种植年限土壤酶活性及其与土壤肥力关系的研究[D].中国哈尔滨:东北农业大学,2004.
    [46]Martens D. A., Johanson J. B., Frankenberger W. T.. Pmduction and pesistence of soil enzymes with repeated additions of organic residue[J]. Soil Science, 1992, 153 (1):53-61.
    [47]Dick R. P., Myrold D. D., Kerle E. A.. Microbial biomass and enzyme activities in compacted and rehabilitated skid trail soils[J]. Soil Science Society of America Journal,1988,52:512-516.
    [48]Cooper P. M. Department of Scientific and Agriculture Research[J]. Soil Biology and Biochemistry, Washington Dc. USA, 1982:333-337.
    [49]李萍,徐雅梅.不同培肥措施对藏东南土壤酶活性的影响[J].土壤肥料,2002:33-35.
    [50]徐雁.土壤酶的研究概况[J].四川林业科技,2010,31(2):14-20.
    [51]戴伟,陈晓东.北京低山地区土壤酶活性与土壤理化性质的关系[J].河北林学院学报,1995,10(1):13-19.
    [52]Fleming R. L.. Water content, bulk density, and coarse fragment content measurement in forest soils[J]. Soil Science Society of America Journal,1993, 57 (1):261-270.
    [53]曹承绵,李荣华,张志明,等.红壤的酶活性与土壤肥力[J].土壤通报,1986,17(7):15-19.
    [54]关松荫,沈桂琴,孟昭鹏,等.我国主要土壤剖面酶活性状况[J].土壤学报,1984,21(4):368-381.
    [55]和文祥,朱铭莪.陕西土壤脲酶与土壤肥力关系分析[J].土壤学报,1997,34(4):392-398.
    [56]张志明,曹承绵,周礼恺.耕作棕壤酶活性的研究[J].土壤学报,1984,21(6):281-285.
    [57]Dick W. A.. Influence of long term tillage and crop rotation combination on soil enzyme activities[J]. Soil Science Society of America Journal,1984, 48: 569-574.
    [58]Zantua M. I., Dumenil L. C, Bremner J. M.. Relationships between soil urease activity and other soil properties[J]. Soil Science Society of America Journal, 1977,41 (2):350-352.
    [59]Clatholm M.. Microbial biomass P, labile P, and acid phosphatase activity in the humus layer of a spruce forest after repeated additions of fertilizers[J]. Biology and Fertility of soils.1993,16:287-292.
    [60]Kramer S., Green D M.. Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland[J]. Soil Biology and Biochemistry, 2000, 32 (2):179-188.
    [61]杨承栋,焦如珍.杉木人工林根际土壤性质变化的研究[J].林业科学,1999,35(6):2-9.
    [62]周玉娟,冯旄,李日伟,等.桉树人工林与其它林地土壤酶活性的差异分析[J].广西林业科学,2009,38(3):155-157.
    [63]杨万勤,钟章成,陶建平,等.缙云山森林土壤酶活性与植物多样性的关系[J].林业科学,2001,137(4):124-128.
    [64]杨涛.高寒草甸不同植被类型土壤尿酸酶活性的研究[J].土壤通报,1987,18(4):177-179.
    [65]郜红建,蒋新,常江,等.根分泌物在污染土壤生物修复中的作用[J].生态学杂志,2004,23(4):135-139.
    [66]胡开辉,罗庆国,汪世华,等.化感水稻根际微生物类群及酶活性变化[J].应用生态学报,2006,17(6):1060-1064.
    [67]Tesema Chekola, Lester R., Voughb, Rufus L.. Chaneyc. Phytoremediation of polychlorinated biphenyl-contaminated soils:the rhizosphere effect[J]. Environment International,2004,30 (6):799-804.
    [68]樊盛菊,齐树亭,武洪庆,等.盐生植物根际对土壤中微生物数量和酶活性的影响[J].河北大学学报(自然科学版),2006,26(1):38-41.
    [69]和文祥,来航线,武永军,等.培肥对土壤酶活性影响的研究[J].浙江大学学报,2001,27(3):265-268.
    [70]V Acosta-Martinez, Leo Cruz, Dacid S. R., et al. Enzyme activities as affected by soil properties and land use in a tropical watershed[J]. Applied Soil Ecology, 2007,35 (1):35-45.
    [71]Bruce A Caldwell. Enzyme activities as a component of soil biodiversity:a review[J]. Pedobilgogia,2005,49 (6):637-644-
    [72]Dick R. P., Breakwill D., Turco R.. Soil enzyme activities as indicators of soil quality[M]. Soil Science Society America, 1996.
    [73]唐万鹏,李吉跃,胡兴宜,等.江汉平原杨树人工林连栽对林地土壤质量的影响[J].华中农业大学学报,2009,28(6):750-755.
    [74]郭继勋,姜世成,林海俊,等.不同草原植被碱化草甸土的酶活性[J].应用生态学报,1997,8(4):412-416.
    [75]Nancy W., Munga, Peter P., Motavall, et al. Spatial variation of soil enzyme activities and microbial functional diversity in temperate alley cropping systems[J]. Biology and Fertility of Soils, 2005,42 (2):129-136.
    [76]Dari K., Bachet M., Blondeau R.. Isolation of soil streptomyces strains capable of degrading humic acids and analysis of their peroxidase activity[J]. Ferns Microbiology Ecology, 1995,16 (2):115-122.
    [77]Magnuson M, Crawford D. L.. Comparison of extracellular perexidase and esterase deficient mutants of streptomyces viridosporus T7A[J]. Applied and Environmental Microbiology, 1992,58 (3):1070-1072.
    [78]Mayaudon J., Batistic L., Sarkar J. M.. Properties des activities proteolytiques extraites des sols frais[J]. Soil Biology and Biochemistry, 1975,7 (4/5) 281-286.
    [79]Bach H. J., Munch J. C. Identification of bacterial sources of soil peptidases[J]. Biology and Fertility of Soils, 2000, 31 (3):219-224.
    [80]Kamimura Y., Hayano K.. Properties of protease extracted from teafield soil[J]. Biology and Fertility of Soils, 2000, 30 (4):351-355.
    [81]Rhee Y. H., Hah Y. C, Hong S. W.. Relative contributions of fungi an bacteria to soil carboxymethylcellulase activity[J]. Soil Biology and Biochemistry, 1987, 19: 479-481.
    [82]Naseby D. C, Pascual J. A., Lynch J. M.. Effect of biocontrel strains of Triehoderma on plant growth, Pythiumultimum populations, soil microbial communities and soil enzyme activities[J]. Journal of Applied Microbiology, 2000,88 (1) : 161-169.
    [83]孙翠玲,郭玉文,佟超然,等.杨树混交林地土壤微生物与酶活性的变异研究[J].林业科学,1997,33(6):488-497.
    [84]汤树得.土壤耕作对白浆土生物学活性的影响[J].土壤肥料,1982,3:13-15.
    [85]陈放鸣,李纯.土壤微生物活性对林地土壤磷有效性的影响[J].安徽农业大学学报,1993,20(4):292-297.
    [86]胡海波,张金池,高智慧,等.岩质海岸防护林土壤微生物数量及其酶活性和理化性质的关系[J].林业科学研究,2001,15(1):88-95.
    [87]丁菡,胡海波,王人潮.半干旱区土壤酶活性及其理化及微生物的关系[J].南京林业大学学报(自然科学版),2007,3(2):13-18.
    [88]徐秋芳,姜培坤.有机肥对毛竹竹间及根区土壤生物化学性质的影响[J].浙江林学院学报,2000,17(4):364-368.
    [89]Alvarez C. R., Alvarez R.. Short-term effects of tillage systems on active soil microbial biomassfJ]. Biology and Fertility of Soils, 2000, 31 (2):157-161.
    [90]郑诗樟,吴蔚东,何圆球.丘陵红壤不同林型下土壤微生物类群和酶活性特性[J].江西林业科技,2004,4:1-3.
    [91]Dick P.. Soil enzyme activities as indicators of soil quality[M]. In:Doran J. W., Coleman D. C, Bezdicek D. F. (eds), Defining Soil Quality for a Sustainable Environment, Soil Science Society of America, Madison, 1994.
    [92]Zhou L. K.. Soil Enzymes[M]. Beijing: Science Press, 1987.
    [93]高永健.不同林龄杨树人工林对土壤微生物与酶活性的影响[D],河北农业大学,2007.
    [94]中国科学院南京土壤研究所.土壤理化分析[M].上海科学技术出版社,1978.
    [95]中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版社,1985.
    [96]胡俊.微生物学实验技术[M].呼和浩特:内蒙古文化出版社,2000.
    [97]陈声明,张立钦.微生物学研究技术[M].北京:科学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700