新型单克隆抗体荧光探针和pH值荧光探针的合成及免疫荧光组织化学应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光探针技术是一种借助荧光显微镜在分子水平上进行实时监测的重要技术手段。荧光探针技术灵敏度高、可视性强,并且对所研究的目标细胞或者生物大分子干扰小、无损伤,所以得到广泛的应用。荧光探针已经在分子生物学、微生物学、分析化学、生物化学、化工和医药工业等领域发挥着重要作用,并且应用越来越广泛。化学家和生物学家不断设计和合成各种新型的荧光探针染料来满足不同应用需求和更高的荧光性能要求。荧光探针染料的合成和应用研究已经成为一个化学和生命科学的交叉前沿热点研究领域。
     在各种荧光探针染料中,荧光素类荧光探针染料应用最为普遍。荧光素由于它合成方便、容易分离提纯,具有高的荧光量子产率,没有毒性等优点,成为人们广泛关注的重要的探针染料。荧光素母体容易进行化学修饰,可以得到满足不同需求的荧光素衍生物。所以,荧光素类探针染料广泛应用于DNA测序和抗体蛋白标记等生物体系的研究领域。
     本论文主要论述了新型荧光素类单克隆抗体荧光探针染料的设计、合成以及荧光素类荧光探针在免疫荧光组织化学方面的应用。同时,本论文还阐述了新型荧光素类pH值荧光探针的设计合成及光谱性质测定。主要内容有如下几个方面。
     1.对合成荧光素母体的重要原料2,4-二氯间苯二酚的合成进行详细研究,提出简便的2,4-二氯间苯二酚一步合成方法,优化反应条件。对比了传统的合成方法和一步合成方法的优缺点。介绍了三氟乙酸N-琥珀酰亚胺酯的合成方法。
     2.设计并合成了5(6)-羧基-4,7-二氯荧光素和5(6)-羧基-2’,4’,5’,7’,4,7-六氯荧光素,并表征了它们的结构。讨论了反应条件对产率的影响,提出最佳反应条件。详细研究了几种结构相似的含氯荧光素的荧光性质与氯原子个数的构效关系。成功分离出5(6)-羧基-4,7-二氯荧光素的6位异构体和5(6)-羧基-2’,4’,5’,7’,4,7-六氯荧光素的6位异构体,并且表征了它们的结构。
     3.合成了1种未见文献报道的具有氨基醇连接链的荧光素基单克隆抗体DNA荧光探针,表征了化合物的结构,研究了光谱性质。该荧光探针主要应用在DNA测序。合成了10种未见文献报道的具有氨基酸链的新型荧光素基单克隆抗体蛋白标记荧光探针染料,并对其结构进行表征,详细研究了它们的光谱性质。
     4.合成了10种未见文献报道含氯荧光素类荧光探针,并表征它们的结构。选取5(6)-酰氨己酸琥珀酰亚胺酯-2’,4’,5’,7’,4,7-六氯荧光素(化合物8dh)进行免疫荧光组织化学应用实验,用直接法标记了人体骨肉瘤上皮细胞,并且通过激光共聚焦显微镜获得标记细胞荧光图像。用直接法标记小鼠心肌组织,并用荧光显微镜获得组织荧光图片。免疫荧光组织化学应用表明新型单克隆抗体荧光素探针染料具有良好的荧光性能和生物学性能,是一类性能优良的单克隆荧光探针。
     5.简要综述了pH值荧光探针的研究进展;设计合成了八种荧光素为母体的荧光素pH值探针染料,表征了它们的结构;详细研究了pH值荧光探针的荧光光谱和紫外光谱性质,实验发现,它们能够在酸性范围内指示pH值的变化。它们是性能优良的pH值荧光探针,将会在生物学中发挥重要作用。
Fluorescent probe is an important technical mean, which is used to monitor biomolecule real-time by a fluorescence microscope. Fluorescent probes are widely used because of high sensitivity, strong visibility, no damage and little interference on the target cells or biological macromolecules. Fluorescent probes have been widely used in molecular biology, microbiology, biochemistry, analytical chemistry, chemical engineering and medicine engineering. Chemists and biologists continue to design and synthesis of new types of fluorescent probe dye to meet different application requirements and higher fluorescence performance requirements. The synthesis and application research of fluorescent probe dyes become a hot point in interdisciplinary of life science and chemistry.
     In a variety of fluorescent probe dye, fluorescein dyes are most widely used. Because of easy synthesis, easy isolation and purification, with high fluorescence quantum yield and non-toxic, fluorescein has become an important probe. Fluorescein derivatives are easily obtained by modifying fluorescein in order to meet different needs. Fluorescein dyes are widely used in DNA sequencing, antibody protein staining and other biological research.
     Design, synthesis and application in immunofluorescence of monoclonal antibody fluorescent dye were discussed in this thesis. Design, synthesis and spectral properties of new pH probes were also discussed in this thesis. Summarized as follows:
     1. Compound 2,4-dichloro-resorcinol which was an important material for synthesis of fluorescein was study in detail. A simple synthetic method of 2,4-dichloro-resorcinol was reported and reaction conditions was optimized. Compared with the traditional synthesis methods, the new synthesis method has many advantages. The synthesis of N-hydroxysuccinimidyl trifluoroacacetate (NHS-TFA) was reported in this thesis.
     2. Two novel chlorinated fluoresceins 4,7-dichlorofluorescein and 2',4',5',7'-Tetrachloro-6-(5-carboxyl)-4,7-dichlorofluorescein were synthesized. Structures of target compounds and intermediates were determined via IR, MS,1H NMR and element analysis. The effects of reaction conditions was discussed and reaction conditions was optimized. The relationship between fluorescence properties and the number of chlorine atoms was studied in detail.6-carboxyl-4,7-dichlorofluorescein and 2',4',5',7'-Tetrachloro-6-carboxyl-4, 7-dichlorofluorescein were isolated as their diisopropylamine salt, which can be converted to the free acid. Structures of target compounds and intermediates were determined via IR, MS,1H NMR and element analysis.
     3. One chlorofluorescein-based monoclonal antibody fluorescent probe dyeswith 6-amiohexanol linker was synthesized as dye-labeled primers in DNA sequence analysis. All of the dyes isomers were determined by 1HNMR, IR, elemental analysis and MS.
     Ten chlorofluorescein-based monoclonal antibody fluorescent probe dyes with amino acid linker were synthesized as fluorescent probes for labeling proteins. Structures of target compounds and intermediates were determined via IR, MS,1H NMR and element analysis. Spectral properties were studied in detail. All the probes for labeling proteins have not been reported in references.
     4. One of the novel dyes (8dh) were investigated for application in immunofluorescence histochemistry. The compound 8dh was used to label fixed U2OS cell. Fluorescence images of U2OS cells in 96-well costar black plate were taken by fluorescence confocal microscopy. It was found that the novel dye (8dh) is excellent green fluorescent probe dyes that can be used to label a variety of monoclonal antibody and other biopolymers.
     5. The research progress of pH value fluorescent probes was overviewed in this thesis. Eight chlorinated fluoresceins have been synthesized by the reaction of chlorinated resorcinols with 4,5,6,7-tetrachlorophthalic anhydride or 3,6-dichloro-4-carboxyphthalic anhydride in the presence of methanesulfonic acid. The spectral properties of the chlorinated fluoresceins were studied. It was found that they have absorption and emission maxima at long wavelengths and high fluorescence quantum yields. Emission spectra of chlorinated fluoresceins shifted towards long wavelength with increase of chlorine. pH-Dependent properties of chlorinated fluoresceins were studied in detail. These compounds showed strongly pH-sensitive range of 3.0~7.0. These chlorinated fluoresceins will be used as pH probes for pH measurement of the cell because of the high quantum yield and the strong pH-sensitivity.
引文
[1]Bernard Valeur. Molecular Fluorescence:Principles and Applications [M]. Weinheim (Federal Republic of Germany):Wiley-VCH Verlag GmbH,2001,351-378
    [2]O'Haver T. C., Development of luminescence spectrometry as an analytical tool [J]. J. Chem. Educ.,1978,55:423-428
    [3]倪灿荣,马大烈,戴益民等,免疫组织化学实验技术及应用[M].北京:化学工业出版社,2006:38-41
    [4]Schulman S. G., Fluorescence and Phosphorescence Spectroscopy, Physico-chemical Principles and Practic[M]. New York:Oxford,1977,87-98
    [5]张建成,王夺元,现代光化学[M].北京:化学工业出版社,2006:35-39
    [6]张华山等,分子探针与检测试剂[M].北京:科学出版社,2002,167-168
    [7]Su J., Tian H., Chen K., Novel trichromophoric rhodamine dyes and their fluorescence properties. Dyes and Pigments [J].1996,31(1):69-77
    [8]Tian H., Tang Y., Chen K. Bichromophoric rhodamine dyes and their fluorescence properties Dyes and Pigments [J].1994,26(3):159-165
    [9]孟令芝,龚淑玲,何永炳.有机波谱分析[M].第二版.武汉:武汉大学出版社,2003.107-135
    [10]张华山等,分子探针与检测试剂[M].北京:科学出版社,2002,163-178
    [11]钱小红,谢剑炜,现代仪器分析在生物医学研究中的应用[M].化学工业出版社,2003
    [12]程介克等,单细胞分析[M].北京:科学出版社,2005,24-45
    [13]王彦广,刘洋.化学标记与探针技术在分子生物学中的应用[M].北京:化学工业出版社,2007,1-3
    [14]李楠,王凤翔,周春喜.荧光探针应用技术[M].北京:军事医学科学出版社,1998,13-27
    [15]张宁,陈蓁蓁,唐波.荧光成像在生物分析中的应用[J].分析化学评述与进展,2006,34(7):1030-1034
    [16]Sadamoto R., Nitkura K., Sears P. S., et al. Cell-Wall Engineering of Living Bacteria [J]. J. Am. Chem. Soc.,2002,124:9018-9019
    [17]刘欣,王红,张华山,生物分析中近红外荧光探针进展[J],分析科学学报,2001,17(4):346-351
    [18]Walkup G. K., Burdette S. C., Lippard S. J., et al., A New Cell-Permeable Fluorescent Probe for Zn2+[J]. J. Am. Chem. Soc.,2000,122(23):5644-5645
    [19]Pearce D. A., Jotterand N., Carrico I. S., Imperiali B., Derivatives of 8-Hydroxy-2-methyl quinoline Are Powerful Prototypes for Zinc Sensors in Biological Systems [J]. J. Am. Chem. Soc.,2001,123(21):5160-5161
    [20]Adamczyk M., Chan C., Fino J., et al., Synthesis of 5-and 6-Hydroxymethylfluorescein Phosphoramidites[J]. J. Org. Chem.,2000,65(2):596-601
    [21]赵瑜,李隆弟,罗丹明和荧光素类染料的固体基质室温燐光研究[J]分析化学,1996,24(7):745-749
    [22]Gao J. X., Wang P., Giese R. W., Xanthamide Fluorescent Dyes[J]. Anal. Chem.,2002,74: 6397-6401
    [23]Gordon G. W., Berry G., Liang X. H., et al., Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy[J]. Biophys. J.1998,74:2702-2713.
    [24]Pearce L. L., Gandley R. E., Han W., et al., Role of metallothionein in nitric oxide signaling as revealed by a green fluorescent fusion protein[J]. Proc. Natl. Acad. Sci. USA,2000,97(1):477-482
    [25]Veistinen E, Liippo J, Lassila O. Quantification of human Aiolos splice variants by real-time PCR [J]. J. Immunol. Methods.2002,271:113-123
    [26]Zhang J., Ma Y., Taylor S. S., Tsien R. Y. Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering[J]. Proc. Natl. Acad. Sci. USA.2001,98: 14997-15002
    [27]Kiwamu T., Nagai T., Miyawaki A., et al., A mechanism of coupling RCC1 mobility to RanGTP production on the chromatin in vivo[J]. J. Cell Biol.,2003,160(2):235-243
    [28]Reiko O., Nagasaki A., Kawasaki H., et al., Confirmation by FRET in individual living cells of the absence of significant amyloid beta-mediated caspase 8 activation [J] Proc. Natl. Acad. Sci., USA,2002,99(23):14716-14721
    [29]Chen Y., Mills J. D., Periasanry A., Protein localization in living cells and tissues using FRET and FLIM [J].Differentiation,2003, (9-10):528-541
    [30]Lakowicz J. R., Topics in Fluorescence Spectroscopy Vol.3, Biochemical Applications [M]. New York:Kluwer Academic Publishers,2002
    [31]Pollok B. A., Heim R., Using GFP in FRET-based applications [J].Trends Cell Biol. 1999,9(2):57-60
    [32]Takakusa H., Kikuchi K., Urano Y., Design and Synthesis of an Enzyme-Cleavable Sensor Molecule for Phosphodiesterase Activity Based on Fluorescence Resonance Energy Transfer [J]. J.Am.Chem.Soc.2002,124(8) 1653-1657
    [33]Jiao G.. S., Thoresen L. H., Burgess K., Fluorescent, Through-Bond Energy Transfer Cassettes for Labeling Multiple Biological Molecules in One Experiment [J]. J. Am. Chem. Soc.,2003,125,14668-14669
    [34]Stevens N., Vishwasrao H., Samaroo D., Kandel E. R., Two Color RNA Intercalating Probe for Cell Imaging Applications [J]. J. Am. Chem. Soc.,2008,130:7182-7183
    [35]Abe H., Wang J., Furukawa K., Oki K., Uda M., A Reduction-Triggered Fluorescence Probe for Sensing Nucleic Acids [J]. Bioconjugate Chemistry,2008,19(6):1219-1226
    [36]黄晓峰,张远强,张英起.荧光探针技术[M].北京:人民军医出版社,2004,200-218
    [37]Tian M., Wu X. L., Zhang B., Li J. L., Shi Z., Synthesis of chlorinated fluoresceins for labeling proteins [J]. Bioorg. Med. Chem. Lett.2008,18:1977-1979
    [38]Wu X. L., Tian M., He H. Z., Shi Z., Synthesis and biological applications of two novel fluorescent proteins-labeling probes [J]. Bioorg. Med. Chem. Lett.2009,19:2957-1959.
    [39]Nagata T., Kumagai F., Hasezawa S., The origin and organizationof cortical microtubules during the transition between M and G1 phases of the cell cycle as observed in highly synchronized cells of tobacco BY-2 [J]. Planta 1994,193:567-572
    [40]Nogami A., Suzaki T., Shigenaka Y., Nagahama Y, Effects of cycloheximide on preprophase bands and prophase spindles in onion (Allium cepa L.) root tip cells [J]. Protoplasma,1996,192:109-121
    [41]Li X., Barasoain I., Matesanz R., Fang W. S., Synthesis and biological activities of high affinity taxane-based fluorescent probes [J]. Bioorg. Med. Chem. Lett.2009,19:751-754
    [42]Urano Y., Kamiya M., Kanda K., Ueno T., Evolution of Fluorescein as a Platform for Finely Tunable Fluorescence Probes [J] J. Am. Chem. Soc.2005,127:4888-4894
    [43]王国春,吴东海,PA28相关蛋白酶体的分离纯化及其特征[J].生物化学与生物物理学报,200,33(3):320-324
    [44]杨梅,张素玢,冯立娟,荧光物质的酯类衍生物用作人血胆碱酯酶底物的研究[J].辽宁师范大学学报(自然科学版),2001,24(1):51-53
    [45]朱正美,刘辉.简明免疫学技术[J].北京:科学出版社,2002,201-207
    [46]赵维波,陈美才等,抗禽流感病毒H5N1亚型单克隆抗体制备初报[J].中国实验动物学报,2004,12(4):200-203
    [47]车小燕,丘立文等,SARS冠状病毒N基因的扩增与克隆[J].第一军医大学学报,2003,23(7):640-642
    [48]纪巍,辛晓燕,陈必良,PCR法、单克隆抗体免疫荧光法检测女性生殖道沙眼衣原体结果比较[J].解放军医学杂志,2001,26(6):470-470
    [49]刘军连,徐志凯,喻启桂等.单克隆抗体间接免疫荧光试验检测生殖器单纯疱疹病毒感染[J].第四军医大学学报,2004,25(8):728-729
    [50]李楠,王凤翔,周春喜.荧光探针应用技术[M].北京:军事医学科学出版社,1998,15-27
    [51]Kasten F. H., Introduction to Fluorescent Probes:Properties, History and Applications, New York:Academic Press,1993
    [52]赵启韬,苗俊英.激光共聚焦显微镜在生物医学中的应用[J].北京生物医学工程,2003,22(1):52-54
    [53]肖艳梅,付道林,李安生,激光扫描共聚焦显微镜LSCM及其生物学应用[J].激光生物学报,1999,8(4):305-311
    [54]刘畅,顾玲.激光扫描共聚焦显微镜在细胞凋亡研究中的应用[J].医学综述,2001,7(10):583-584
    [55]程卫东,王鹏,宋宇.激光共聚焦显微技术及其在抗肿瘤药物研究中的应用[J].中华实用中西医杂志,2003,3(16):1440-1442
    [56]陈耀文,林珏龙等,激光扫描共聚焦显微镜系统及其在细胞生物学中的应用[J].激光生物学报,1998,7(2):131-134
    [57]Hinckley D. A., Seybold P. G., A spectroscopic/thermodynamic study of the rhodamine B lactone(?)zwitterion equilibrium [J]. Spectrochimica Acta Part A,1988,44(10): 1053-1059
    [58]Sun W. C., Kyle R. G., et al., Synthesis of Fluorinated Fluoresceins [J]. J. Org. Chem. 1997,62,6469-6475
    [59]Ge F. Y., Chen L.G., pH Fluorescent Probes:Chlorinated Fluoresceins [J]. J.Fluoresc 2008, 18,741-747
    [60]Tanaka K., Miura T., Umezawa N., Urano Y., Kikuchi K., Rational Design of Fluorescein-Based Fluorescence Probes. Mechanism-Based Design of a Maximum Fluorescence Probe for Singlet Oxygen [J]. J. Am. Chem. Soc.2001,123:2530-2536
    [61]Woodroofe C. C., Lim M. H., Bu W., Lippard S. J., Synthesis of isomerically pure carboxylate-and sulfonate-substituted xanthene fluorophores [J]. Tetrahedron 61,2005, 3097-3105
    [62]Ueno T., Urano Y., Setsukinai K., Takakusa H., Koijima H., Kikuchi K., Rational Principles for Modulating Fluorescence Properties of Fluorescein [J]. J. Am. Chem. Soc. 2004,126:14079-14085
    [63]Urano Y., Kamiya M., Kanda K., Ueno T. Evolution of Fluorescein as a Platform for Finely Tunable Fluorescence Probes [J]. J.Am. Chem.Soc.2005,127:4888-4894
    [64]Haugland R.P., Handbook of Fluorescent Probes and Research Products[M].9th ed., Eugene:Molecular Probes Inc.,2002,830-838.
    [65]Song L., Hennink E. J., Young T., et al., Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy [J]. Biophys J.1995,68(6):2588-2600
    [66]Song L., Varma C. A. G.., Verhoeven J. W., et al., Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy [J]. Biophys J.1996,70(6): 2959-2968
    [67]Jose M. A., Luis B., Eva T., et al., Fluorescein Excited-State Proton Exchange Reactions:Nanosecond Emission Kinetics and Correlation with Steady-State Fluorescence Intensity [J]. J. Phys. Chem. A,2001,105:6320-632
    [68]Adamczyk M., Chen Y. Y., Grote J. O-(Fluoresceinylmethyl)hydroxylamine (OFMHA):A reagent for the preparation of fluorescent O-(fluoresceinylmethyl)oxime (FMO)-steroid conjugates [J]. Steroids.,1999,64:283-290
    [69]Banks P. R., Paquette D. M., Comparison of Three Common Amine Reactive Fluorescent Probes Used for Conjugation to Biomolecules by Capillary Zone Electrophoresis [J]. Bioconjugate Chem.,1995,6(4):447-458
    [70]Dettin M., Scarinic C., Zanotto C., et al., Design, synthesis and CD4 binding studies of a fluorescent analogue of a peptide that enhances HIV-1 infectivity [J]. J. Pept. Res.,1998, 51:110-115
    [71]Tung C. H., Bredow S., Mahmood U., et al., Preparation of a Cathepsin D Sensitive Near-Infrared Fluorescence Probe for Imaging [J]. Bioconjugate. Chem.,1999,10: 892-896
    [72]Ueda M., Sawai Y., Yamamura S. Syntheses of fluorescence-labeled artificial leaf-opening substances, fluorescent probe compounds useful for bioorganic studies of nyctinasty [J]. Tetrahedron. Lett.,2000,41(19):3433-3436
    [73]Zuk R. F., Rowley G. L., Uliman E. F., Fluorescence protection immunoassay:a new homogeneous assay technique [J] Clinical. Chem.,1979,25:1554-1560
    [74]White C. E., Argauer R. J., Fluorescein Analysis A Practical Approach [M]. New York, USA,1970,212-214
    [75]Parker C. A., Rees W. T., Correction of Fluorescence Spectra and Measurement of Fluorescence Quantum Efficiency [J]. Anal.,1960,85:587-600
    [76]Burdette S. C., Walkup G. K., Spingler B., et al. Fluorescent Sensors for Zn2+ Based on a Fluorescein Platform:Synthesis, Properties and Intracellular Distribution [J], J. Am. Chem. Soc.,2001,123(32):7831-7841
    [77]Tanaka K., Miura T., Umeawa N., et al., Rational Design of Fluorescein-Based Fluorescence Probes. Mechanism-Based Design of a Maximum Fluorescence Probe for Singlet Oxygen [J]. J. Am. Chem. Soc.,2001,123(11):2530-2538
    [78]Fietchner, M.; Wong, M.; Bieniarz, C.; Shipchandler, M. T. Fluorescent Liposome Flow Markers for Microscale Particle-Image Velocimetry[J].Anal. Biochem.1989,180,140-146
    [79]Phillip G. M., Preparation of 5-and 6-(aminomethyl)fluorescein [J]. Bioconjugate Chem., 1992,3(5):430-431
    [80]Rotman A., Israel R., Derivatives of fluorescein [P].US,4609740,1986-9-2
    [81]Kojima H., Sakurai K., Kikuchi K., et al., Development of a fluorescent indicator for nitric oxide based on the fluorescein chromophore [J]. Chem. Pharm. Bull.,1998,46:373-375
    [82]Kojima H., Urano Y., Kikuchi K., et al., Fluorescent Indicators for Imaging Nitric Oxide Production [J]. Angew. Chem. Int. Ed.,1999,38(21):3209-3212
    [83]Munkholm C., Parkinson D. R., Walt D. R., Intramolecular fluorescence self-quenching of fluoresceinamine [J]. J. Am. Chem. Soc.,1990,112:2608-2612
    [84]Burchak O. N., Mugherli L., Chatelain F., Balakirev M.Y., Fluorescein-based amino acids for solid phase synthesis of fluorogenic protease substrates [J]. Bioorganic & Medicinal Chemistry,2006,14:2559-2658
    [85]Fletcher A. N., Bliss D. E., Kauffman J. M., Opt. Commun.,1983,47:57-60
    [86]Banks R. P., Paquette D. M., Comparison of Three Common Amine Reactive Fluorescent Probes Used for Conjugation to Biomolecules by Capillary Zone Electrophoresis [J]. Bioconjugate Chem.,1995,6(4):447-458
    [87]Rossi F. M., Kao J. P. Y., Practical Method for the Multigram Separation of the 5-and 6-Isomers of Carboxyfluorescein [J]. Bioconjugate Chem.,1997,8(4):495-497
    [88]Christopher T. O., Susanne C., Eric F., et al., Efficient and Expedient Two-Step Pyranose-Retaining Fluorescein Conjugation of Complex Reducing Oligosaccharides:Galectin Oligosaccharide Specificity Studies in a Fluorescence Polarization Assay [J]. Bioconjugate Chem.,2003,14(6):1289-1297
    [89]Breeuwer P., Drocourt J. L., Rombouts F. M., et al., A Novel Method for Continuous Determination of the Intracellular pH in Bacteria with the Internally Conjugated Fluorescent Probe 5 (and 6-)-Carboxyfluorescein Succinimidyl Ester[J]. Appl. Environ. Microbiol [J].,1996,62:178-183
    [90]Riondet C., Cachon R., Wache Y., et al. Measurement of the intracellular pH in Escherichia coli with the internally conjugated fluorescent probe 5-(and 6-)carboxyfluorescein succinimidyl ester [J], Biotech. Tech.,1997,11:735-741
    [91]Lyttle M. H., Carter T. G., Cook R. M., Improved Synthetic Procedures for 4,7,2',7'-Tetrachloro-and 4',5'-Dichloro-2',7'-dimethoxy-5(and 6)-carboxy fluoresceins [J]. Org. Process. Res. Dev.,2001,5:45-49
    [92]Nampalli S., McDougall M. G., Lavernov K., Xiao H. G., Utility of Thiol-Cross-Linked
    Fluorescent Dye Labeled Terminators for DNA Sequencing [J]. Bioconjugate Chem.2002, 13:468-473 [93] Oberg C. T., Carlsson S., Fillion E., Leffler H., Nilsson U. J., Efficient and Expedient Two-Step Pyranose-Retaining Fluorescein Conjugation of Complex Reducing Oligosaccharides:Galectin Oligosaccharide Specificity Studies in a Fluorescence Polarization Assay [J]. Bioconjugate Chem.2003,14:1289-1297[94] 王义琛,王流芳,王兴国等,二丙酸酯荧光素分解酶细胞化学测定方法研究[J].兰州大学学报,1984,20(3):132-132[95] Wang H., Li J., Liu X., et al., N-hydroxysuccinimidyl fluorescein-O-acetate as a fluorescent derivatizing reagent for catecholamines in liquid chromatography [J]. Analyt. Biochem.,2000,281:15-20 [96] Minta A. A., Kao J.P., Tsien R.Y., Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores [J]. J. Biol. Chem.1989,264:8171-8178 [97] Lioyd Q. P., Kuhn M. A., Gay C.V.. Characterization of Calcium Translocation across the Plasma Membrane of Primary Osteoblasts Using a Lipophilic Calcium-sensitive Fluorescent Dye, Calcium Green C18 [J]. J. Biol. Chem.1995,270:22445-22451[98] 韩洁,李剑利,贺怀贞等,新型荧光素类细胞钙离子荧光探针Fluo-Cl的设计、合成及表征[J].高等学校化学学报,2008,29(10):2003-2006[99] 韩洁,李剑利,孙伟等,新型含氟细胞钙离子荧光探针Fluo-3F的合成[J].西北大学学报(自然科学版),2008,38(6):947-950[100] Burdette S. C., Frederickson C. J.,Bu W.M., Lipard S. J., ZP4, an Improved Neuronal Zn2+ Sensor of the Zinpyr Family [J]. J. Am. Chem. Soc.2003,125:1778-1787 [101] Nolan E. M., Ryu J. W., Jaworski J., Feazell R. P., Sheng M., Lippard S. J. Zinspy Sensors with Enhanced Dynamic Range for Imaging Neuronal Cell Zinc Uptake and Mobilization [J]. J. Am. Chem. Soc.2006,128:15517-15528[102] 马会民,苏美红,梁树权,三嗪类光学探针与标记分析[J].分析化学,2003,31(10):1256-1260[103] Orndorff W. R., Hemmer A., Fluorescein and Some of Its Derivatives [J]. J. Am. Chem. Soc.,1927,49(5):1272-1280 [104] Ganesan A. K., Ratman B., Expression of newly transferred genes controlling (3-d-galactosidase synthesis in Escherichia coli [J]. J. Mol. Biol.,1964,10:337-340[105] 何凤英,王流芳,李丙瑞等.荧光素二苯甲酰酯的晶体结构与水解性质的研究[J].化学学报,1993,51(2):119-124[106] 欧阳直熏,陈德华,袁希召.荧光素和苯磺酰氯间反应机理研究[J].有机化学,1998,18(5):465-468[107] 王流芳,刘海新,张玉祥等,几种荧光素衍生物的合成及其生物荧光活性的研究[J].发光学报,1987,8(4):317-322
    [108]闫喜龙,王文峰,张素峰等,荧光素酯的合成及对红豆杉细胞的染色作用[J].精细化工,2005,22(6):440-443
    [109]Jacobsen C. N., Rasmussen J., Jakobsen M., Viability staining and flow cytometric detection of Listeria monocytogenes [J]. J. Microbiol. Method.,1997,28:35-43
    [110]Rossi F. M., Kao J. P. Y., Practical Method for the Multigram Separation of the 5-and 6-Isomers of Carboxyfluorescein Bioconjugate Chem.1997,8:495-497
    [112]Song F. l., Watanabe S., Floreancig P. E., Oxidation-Resistant Fluorogenic Probe for Mercury Based on Alkyne Oxymercuration [J], J.Am.Chem.Soc.,2008,130(49): 16460-16461
    [113]Khanna P. L, Colvin W., Unsymmetrical fluorescein derivatives [P] US 4439356, 1984-03-27
    [114]Benson S. C., Menchen S. M., Theisen P. D., Hennessey K. M.; Asymmeteric benzoxanthene dyes [P]. US 5840999,1998-11-24
    [1]Sun W. C., Kyle R. G., et al., Synthesis of Fluorinated Fluoresceins [J]. J. Org. Chem., 1997,62:6469-6475
    [2]Rossi F. M., Kao J. P. Y., Practical Method for the Multigram Separation of the 5-and 6-Isomers of Carboxyfluorescein [J]. Bioconjugate Chem.,1997,8(4):495-497
    [3]陈秀英,彭孝军.DNA分子荧光探针[J].染料与染色,2004,41(6):315-319
    [4]Gao J. X., Wang P., Giese R. W., Xanthamide Fluorescent Dyes [J]. Anal. Chem.,2002, 74:6397-6401
    [5]Aritamangkul S, Bhalgat M. K., Haugland R. P., et al.5-(Pentafluorobenzoylamino) fluorescein:A selective substrate for the determination of glutathione concentration and glutathione S-transferase activity [J]. Anal. Biochem.,1999,269:410-417
    [6]Lyttle M. H., Carter T. G., Cook R. M., Improved Synthetic Procedures for 4,7,2',7'-Tetrachloro-and 4',5'-Dichloro-2',7'-dimethoxy-5 (and 6)-carboxy fluoresceins [J]. Org. Process. Res. Dev.,2001,5:45-49
    [7]陈志坚,彭孝军.DNA荧光标示研究进展[J].化学研究与应用,2005,17(2):154-158
    [8]Nauta W. Th.,Synthesis and Propertes of the chlorination products of methyl 4-amino-2-hydroxybenzoate [J]. Rec. Trav. Chim.,1956,75:943-955
    [9]Tarbell D. S., Wilson J. W., Shriner R. L.,2,6-dichlorophenol [J]. Organic Synthesis Coll. 3:267-270
    [10]Umland A. W., Explosive limits of hydrogen-chlorine mixtures [J]. J. Electrochem. Soc., 1954,101(12):626-631
    [11]Lam K. K., Sargent M. V., Synthesis of Valsarin and 5,7-Dichloroemodin [J]. J. Chem. Soc. Perkin Ⅰ.1972,12:1466-1470
    [12]Humphrey J. M.; Chamberlin A. R. Chemical Synthesis of Natural Product Peptides: Coupling Methods for the Incorporation of Noncoded Amino Acids into Peptides[J]. Chem. ReV.1997,97:2243-2266
    [13]Park S., Healy K. E., Nanoparticulate DNA Packaging Using Terpolymers of Poly (lysine-g-(lactide-b-ethylene glycol)) [J]. Bioconjugate Chem.,2003,14:311-319
    [14]Alsina J., Rabanal F., Active carbonate resins:Application to the solid-phase synthesis of alcohol, carbamate and cyclic peptides [J]. Tetrahedron,1998,54:10125-10152
    [15]Greenwald R. B., Zhao H., Xia J., Poly(ethylene glycol) transport forms of vancomycin:a long-lived continuous release delivery system [J]. J. Med. Chem.,2003,46:5021
    [16]Subhakar D., Darryl J. C., Subhasish P., Active esters of N-substituted piperazine acetic acids, including isotopically enriched verions thereof [P]. U.S. Pat. Appl. Publ. (2005), US 2005148771A1,2005-07-07
    [17]Darryl J. C. P., P. Sas, C. M. James, Isotopically enriched N-substituted piperazines and methods for the preparation thereof [P]. U.S. Pat. Appl. Publ. (2007), US 7307109B2, 2007-12-11
    [18]Takkellapati S. R., Chen C. Y., Neschadimenko V., Nampalli S., Xiao Haiguang; Synthesis of aminomethyl-and bis-aminomethyl-fluorescein energy transfer terminators[J]. Nucleosides Nucleotides Nucleic Acids 2007,26(10-12):1467-1470
    [1]Sun W. C., Kyle R. G., et al., Synthesis of Fluorinated Fluoresceins [J]. J. Org. Chem. 1997,62:6469-6475
    [2]Khanna P. L., Ullman E. F., Eur. Pat. Appl. EP 0050684A1,1982
    [3]Woodroofe C. C., Lim M. H., Bu W., Lippard S.J., Synthesis of isomerically pure carboxylate-and sulfonate-substituted xanthene fluorophores [J]. Tetrahedron,2005, 61:3097-3105
    [4]Steven M. M., Linda G. L., Charles R. C., et al.4,7-dichlorofluorescein dyes as molecular probes [P], US 6649598 B2,2003-11-18.
    [5]Confalone P. N., J. Heterocycl. Chem.1990,27:31
    [6]陈秀英,彭孝军.DNA分子荧光探针[J].染料与染色,2004,41(6):315-319
    [7]Tomoya H., Kazuya K., Yasuteru U., Tetsuo N. Improvement and Biological Applications of Fluorescent Probes for Zinc, ZnAFs [J], J. Am. Chem. Soc.2002,124:6555-6562
    [8]Sun W. C., Kyle R. G., et al., Synthesis of Fluorinated Fluoresceins [J]. J. Org. Chem. 1997,62:6469-6475
    [9]潘惠英,葛凤燕,陈立功,2’,7’-二氯-5(6)-异硫氰基荧光素的合成和表征[J].化学工业与工程,2006,23(5):403-406
    [10]潘惠英,葛凤燕,陈立功,氨基荧光素的合成、分离和表征[J].应用化学,2006,23(2):193-197
    [11]Jiao G. S., Han J. W., K. Burgess, Syntheses of Regioisomerically Pure 5-or 6-Halogenated Fluoresceins [J]. J. Org. Chem.2003,68(21):8264-8267
    [12]Burdette S. C., Frederickson C. J., Bu W. M., ZP4, an improved neuronal Zn2+ sensor of the Zinpyr family [J]. J. Am. Chem. Soc.2003,125:1778-1787
    [13]Scott B. C., Steven M. M., Peter D.T., Kevin M. H., et al. Asymmetric benzoxanthene dyes [P], US 5840999,199811-24
    [14]Scott B. C., Steven M. M., Peter D.T., Krishna G. U., et al. Aromatic-substituted xanthene dyes [P]. US6008379,1999-11-01
    [15]Krishna G. U., Steven M. M., Zhen W.G., Electron-deficient nitrogen heterocycle-substituted fluorescein dyes [P]. US Patent,6221604 B1.2001-04-24
    [16]Lyttle M. H., Carter T. G, Cook R. M., Improved Synthetic Procedures for 4,7,2',7'-Tetrachloro-and 4',5'-Dichloro-2',7'-dimethoxy-5(and 6)-carboxy fluoresceins [J]. Org. Process. Res. Dev.,2001,5:45-49
    [17]Steven M. M., Linda G. L., Charles R. C.,4,7-dichlorofluorescein dyes as molecular probes [P]. US Patent 5654442,1997-08-05
    [18]Steven M. M., Linda G. L., Charles R. C.,4,7-dichlorofluorescein dyes as molecular probes [P].US Patent 6096723,2000-08-01
    [19]Steven M. M., Linda G. L., Charles R. C.,4,7-Dichlorofluorescein dyes as molecular probes [P].US Patent 6403812 B1,2002-06-11
    [20]闫喜龙,王文锋,陈立功,荧光素酯的合成及对红豆杉细胞的染色作用[J].精细化工,2005,22(6):440-443
    [21]Rossi F. M., Kao J. P. Y., Practical Method for the Multigram Separation of the 5-and 6-Isomers of Carboxyfluorescein [J]. Bioconjugate Chem.1997,8:495-497
    [22]Blackman M. J., Corrie J. E. T., Croney J. C. et al., Structural and Biochemical Characterization of a Fluorogenic Rhodamine-Labeled Malarial Protease Substrate [J]. Biochemistry,2002,41:12244-12252
    [23]James P. B., Aaron M. K., David L. V. V., Efficient Two-Step Synthesis of 9-Aryl-6-hydroxy-3H-xanthen-3-one Fluorophores [J]. J. Org. Chem.2005,70: 9051-9053
    [1]王彦广,刘洋.化学标记与探针技术在分子生物学中的应用[M].北京:化学工业出版社,2007:11-14
    [2]张华山等,分子探针与检测试剂[M].北京:科学出版社,2002:167-168
    [3]Adams S. R., New Biarsenical Ligands and Tetracysteine Motifs for Protein Labeling in Vitro and in Vivo:Synthesis and Biological Applications [J]. J. Am. Chem. Soc., 124(21):606-6076
    [4]Lomants A. J., Fairbanks G., Chemical Probes of Extended Biological Structures: Synthesis and Properties of the Cleavable Protein Cross-linking Regent Dithiobis[J]. J. Mol. Biol.1976,104(1):243-261
    [5]Fasman G. D., Practical Handbook of Biochemistry and Molecular Biology [M]. CRC Press, Boca Raton, FL.1989:13-16
    [6]Blakess D., Immunofluorescence using Dichlorotriazinylaminofluorescein (DTAF) [J]. J. Immunol. Methods,1977,17(3-4):361-364
    [7]White A., Handler P., Smith E. L., Pinciples of Biochemistry, McGraw-Hill [M]. New York.1982:142-151
    [8]Cleland W. W., Dithiothreitol, a new protective reagent for SH groups [J]. Biochemistry 1964,3(4):480-482
    [9]Riordan J. F., Vallee B.L., Diazonium salts as specific reagents and probes of protein configuration [J]. Methods Enzymol.1972,25:251-256
    [10]Wilchak M., Ben-Hur H., Bayer E. A., A procedure for the labeling of tyrosines and histidines in proteins [J]. Biochem. Biophys.Res. Commun.1966,136:872-874
    [11]Hoare D. G, Koshland D. E., A procedure for the selective modification of carboxyl groups in proteins [J], J. Am. Chem. Soc.,1966,88 (9):2057-2058.
    [12]Yamada H., Imoto T., Fujita K., Okazaki K., Motomu M., Selective modification of aspartic acid-101 in lysozyme by carbodiimide reaction [J]. Biochemistry,1981,20 (17): 4836-4842
    [13]Yankeelov J. A., Mitchell C. D, Crawford T. H., Simple trimerization of 2,3-butanedione yielding a selective reagent for the modification of arginine in prote [J]. J. Am. Chem. Soc.,1968,90 (6):1664-1666
    [14]Bond J. S., Francis S. H., Par J. H., An Essential Histidine in the Catalytic Activities of 3-Phosphoglyceraldehyde Dehydrogenase[J]. J. Biol. Chem.1970,245(5):1041-1053
    [15]Bragg P. D., Hou C., Subunit composition function and spatial arrangement in the Ca2+ and Mg2+ activated adenosine triphosphatases of Escherichia coli and Salmonella typhimurium [J]. Arch. Biochem.Biophys.1975,167(1):311-321
    [16]Staro J. V., N-hydroxysulfosuccinimide active esters:bis(N-hydroxysulfosuccinimide) esters of two dicarboxylic acids are hydrophilic, membrane-impermeant, protein cross-linkers [J]. Biochemistry,1982,21 (17):3950-3955
    [17]Jentoft N., Dearborn D. G., Labeling of proteins by reductive methylation using sodium cyanoborohydride [J]. J. Biol. Chem.1979,254(12):4359-4365
    [18]Komatsu S. K., Devries A. L., Feeney R. E., Studies of the Structure of Freezing Point-depressing Glycoproteins from an Antarctic Fish [J]. J. Biol. Chem.1970,245(11): 2909-2913
    [19]Vandenheede J. R., Ahmed A. I., Feeney R. E., Structure and Role of Carbohydrate in Freezing Point-depressing Glycoproteins from an Antarctic Fish [J]. J. Biol. Chem.1972, 247(24):7885-7889
    [20]Hartley B., Massey V., The active center of chymotrypsin I. Labeling with a fluorescent dye [J]. Biochim. Biophys. Acta 1956,21(1):58-70
    [21]Titus J., Haugland R., Sharrow S.O., Segal D.M., Texas Red, a hydrophilic, red-emitting fluorphore for use with fluorescein in dual parameter flow microfluorometric and fluorescence microscopic studies [J]. J. Immunol.Methods,1982,50:193-294
    [22]De Belder A. N., Granath K., Preparation and properties of fluorescein labeled dextrans [J]. Carbohydr. Res.1973,30(2):375-378
    [23]Gurd F. R. N., Carboxymethylation[J]. Methods Enzymol.1967,11:532-537
    [24]Shiao D. D. F., Lumry R., Rajender S., Modification of protein properties by change in charge [J]. Eur. J. Biochem.1972,29(2):377-385
    [25]Singh P., Tegretol antigens and antibodies [P]. US patent 4058511,1972-11-15
    [26]Ansorge W., Non-radioactive automated sequencing of oligonucleotides by chemical degradation [J]. Nucleic Acids Res.1988,16:2003-2006
    [27]Johnson A. T., Adkins H. J., Matthews E.A., Cantor C.R. Distance moved by transfer RNA during Translocation from the A site to the P site on the ribosome [J]. J. Mol. Biol., 1962,156(1):113-1140
    [28]Smyth D. G., Blummenfeld O. O., Konigsber W., Reaction of N-ethylmaleimide with peptides and amino acids[J]. Biochem. J.1964,91(3):589-595
    [29]Brown R. D., Matthews K. S., Chemical modification of lactose repressor proteins using N-substituted maleimides [J]. J. Biol. Chem.,1979,254(12):5128-5134
    [30]Brandis J. W., Dye structure affects Taq DNA polymerase terminator selectivity [J]. Nucleic Acids Res.,1999,27(8):1912-1918
    [31]Pljevaljcic G., Pignot M., Weinhold E. Design of a New Fluorescent Cofactor for DNA Methyltransferases and Sequence-Specific Labeling of DNA [J]. J. Am. Chem. Soc., 2003,125(12):3486-3492
    [32]Bergot J. B., Chakerian V., et al. Spectrally resolvable rhodamine dyes for nucleic acid sequence determination [P]. US patent 5366869,1994-11-22
    [33]Houghten R. A., Dooley C. T., Appel J. R. De novo identification of highly active fluorescent kappa opioid ligands from a rhodamine labeled tetrapeptide positional scanning library [J]. Bioorganic & Medicinal Chemistry Letters,2004,14(8):1947-1951
    [34]Nasir M. S., Jollei M. E., Fluorescence polarization, an analytical tool for immunoassay and drug discovery [J]. Comb. Chem. High Throughput Screening 2:177-190
    [35]Oberg C. T., Carlsson S., Fillion E., Leffler H., Nilsson U. J., Efficient and Expedient Two-Step Pyranose-Retaining Fluorescein Conjugation of Complex Reducing Oligosaccharides:Galectin Oligosaccharide Specificity Studies in a Fluorescence Polarization Assay [J]. Bioconjugate Chem.,2003,14 (6):1289-1297
    [36]Williams A. T. R., Winfied S. A. Miller J. N., Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer [J]. Aanlyst.1983,108:1067-1071
    [37]Umberger J. Q., Lamer V., The Kinetics of Diffusion Controlled Molecular and Ionic Reactions in Solution as Determined by Measurements of the Quenching of Fluorescence [J]. J. Am. Chem. Soc.1945,67(7):1099-1109
    [1]倪灿荣,马大烈,戴益民,免疫组织化学实验技术及应用[M].化学工业出版社,2006:14-16
    [2]蔡文琴,王伯沄,实用免疫细胞化学[M].成都:四川科技出版社,1990:78-86
    [3]倪灿荣,免疫组织化学抗原修复的质量控制[J].中华现代医学研究,2004,2(8):37-40
    [4]李成文,现代免疫化学技术[M].上海:上海科技出版社,1992:34-36
    [5]林金明,赵利霞,王栩,化学发光免疫分析[M].化学工业出版社,2008:35-42
    [6]熊正文,免疫组织化学技术抗原修复的研究进展[J].中华病理学杂志,199,26(3):124-129
    [7]倪灿荣,免疫组织化学实验新技术及应用[M.北京科学技术出版社,1993:44-64
    [8]王栩,林金明,化学发光免疫分析技术新进展[J].分析实验室,2007,6:111-122
    [9]卢建忠,曹志娟,化学发光技术在蛋白质和DNA分析中的新进展[J].世界科技研究与发展,2004,26:97-104
    [10]沈关心,周汝麟,现代免疫学实验技术[M].湖北科学技术出版社,1998
    [11]王伯沄,杨琨,免疫细胞化学理论基础[M].人民卫生出版社,1999
    [12]贲长恩,李叔庚,组织化学[M].人民卫生出版社,2001
    [13]刘彦仿,免疫组织化学[M].人民卫生出版社,1990
    [14]Brinkley M, A brief survey of methods for preparing protein conjugateds with dyes, haptens and cross-linking reagents [J]. Bioconjug. Chem.1992,3(1):2-13
    [15]Twining S. S. Fluorescein isothiocyanate-labeled casein assay for proteolytic enzymes [J]. Anal. Biochem.1984,143(1):30-34
    [16]Mao S.Y., Conjugation of fluorchromes to antibodies [J]. Methods Mol. Biol.1999, 115:35-38
    [17]Perez-Paya E, High-performance liquid chromatiographic separation of modified and native melittin following transglutaminase-mediated derivatization with a Dansyl fluorescent probe [J]. J Chromatogr.1991,548:351-359
    [18]Banks P. R., Paquette D. M., Comparison of three common amine reactive fluorescent probes used for conjugation to biomolecules by capillary zone electrophoresis [J]. Bioconjug. Chem.1995,6:447-458
    [1]Diwu Z. J. Jesse J. T., Yi G. L., Fluorescent pH indicators for intracellular assays [P]. US Patent US20030068668 A1,2003-04-10
    [2]王彦广,刘洋,化学标记与探针技术在分子生物中的应用[M].化学工业出版社,2007:53-55
    [3]Rink T. J. Tsien R. Y. Pozzan T., Cytoplasmic pH and free Mg2+ in lymphocytes [J]. J. Cell. Biol.,1982,95(1):189-196
    [4]Szmacinski H., Lakowicz J. R., Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry [J]. Anal. Chem.,1993,65 (13):1668-1674
    [5]Prassanna de Silva, A.; Nimal Gunaratne, H. Q., Rice, T. E, Proton-Controlled Switching of Luminescence in Lanthanide Complexes in Aqueous Solution:pH Sensors Based on Long-Lived Emission [J]. Angew. Chem. Int. Ed. Engl.,1996,35 (18):2116-2118
    [6]Chan C., Wong K. Evaluation of a luminescent ruthenium complex immobilized inside Nafion as optical pH sensor [J]. Analyst,1998,123 (9):1843-1847
    [7]Price J. M., Xu W., Demas J. N., Polymer-Supported pH Sensors Based on Hydrophobically Bound Luminescent Ruthenium (II) Complexes [J]. Anal. Chem.,1998, 70 (2):265-270
    [8]Wolfbeis O. S., Frlinger E., Kroneis H. et al. Fluorescence quenching method for determination of two or three components in solution [J]. Anal. Chem.,1983,55(12): 1904-1906
    [9]Overly C. C., Hollenbeck P. J. Dynamic organization of endocytic pathways in axons of cultured sympathetic neurons [J]. J. Neurosci.,1996,16 (19):6056-6064
    [10]Lee S, Kumar J, Tripathy S K. Thin Film Optical Sensors Employing Polyelectrolyte Assembly [J]. Langmuir.,2000,16 (26):10482-10489
    [11]Leiner M. J. P., Harmann P., Theory and practice in optical pH sensing [J]. Sensors and Actuators B:Chemical,1993, 11(1-3):281-289
    [12]Zhang Z., Seitz W. R. A fluorescence sensor for quantifying pH in the range from 6.5 to 8.5 [J]. Anal. Chim. Acta,1984,160:47-55
    [13]Schulman S. G., Chen S., Bai F. et al. Dependent of the Fluorescence of Immobilized 1-hydroxypyrene-3,6,8-Trisulfonate on Solution pH:Extension of the Range of Applicability of a pH Fluoresensor [J]. Anal. Chim. Acta.1995,304:165-170
    [14]Clement N. R., Gould J. M., Pyranine (8-hydroxy-1,3,6-pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles [J]. Biochem.,1981, 20(6):1534-1538
    [15]Lakowicz J. R. Principles of Fluorescence Spect roscopy [M].2nd Ed., New York:Kluwer Academic/Plenum Publish2 ers,1999:547-549
    [16]Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ [J]. Biochem., 1979,18(11):2210-2218
    [17]Ohkuma, S., Poole, B., Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents [J]. Proc. Natn. Acad. Sci. U. S. A.,1978,75 (7):3327-3331
    [18]Fry D. R., Bobbit D. R. Investigation of dynamically modified optical-fiber sensors for pH sensing at the extremes of the pH scale [J]. Microchem. J.,2001,69 (2):123-131
    [19]Ge, Feng-Yan; Chen, Li-Gong. pH fluorescent probes:Chlorinated fluoresceins [J]. Journal of Fluorescence,2008,18(3-4):741-747
    [20]Umberger J. Q., Lamer V., The Kinetics of Diffusion Controlled Molecular and Ionic Reactions in Solution as Determined by Measurements of the Quenching of Fluorescence [J]. J. Am. Chem. Soc.1945,67(7):1099-1109
    [21]Miura T., Urano Y, Tanaka K., Nagano T., Rational Design Principle for Modulating Fluorescence Properties of Fluorescein-Based Probes by Photoinduced Electron Transfer [J]. J. Am. Chem. Soc.2003,125(28):8666-8671

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700