玉米根茬收集装置研制及关键机构机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代农业技术的高速发展,优质生物质能资源玉米秸秆的能源功能被不断地开发出来,利用秸秆发电不仅可以弥补电力资源的紧缺,又可以减少二氧化碳的排放,有利于净化环境,由此越来越多地应用到发展循环经济,提供清洁能源,改善生态环境等各个方面,呈现出极具潜能的开发前景。经计算研究发现玉米根茬占玉米秸秆总量的12%-15%,是一笔巨大的生物质资源,可是玉米根茬大多数都被遗弃在田间,白白的浪费掉,并且玉米具有发达的纤维状根系结构,其分层、纵横交错的向四面八方生长,与土壤形成致密的根系土壤复合体,给根茬与土壤的彻底分离以及实施机械化收集根茬带来困难。
     本研究工作在国家高技术研究发展计划(863计划)项目“秸秆收集固化成型关键技术及装备”的子课题“玉米根茬收集机研制”(2009AA04364-2)和“根茬土壤粘附基本特性研究”(2009AA043603-4)、国家农业科技成果转化项目(2009GB23600507)、吉林大学“985工程”项目及吉林大学研究生创新项目“仿生脱土碾辊结构设计与试验研究”(20121093)资助下,对玉米根茬的基本物理属性以及根茬包裹的土壤环境特性进行研究,并结合玉米根茬结构中根系与土壤的结合特点,探索了玉米根茬的捡拾方式、输送模式以及根茬与土壤的分离机理,确定了合理的工艺流程,针对工作过程中涉及的诸多重点问题进行理论分析,建立了相关的数学模型,从而对理论模型实施进一步优化,同时研制出具有捡拾、输送、脱土和收集多种功能的玉米根茬收集装置,借助试验平台对理论模型进行试验验证与修正,指导试验装置关键部件的结构优化,通过试验优化设计的方法进一步对整机的结构参数和运动参数实施优化,最终确定最优的参数组合,并通过试验加以验证,得到最佳的参数配备,进而提高整机的工作性能与作业质量。
     本工作研究了玉米根茬及其包裹土壤的基本物理属性,以及玉米根茬结构中根系与土壤的结合特性,并在虚拟样机技术基础上完成了玉米根茬收集装置试验台的搭建,为进一步的理论分析与试验研究提供良好的试验平台。通过对捡拾推茬刀片的运动轨迹、速度和加速度进行研究与分析,获得了捡拾推茬刀片端点的运动轨迹为余摆线的条件;并对被捡拾起的根茬的运动轨迹加以分析,得到了根茬能够进入一级抛扔输送机构的必要条件;然后通过对根茬与挡板碰撞过程的分析,寻找到了根茬与挡板能够产生碰撞的条件;最后借助三向应力原理对根系土壤复合体的脱土机理进行分析,证明了模仿人们生产生活中对物料加工的各种作用方式(如碾压、揉搓、梳刷、振动、冲击、筛分),对根土复合体实施有效的碾压式、挤搓式、梳刷式、振动式、冲击式和筛分式等多种方式脱土,可以破坏根系包裹土壤的根土复合体结构,实现根茬与土壤的彻底分离。
     通过理论模态分析与试验模态分析相结合的方法,得到了整机系统的模态参数(固有频率和结构振型)以及结构动力学特性;基于理论分析研究结果,针对新型仿生碾辊凹板脱土机构的工作性能进行试验研究,将碾辊转速、碾辊与凹板之间的间隙和凹板对碾辊的包角设为试验因素,根茬脱土率和回收损失率为性能指标,实施二次正交旋转回归试验设计,建立相关数学模型,应用数据处理软件寻找到最优参数组合,并加以试验验证。最后将整机的各参数设置成最佳状况,通过田间性能测试试验综合考察整机的工作性能和作业质量,得到整机系统在平均速度为0.46m/s作业时,整机系统的平均脱土率达到95.57%,根茬平均损失率为4.58%;整机在平均速度为0.65m/s作业时,整机系统的平均脱土率达到93.23%,根茬平均损失率为4.46%。
Biomass like crop stalks and stubbles is important renewable and high-quality energyresource. Using the stalks and stubbles for power generation not only help to overcomeenergy shortage problem, but also reduce the emission of carbon dioxide. Utilization ofbiomass energy resource can help to reduce environmental pollution and mitigate energyshortage. Therefore, biomass has been applied to the development of circular economy,supplying clean energy and improving ecological environment. It has shown a great potentialdevelopment prospect. Maize stalk and stubble produced accounts for12%-15%of thetotal stalk, which is a huge biomass. But this resource has often been ignored, most of themare abandoned in the field. A root system of maize has a developed, layered and criss-crossfibrous structure. The main roots combined with soil forming a solid stubble-soil compositebody. Therefore, it is difficult to efficiently separate soil from maize stubble and collectsoil-removed maize stubble in mechanization.
     This work was supported by the National Hi-tech Project (863Project) of China (Grantno.2009AA043603-4,2009AA043604-2), by National Foundations of AgriculturalTechnology Transformation of China (Grant No.2009GB23600507), by the National NaturalScience Foundation of China (Grant No.51075185), by the Development Program ofScience and Technology of Jilin Province of China (Grant No.20100711), by National “985Project” in Jilin University and by Graduate Innovation Fund of Jilin University, China.(Grant No.20121093). The basic physical properties of maize stubble and soilenvironmental characteristics from stubble-soil composite body were extensivedlyresearched. Combining with the binding characteristics of root system with soil in the maizestubble, the picking-up mode and transporting mode of maize stubble were explored. Theseparating mechanism of soil from maize stubble was analyzed. Accordingly, a reasonabletechnical process was determined. In the working process, many of the involved key issues were analyzed by theoretical method. In addition, relevant mathematical models which canfurther optimize theoretical models were established. A maize stubble collecting machinewith multiple functions, including picking-up, transporting, separating soil from stubble andcollecingt stubble, was developed. The verification and correction of theoretical modelguided structural optimization of key components by a testing platform, the structural andmotioning parameters of machine were further optimized through test optimization design.Thus, the optimal combination of determined parameters was verified through experiments.Ultimately, the optimal parameters were obtained for improving working performance andquality of the machine.
     In this work, the basic physical properties of maize stubble, soil environmentalcharacteristics of stubble-soil composite body and binding characteristics of root system withsoil were studied. Based on a prototyping technology, the testing platform of maize stubblecollecting machine was set up to provide a good test condition for further theoretical analysisand experimental research. The motion track, velocity and acceleration of blades forpicking-up and pushing stubble were researched and analyzed. The trochoidal condition formotion track of the blade endpoint was obtained, and the motion track of stubble picked-upwas analyzed. Accordingly, the necessary condition that stubble could enter the first-levelthrowing and transporting mechanism were found. Then, the collision process of maizestubble with dam-board was analyzed, and found the necessary condition that stubble anddam-board could generate collision phenomenon. Finally, the separation mechanism of rootsystem and soil from stubble-soil composite body was analyzed and researched by thethree-dimensional stress principle. So imitating various mode of action (such as squeezing,rubing, comb-threshing, vibration, impacting, sieving) during treating stubble in theproduction and living process by human, he complex structure of stubble-soil compositebody could be destroyed, and as a result, complete separation of soil from maize stubbleeffectively can be achieve.
     The whole system modal parameters (natural frequencies and structural shapes) andstructural dynamic characteristics were obtained by combining theoretical modal analysiswith experimental modal analysis method. Based on the theoretical analysis results, in order to analyze the working performance of separating mechanism with new bionic roller andconcave, the effects of three major parameters (rotation speed of bionic roller, clearancebetween roller and concave, and cornerite of baffle) of the bionic roller and baffle on the rateof soil separation from maize stubble and the loss rate of stubble in working process wereexamined by means of three-factor quadratic regression orthogonal rotary method, and foundthe optimal combination of the major parameters. Consequently, relevant mathematicalmodels and experimental verification were carried out. Finally, the major parameters ofmachine were set to the best condition. The working performance and quality of the wholesystem were tested in field. The experimental results showed that, on average, the rate of soilseparation was95.57%, rate of stubble loss was4.58%at the forward speed of0.46m/s, therate of soil separation was93.23%and rate of stubble loss was4.46%at the forward speedof0.65m/s were achieved.
引文
[1]姜述杰,赵伟英.浅谈秸秆生物质直燃发电技术[J].锅炉制造,2009,4:40-42.
    [2] Demirbas A. Potential applications of renewable energy sources, biomass combustionproblems in boiler power systems and combustion related environmental issues[J].Progress in Energy and Combustion Science,2005,31(2):171-192.
    [3]国家发展和改革委员会.可再生能源中长期发展规划[R].可再生能源,2007,25(5):1-5.
    [4] McKendry P. Energy production from biomass (part1): overview of biomass[J].Bioresource Technology,2002,83(1):37-46.
    [5]刘小娜,康振兴,胡克.浅谈秸秆发电技术[J].能源与节能,2011,7:18-21.
    [6] http://www.foods1.com/content/622689/
    [7] Buragohain B, Mahanta P, Moholkar V S. Biomass gasification for decentralizedpower generation: The Indian perspective[J]. Renewable and Sustainable EnergyReviews,2010,14:73-92.
    [8] Sauer T J, Hatfield J L, Prueger J H. Aerodynamic characteristics of standing cornstubble[J]. American Society of Agronomy,1996,88:733-739.
    [9]毕于运,高春雨,王亚静,李宝玉.中国秸秆资源数量估算[J].农业工程学报,2009,25(12):211-217.
    [10]吴鸿欣,曹洪国,韩增德,王高斌,严杏玲.中国玉米秸秆综合利用技术介绍与探讨[J].农业工程学报,2011,1(3):9-12.
    [11] Liedgens M, Richner W. Relation between maize leaf area and root density observedwith minirhizotrons[J]. European Journal of Agronomy,2001,15(2):131-141.
    [12]罗红旗,高焕文,沈晓红.垄作保护性机械化耕作技术中玉米根茬处理模式[J].农机化研究,2008,8:208-214.
    [13]刘巽浩,高旺盛,朱文珊.秸秆还田的机理与技术模式[M].北京:中国农业出版社,2001.
    [14] Temesgen M, Hoogmoed W B, Rockstrom J, Savenije H H G. Conservation tillageimplements and systems for smallholder farmers in semi-arid Ethiopia[J]. Soil andTillage Research,2009,104(1):185-191.
    [15]杜长征.我国秸秆还田机械化的发展现状与思考[J].农机化研究,2009,7:234-236.
    [16] Tripathi A K, Iyer P V R, Kandpal T C. A questionnaire based survey of biomassbriquetting in India[J]. International Journal of Ambient Energy,2000,21(1):31-40.
    [17] Coates W. Using cotton plant residue to produce briquettes[J]. Biomass andBioenergy,2000,18(3):201-208.
    [18]李世密,寇巍,张晓健.生物质成型燃料生产应用技术及经济效益分析[J].环境保护与循环经济,2009,29(7):47-49.
    [19] Puerta V V, Rico I L R, Becerra B B, Fernandez-Valverde S M. Sorption of cadmiumfrom aqueous solutions with chemically modified corn stubble[J]. Journal CitationReports,2008,535(65):224-229.
    [20]夏俊芳,袁巧霞,周勇.我国秸秆还田机械化发展现状与对策[J].黄冈职业技术学院学报,2002,4(2):48-49.
    [21] Yang M Y, Patrick V D. Impact of crop residues on soil fertility in conservationtillage[C]. Beijing: CIGR International Conference,2004.
    [22] Visvanathan R, Sreenarayanan V V, Swaminathan K R. Effect of knife angle andvelocity on the energy required to cut cassava tubers[J]. Journal of AgriculturalEngineering Research,1996,64(2):99-102.
    [23] Schoenau J J, Campbell C A. Impact of crop residues on nutrient availability inconservation tillage systems[J]. Canadian Journal of Plant Science,1996,76(4):621-626.
    [24]邵世禄,万芳新,魏宏安,韩正晟.我国马铃薯收获机械研制与发展的研究[J].中国农机化,2010(3):34-39.
    [25]宋廉.国外马铃薯收获机械的发展[J].粮油加工与食品机械,1976,73-75.
    [26]单爱军,刘俊杰,崔冰冰.马铃薯收获机现状与发展趋势[J].农机化研究,2006,4:19-20.
    [27]王福义.马铃薯收获机械发展研究[J].农业科技与装备,2010,12:83-84.
    [28]杨德秋,郝新明,贾晶霞.马铃薯机械化收获技术的发展现状[J].农业技术与装备,2007,(7):8-9.
    [29]宋言明,王芬娥.国内外马铃薯机械的发展概况[J].农机化研究,2008,9:224-227.
    [30]薛蒙生.国内外马铃薯收获机械发展概况与研制推广[J].农业机械,2001,11,32-33.
    [31]孙东升,刘合光.我国马铃薯产业发展现状及前景展望[J].农业展望,2009,3:25-28.
    [32]岑海堂,樊万本,刘建兰.浅谈马铃薯收获机械的现状与发展[J].农业机械,2001,4:22.
    [33]尚书旗,王方艳,刘曙光,赵忠海,王建春.花生收获机械的研究现状与发展趋势[J].农业工程学报,2004,20(1):20-25.
    [34]王伯凯,吴努,胡志超,王海鸥,陈有庆.国内外花生收获机械发展历程与发展思路[J].中国农机化,2011,4:6-9.
    [35] Busono S. Studies on the mechanical harvesting of peanuts,4: Peanut harvesterimprovement[N],1990.
    [36] Araya K. Ralph Hughes-John Deere Peanut Combines[J]. Machingery Feature,1997(6):28-34.
    [37] Busono S. Studies on the mechanical harvesting of peanuts,1: Field test of diggerscrew type peanut harvester and investigation of peanuts manufacture andperformance test of the self propelled digger screw type peanut harvester.2: Trialmanufacture and performance test of the self propelled digger screw type peanutharvester[R],1992.
    [38]滕美茹,田立忠,陈广成.花生收获机的现状与展望[J].农机化研究,2011(10):211-215.
    [39] Kelly Manufacture Co Peanut Harvesting Equipment[N],1992.
    [40] Parman Corporation. Pearman Peanut Digger-Shaker-Inverters[R]. Georgia:2006.
    [41]尚书旗.摆动式花生收获装置的设计原理与试验研究[D].沈阳:沈阳农业大学博士学位论文,2005.
    [42]尚书旗,王延耀,周亚龙.花生收获机的应用现状与推广[J].农机科技推广,2004(8):10-11.
    [43]赵武云,吴劲锋,张锋伟,杨术明.玉米轴流脱粒机研究现状分析[J].机械研究与应用,2009(5):9-10.
    [44] Huynh V M, Powell T, Siddall J N. Threshing and separating process: a mathematicalmodel[J]. Transactions of the ASAE,1982,24(1):65-73.
    [45] Taylor R K, Hohhy H M, Schrock M D. Evaluation of an automatic feedrate controlsystem for a grain combine[C]. ASAE Paper051143,2005.
    [46]吴多峰,袁长胜. HS-48型玉米脱粒机[J].现代化农业,2006,(9):40.
    [47]吴多峰,许峰.板齿式与钉齿式玉米脱粒机的性能比较[J].农机化研究,2006,(10):78-80.
    [48]何晓鹏,王广万.挤搓式玉米脱粒机的研制[J].农业工程学报,2003,19(2):105-108.
    [49]彭广范.5TY系列玉米脱粒机的工作原理及正确使用方法[J].养殖技术顾问,2010,10:187.
    [50]何树国,车刚,万霖.5TY-10A型玉米种子脱粒机的研制与试验研究[J].黑龙江八一农垦大学学报,2006,18(3):55-58.
    [51] http://changchun.jlcoop.gov.cn/class.asp?classid=28.
    [52]荆伟.长春市雨水资源可持续利用规划研究[D].长春:东北师范大学硕士学位论文,2008.
    [53]史铭儡.吉林省黑土玉米田土壤真菌区系及生态特性研究[D].长春:吉林农业大学硕士学位论文,2005.
    [54]孙剑.玉米根茬结构和力学特征及与土壤的摩擦学性能[D].长春:吉林大学硕士学位论文,2011.
    [55]汲文峰,贾洪雷,佟金,谭宏杰,刘昭辰,马成林.通用刀片功率消耗影响因素分析与田间试验[J].农业机械学报,2010,41(2):35-41.
    [56]林剑辉,孙宇瑞,马道坤.田间土壤含水率测量的几种主要方法.中国科技论文在线,1-8.
    [57] Chassot A, Richner W. Root characteristics and phosphorus uptake of maize seedlingsin a bilayered soil[J]. Agronomy Journal,2002,94(1):118-127.
    [58] Larney F J, Bullock M S. Influence of soil wetness at time of tillage and tillageimplement on soil properties affecting wind erosion[J]. Soil and Tillage Research,1994,29(1):83-95.
    [59]汲文峰.旋耕—碎茬仿生刀片[D].长春:吉林大学博士学位论文,2011.
    [60] Shalhevet J, Huck M G, Schroeder B P. Root and shoot growth responses to salinity inmaize and soybean[J]. Agronomy Journal,1995,87(3):512-516.
    [61]李少昆,涂华玉,张旺峰,杨刚.玉米根系在土壤中的分布及与地上部分的关系[J].新疆农业科学,1992,3(3):99-103.
    [62] Deng W D, Deng C Z, Yan Q R. Study on direct shear on interface performance ofgeogrid and corase-grained soil[C]. Proceedings of the4th Asian RegionalConference on Geosynthetics,2008,157-160.
    [63] See M W, Park J B, Park I J, Chung M K. Modeling of interface shear behaviorbetween geosynthetics[J]. Geotechnical Engineering,2003,7(1):9-16.
    [64]袁志华,苏宗伟,李祥付,花恒明.玉米根系的拉伸特性研究[J].河南农业科学,2009,(10):51-52.
    [65]朱清科,陈丽华.贡嘎山森林生态系统根系固土力学机制研究[J].北京林业大学学报,2002,24(4):64-67.
    [66] Mattia C, Bischetti G B, Gentile F. Biotechnical characteristics of root systems oftypical Mediterranean species[J]. Plant and Soil,2005,278(1-2):23-32.
    [67]李绍才,孙海龙,杨志荣,何磊,崔保山.护坡植物根系与岩体相互作用的力学特性[J].岩石力学与工程学报,2006,25(10):2051-2057.
    [68]张东升.长江上游暗针叶林林木根系抗拉力学特性研究[D].北京:北京林业大学硕士学位论文,2002.
    [69] Spoor G, Godwin R J. Soil deformation and shear strength characteristics of someclay soils at different moisture contents[J]. Journal of Soil Science,1979,30(3):483-498.
    [70] Bischetti G B, Chiaradia E A, Simonato T, Speziali B, Vitali B, Vullo P, Zocco A.Root strength and root area ratio of forest species in Lombardy (Northern Italy)[J].Eco-and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability,2007:31-41.
    [71] De Baets S, Poesen J, Reubens B, Wemans K, Baerdemaeker J D, Muys B. Roottensile strength and root distribution of typical Mediterranean plant species and theircontribution to soil shear strength[J]. Plant and Soil,2008,305(1-2):207-226.
    [72] Schlosser F, Long N T. Recent results of French research on reinforced earth[J].Journal of the Construction Division,1974,100(3):223-237.
    [73]欧阳仲春.现代土工加筋技术[M].北京:人民交通出版社,1991.
    [74]杨果林,王永和.加筋土筋材拉拔试验研究[J].煤炭学报,2000,25(1):51-54.
    [75]陈丽华,余新晓,宋维峰,刘秀萍.林木根系固土力学机制[M].北京:科学出版社,2008.
    [76]吴景海,王德群,陈环.土工合成材料加筋沙土三轴试验研究[J].岩土工程学报,2000,22(2):199-204.
    [77]白晓红,黄仙枝,张苇.加筋土技术在土木工程中的应用[J].太原理工大学学报,2003,34(5):532-534.
    [78]宋维峰,陈丽华,刘秀萍.林木根系固土的理论基础[J].水土保持通报,2009,28(6):180-186.
    [79]熊光楞,李伯虎,柴旭东.虚拟样机技术[J].系统仿真学报,2001,13(1):114-117.
    [80]唐述宏.虚拟样机技术在农业机械设计上的应用[J].农业机械,2009(19):47-47.
    [81]杨莉,王春光.基于虚拟样机技术的4SW-130型马铃薯挖掘机分离筛的仿真优化[J].农业机械,2009(11):89-91.
    [82]杜平安,于德江,岳萍.虚拟样机技术的技术与方法体系研究[J].系统仿真学报,2007,6(15):23-26.
    [83] Frost R. Simulation based acquisition—an ongoing look[C]. Proceedings of the1999INCOSE Symposium,1999.
    [84]吕金庆.4U-2B型马铃薯收获机的研究设计[C].走中国特色农业机械化道路——中国农业机械学会,2008年学术年会论文集(下册),2008:723-724.
    [85]刘宝,张东兴,李晶. MZPH-820型单行马铃薯收获机设计[J].农业机械学报,2009(5):81-86.
    [86] Jia H L, Ma C L, Li G Y, Huang D Y, Liu Z C. Combined rototilling-stubble-breaking-planting machine[J]. Soil and Tillage Research,2007,96(1):73-82.
    [87]中国农业机械科学研究院.农业机械设计手册(下册)[M].北京:机械工业出版社,1990.
    [88]江苏工学院.农业机械学(上册)[M].北京:中国农业机械出版社,1988.
    [89]北京农业工程大学.农业机械学(上册)[M].北京:中国农业出版社,1994.
    [90]谭庆昌,赵洪志.机械设计[M].北京:高等教育出版社,2004.
    [91]濮良贵,纪文刚.机械设计[M].北京:高等教育出版社,2001.
    [92] Guo Y, Song Y Z, Zhen Z J. Establishment of3D standard part library of diesellocomotive based on Pro/Engineer[J]. Journal of Northern Jiaotong University,2002,26(1):18-26.
    [93] Brunetti G, Golob B. A feature-based approach towards an integrated product modelincluding conceptual design information[J]. Computer-Aided Design,2000,32(14):877-887.
    [94]贾晶霞,张东兴,郝新明,刘汉武.马铃薯收获机参数化造型与虚拟样机关键部件仿真[J].农业机械学报,2006,36(11):64-67.
    [95]李杰,阎楚良,杨方飞.基于虚拟样机技术的联合收获机切割机构的仿真[J].农业机械学报,2006,37(10):74-76.
    [96] Piatkowski T, Sempruch J. Model of the process of load unit stream sorting by meansof flexible active fence[J]. Mechanism and Machine Theory,2008,43(5):549-564.
    [97]陈学深,马旭,武涛,齐龙等.玉米根茬挖掘机根土分离装置设计[J].广东农业科学,2011,38(13):158-160.
    [98] Tong J, Moayad B Z, Ma Y H, Sun J Y, Jia H L. Effects of biomimetic surface designson furrow opener performance[J]. Journal of Bionic Engineering,2009,6(3):280-289.
    [99]邵东伟,王俊发,姜东华.基于Pro/E的玉米根茬收获虚拟样机设计[J].农机化研究,2010,32(10):67-70.
    [100] Scott R G, Richardson R C. Realities of biologically inspired design with asubterranean digging robot example[C]. Proceedings of the6th IASTED InternationalConference on Robotics and Applications, Cambridge, MA, USA,2005:226-231.
    [101] Tong J, Sun J, Chen D H, Zhang S J. Geometrical features and wettability of dungbeetles and potential biomimetic engineering applications in tillage implements[J].Soil and Tillage Research,2005,80(1):1-12.
    [102]杨新义.玉米根茬根土分离装置的设计与研究[D].长春:吉林大学硕士学位论文,2011.
    [103] Kaliyan N, Morey R V, White M D, Doering A. Roll press briquetting and pelleting ofcorn stover and switchgrass[J]. Transactions of the ASABE,2009,52(2):543-555.
    [104] Salokhe V M, Ramalingam N. Effects of direction of rotation of a rotary tiller onproperties of Bangkok clay soil[J]. Soil and Tillage Research,2001,63(1):65-74.
    [105] Zhang X, Vu-Quoc L. Modeling the dependence of the coefficient of restitution onthe impact velocity in elasto-plastic collisions[J]. International Journal of ImpactEngineering,2002,27(3):317-341.
    [106] Mesarovic S D, Fleck N A. Frictionless indentation of dissimilar elastic–plasticspheres[J]. International Journal of Solids and Structures,2000,37(46):7071-7091.
    [107]聂毓琴,孟广伟.材料力学[M].北京:机械工业出版社,2004.
    [108]沃德海伦,斯帝夫拉门兹,波尔撒斯.模态分析理论与试验[M].北京:北京理工大学出版社,2001.
    [109]傅志方.振动模态分析与参数辨识[M].北京:机械工业出版社,1991.
    [110] Fei Q G, Zhang L M, Guo Q T. Dynamic finite element model updating based onglobal information of structure [J]. Chinese Journal of Mechanical Engineering.2005,18(2):294-296.
    [111]张立彬,蒋帆,王扬渝,张宪.基于LMS Test.Lab的小型农业作业机振动测试与分析[J].农业工程学报,2008,24(5):100-104.
    [112]李青林,陈翠英,马成禛.4LYZ-2油菜收获机割台框架有限元模态分析[J].农业机械学报,2005,36(1):54-56.
    [113] Hermans L, Van der Auweraer H. Modal testing and analysis of structures underoperational conditions: industrial applications[J]. Mechanical Systems and SignalProcessing,1999,13(2):193-216.
    [114]王济,胡晓. MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社,2006.
    [115] Shahgoli G, Fielke J, Desbiolles J, Saunders C. Optimising oscillation frequency inoscillatory tillage[J]. Soil and Tillage Research,2010,106(2):202-210.
    [116] Wei F S. Analytical dynamic model improvement using vibration test data[J]. AIAAJournal,1990,28(1):175-177.
    [117]梁君,赵登峰.模态分析方法综述[J].现代制造工程,2006,8:139-141.
    [118] Heylen W, Lammens S, Sas P,白化同,郭继忠,屠良尧.模态分析理论与试验[M].北京:北京理工大学出版社,2001.
    [119] Kroes S, Harris H D. A kinematics model of the dual base cutter of a sugarcaneharvester[J]. Journal of Agricultural Engineering Research,1995,62(3):163-172.
    [120]闻荻江,张力,张恒.聚合物基复合材料发动机体的模态试验分析[J].农业工程学报,2005,21(2):22-24.
    [121]陈树人,韩红阳,卢强.4LZ-2.0型联合收获机割台模态分析[J].农业机械学报,2012,43,90-94.
    [122] Tong J, Zeng B G, Chen D H, Quan L Z, Zhang S J. Finite element modal analysis ofthe frame of corn stubble-collector[J]. Advanced Materials Research,2012,430:1072-1075.
    [123]权龙哲,佟金,曾百功,陈东辉.玉米根茬收获系统的有限元模态分析与试验[J].农业工程学报,2011,27(11):15-20.
    [124]李建平,赵匀,臧少锋,李建民.有序抛秧振动输送机构的模态分析与试验研究[J].农业工程学报,2005,21(3):115-117.
    [125]王忠,王小哲.袁银南,李健康.多缸柴油机机体试验模态研究[J].农业工程学报,2003,19(2):126-129.
    [126]朱茂桃,何志刚,徐凌,李志兵.车身模态分析与振型相关性研究[J].农业机械学报,2004,35(3):13-15.
    [127] Fladung W A, Brown D L. Multiple reference impact testing[C]. Proceedings-Spiethe International Society for Optical Engineering. Spie International Society forOptical,1993:1221-1221.
    [128] Fladung W A, Phillips A W, Brown D L. Specialized parameter estimation algorithmsfor multiple reference testing[C]. Proceedings-Spie the International Society forOptical Engineering. Spie International Society for Optical,1997:1078-1087.
    [129]管迪华.模态分析技术[M].北京:清华大学出版社,1996.
    [130] Brown D L, Allemang R J, Zimmerman R, Mergeay M. Parameter estimationtechniques for modal analysis[J]. SAE Congress and Explosion, Detroit,1979.
    [131] Skullestad A, Hallingstad O. Identification of vibration parameters in a spacecraftusing subspace methods[J]. Control Engineering Practice,1997,5(4):507-516.
    [132]江崎春雄.割捆机和联合收割机[M].北京:机械工业出版社,1980.
    [133] Meng Y M, Chen Y L, Li S P, Chen C L, Xu K, Ma F L, Dai X B. Research on theorthogonal experiment of numeric simulation of macromolecule-cleaning element forsugarcane harvester[J]. Materials and Design,2009,30,2250-2258.
    [134]赵作伟,陈海涛,赖庆辉,任珂珂.甜菜链式纸钵苗分离装置参数优化[J].农业工程学报,2010,9:154-158.
    [135]周桂霞,汪春,张伟等.基于二次正交旋转回归试验的深松铲关键参数建模[J].农业机械学报,2006,37(10):86-89.
    [136]任露泉.试验优化设计与分析[M].长春:吉林科学技术出版社,2001.
    [137] Aized T, Shirinzadeh B. Robotic fiber placement process analysis and optimizationusing response surface method[J]. The International Journal of AdvancedManufacturing Technology,2011,55(1):393-404.
    [138] Sheikhzadeh M, Murad S, Rohani S. Response surface analysis of solution-mediatedpolymorphic transformation of buspirone hydrochloride[J]. Journal ofPharmaceutical and Biomedical Analysis,2007,45(2):227-236.
    [139]贾晶霞.马铃薯挖掘铲参数优化与性能分析[D].河北:河北农业大学硕士论文,2003.
    [140]王方艳,梁洁,尚书旗,刘曙光,姜元志.花生收获机传动系统的运动机理分析与参数优化[J].农业机械学报,2006,37(6):49-53.
    [141] Schueller J K. Technology for precision agriculture[C]. Proceedingsof the firstEuropean conference on precision agriculture, Warwick: BIOS Scientific PublishersLimited.1997,33-44.
    [142]尚书旗,杨然兵,殷元元,郭佩玉,孙群.国际田间试验机械的发展现状及展望[J].农业工程学报,2010,26(1):5-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700