纳米氢化铥、铥粉末的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.在温和条件下采用催化法、卤代烃引发法和金属经活化后利用溶剂效应三种方法首次制备出纳米氢化铥。借助X射线粉末衍射(XRD)、透射电镜(TEM)、差热分析和BET法对产物进行了表征。测试结果表明催化法制备的氢化铥具有六方晶系结构,分子式为TmH_(2.87);另外两种方法制备的氢化铥均为立方晶系结构,分子式为TmH_2。通过谢乐公式计算出上述三种方法制得的氢化铥的平均粒径分别为30 nm、14 nm和15 nm,与TEM测得的数值基本吻合。BET测得氢化铥的比表面积分别为11.0 m~2/g、13.6 m~2/g和36.6 m~2/g。对纳米氢化铥进行了加氮性能实验。实验结果表明,纳米氢化铥在常温时不与N_2反应,而升温至200℃开始反应,产物的XRD测试与JCP2卡中已有的数据不吻合,但经过反复实验测得的XRD数据均一致,推测产物可能为一种新的氮化物晶型,进一步的验证工作正在进行。通过谢乐公式计算出加氮产物平均粒径为15 nm。
     2.在温和条件下,采用络合催化法、卤代烃引发法合成金属铥有机中间体,并利用其热不稳定性,在真空条件下进行热分解制备纳米尺寸铥金属粉末。制备的纳米金属铥粉末活性很高,暴露在空气中有火花,对合成出的纳米铥粉末进行了加氢、加氮性能实验。实验结果表明,纳米铥粉末在常温常压下就能与H_2发生反应,XRD测试表明生成的氢化铥是立方和六方晶型的混合物,由谢乐公式计算其平均颗粒大小为19 nm,BET测试其比表面积为22.8 m~2/g。通过谢乐公式计算出加氮产物平均粒径为13 nm,与TEM测得的数值基本吻合。
     3.在讨论和重复实验的基础上进一步修正了组内前人所做的数据。温和条件下,采用络合催化法、卤代烃引发法合成金属铝有机中间体,并利用其热不稳定性,在真空条件下进行热分解制备纳米尺寸铝金属粉末。XRD测试表明产物为面心立方晶型,通过谢乐公式计算平均粒径为30 nm,与TEM测试结果一致。BET测得产物的比表面积为33.8 m~2/g。
Content:
     1.Nanosized thulium hydride was first successfully synthesized by using catalytic method,halogenated hydrocarbon solicitation method and metal activation method under mild conditions.The product was characterized by using XRD,TEM and BET methods.XRD patterns of thulium hydride,which was synthesized by using catalytic method,were identified to have hexagonal structures,and the molecular structure was TmH_(2.87).The rest was cubic crystal structures,the molecular structure was TmH_2.The average particle sizes calculated from XRD images by Scherrer formula are 30 nm,14 nm and 15 nm respectively,which are in agreement with the results from TEM images.And they had large specific areas of 11.0 m~2/g,13.6 m~2/g and 36.6 m~2/g correspondingly.The result of the nitriding experiment of nanosized thulium hydride indicated that nanosized thulium hydride does not react with N_2 at atmosphere temperature,but the reaction took place at 200℃.XRD pattern showed the data can't consistent with JCP2 card,but repetitious data are same.So we considered it's a new product.The average particle size calculated from XRD images by Scherrer formula is 15 nm.
     2.A simple and easy way was reported to prepare nanometric thulium powder by the thermal decomposition of organo-thulium under vacuum. The results of the hydrogenation and nitriding experiments of nanosized Tm indicated that nanosized Tm can react with H_2 at atmosphere temperature and normal pressure.XRD pattern showed that the product was thulium hydride with mixture crystal structures of cubic and hexagonal system.The average particle size calculated from XRD images by Scherrer formula is 19 nm.And it has a large specific area of 22.8 m~2/g. The average particle size calculated from XRD images of nitriding product by Scherrer formula is 13 nm,which are in agreement with the results from TEM images.
     3.Under the base of discussion and repeated experiments, Organo-aluminium intermediate was prepared by using coordination catalysis method and halogenated hydrocarbon solicitation method under mild conditions.Heat instability of the intermediate was considered to prepare nanosized aluminium by vacuum pyrogenation for it.The average particle size calculated from XRD images of nanosized aluminium by Scherrer formula is 30 nm,which are in agreement with the results from TEM images.And they had a large specific area of 33.8 m~2/g.
引文
[1]张立德,牟季美,纳米材料及其应用,北京:科学出版社,2001
    [2]白春礼,纳米科学与技术,昆明:云南科技出版社,1999
    [3]张立德,纳米材料,化学工业出版社,2000
    [4]王永康,王立,纳米材料科学与技术,浙江大学出版社,2002
    [5]李国栋,当代磁学,中国科技大学出版社,1999
    [6]王翠,纳米科学技术与纳米材料概述,延边大学学报(自然科学版),2001,27(1):66
    [7]王世敏,许祖勋等,纳米材料制备技术,化学工业出版社,2002,72
    [8]吴刚,材料结构表征及应用,北京:化学工业出版社,2002
    [9]严俊,纳米材料的.表征,材料导论,2001,15(4):53
    [10]蔡元霸,梁玉仓.结构化学,2001,24,425
    [11]张志焜,崔作林,纳米技术与纳米材料,北京:国防:正业出版社,2000
    [12]尹邦跃,纳米时代-现实与梦想,中国轻工业出版社,2001
    [13]龚建华,走进纳米世界,广东经济出版社,2001
    [14]A.T.Bell,The Impact of Nanoscience on Heterogeneous Catalysis,Science,2003,299:1688
    [15]J.Y.Ying,A.Tschope,D.Levin,Synergistic Effects and Catalytic Properties Tailored by Nanostructure Processing,Nanostr..Mater.,1995,6(1-4):237
    [16]左东华,张志琨,崔作林,纳米镍稀土薄壳式粒子在硝基苯加氢中催化性能,催化学报,1996,17(2):166
    [17]K.Z.Chen,Z.K.Zhang,Z.L.Cui,Catalytic Properties of Nanostructured Hydrogen Storage Nickel Particles with Cerium Shell Structure,Nanostr.Mater.,1997,8(2):205
    [18]G.A.Somorjai,Y.G.Borodko,Perspectives in Catalysis:Research in Nanosciences - Great Opportunity for Catalysis Science,Catal.Lett.,2001,76:1
    [19]M.Haruta,M.Date,Advances in the Catalysis of Au Nanoparticles,Appl.Catal.A,2001,222(1-2):427
    [20]闵恩泽,工业催化剂的研制与开发,北京:中国石化出版社,1997
    [21]都有为,罗诃烈,磁记录材料,北京:电子工业出版社,1992
    [22]张文魁.,王云刚,杨晓光等,稀土氢化物的晶体结构及其可转换光学特性,稀有金属材料与工程,2002,31(6):432
    [23]易宪武,黄春晖等,无机化学丛书(第七卷),北京:科学出版社,1998
    [24]E.A.Sullivan,R.C.Wade,Kirk-Othmer Encyclopedia of Chemical Technology,John Wiley &Sons,New York,1980,3rd Edit,12,772.
    [25]申泮文,张靓华等,无机化学丛书(第一卷),北京:科学出版社,1984,203
    [26]张文魁,王云刚,稀有金属材料与工程,2002,31(6):432
    [27]M.Kirchner,W.Schnelle,F.R.Wagner,R.Niewa,Preparation,crystal structure and physical properties of ternary Compounds(R_3N)In,R = rare-earth metal,Solid State Sciences,2003,5:1247
    [28]李勤,我国稀土资源开发应用现状与对策,江西有色金属,1998,12(4):20
    [29]易宪武,黄春晖等,无机化学丛书(第七卷),北京:科学出版社,1998
    [30]陈晋阳,化学世界,2002,54
    [31]侯宗林,浅谈我国稀土资源与地质科学研究,稀土信息,2003,10:7
    [32]林河成,试谈我国稀土的出口及建议,稀土,2000,21(4),75
    [33]林河成,我国稀土的生产、应用及市场,稀土,2002,21(1)
    [34]陈月兰,我国稀土工业发展的简况及思考,江西冶金,2002,2
    [35]林河成,对我国稀土工业发展的思考,世界有色金属,1999,11
    [36]王远良,熊家齐,严俊玺,韩福军,中国稀土的国际地位,稀土,1999,20(3)
    [37]徐光尧,稀土在传统产业中的应用,稀土,1999,20(3)
    [38]姜亚昌,王巧梅,李华,稀土纳米材料的应用及生产技术,稀土信息,2002,8:19
    [39]杨东亮,张伟晨,稀土在精细陶瓷材料中的应用,山东陶瓷,2000,01
    [40]曹华茹,张云华,侯仰龙,稀土高新功能材料,化学教育,2000,04
    [41]王海滨,刘军,张迎,冯伟宏,稀土应用的概况和今后开发重点的建议,山东化工,1999,04
    [42]张黎明,齐晓周,秦永宁,宋健,稀土氧化物的烟气脱硫过程中的应用研究进展,环境科学进展,1998,05
    [43]任致伟,稀土应用概述,云南化工,1998,04
    [44]杨遇春,汪丽都,稀土应用开发的新趋向,有色金属,1997,04
    [45]C.R.Ronda,T.Justel,H.Nikol,Rare earth phosphors:fundamental and applications,J.Alloys Compd.,1998,275-277,669
    [46]吴全兴,稀土材料的应用及研究新进展,稀有金属快报,2001,6:13
    [47]林河成,稀土,2003,24(1):75
    [48]侯庆烈,王振华,稀土金属的制备与提纯研究进展,上海有色金属,1999, 20:132-141
    [49]项斯芬,严宣中等,无机化学丛书(第四卷),科学出版社,1998,54
    [50]T.Nakagawa,H.Matsuoka,M.Sawa et al.,Preparation of Lanthanide Nitrides by Carbothermic Reduction Using Ammonia,J.Nucl.Mater.,1997,247:147
    [51]R.L.LaDuca,P.T.Wolczanski,Preparation of Lanthanide Nitrides via Ammonolysis of Molten(Me_3Si)_2N_3Ln:Onset of Crystallization Catalyzed by Lithium Amide and Lithium Chloride,Inorg.Chem.,1992,31(8):1311
    [52]J.C.Fitzmaurice,A.Hector,A.T.Rowley et al.,Rapid,Low Energy Synthesis of Lanthanide Nitrides,Polyhedron,1994,13(2):235
    [53]H.Imamura,K.Mizuno,K.Ohishi et al.,Catalytic Properties of Lanthanide Amide,Imide and Nitride Formed by Thermal Degradation of Liquid Ammonia Solutions of Eu and Yb Metal.J.Alloys Compd.,1998,275-277:903
    [54]U.Baisch,S.Pagano,M.Zeuner,et al.,Nanocrystalline Lanthanide Nitride Materials Synthesised by Thermal Treatment of Amido and Ammine Metallocenes:X-ray Studies and DFT Calculations,Chemistry--A European Journal,2006,12(18):4785
    [55]T.A.Yamamoto,T.Nakagawa,K.Sako et al.,Magnetocaloric Effect of Rare Earth Mono-Nitrides,TbN and HoN.J.Alloys Compd.,2004,376(1-2):17
    [56]S.Nishio,T.Nakagawa,T.Arakawa et al.,Specific Heat and Thermal Conductivity of HoN and ErN at Cryogenic Temperatures,J.Appl.Phy.,2006,99(8-3):08K901/1-3
    [57]K.Yamasaki,Y.Tamaki,M.Takano et al.,Fabrication of Lanthanide Nitride Pellets and Simulated Burnup Fuels,JAERI-Conf,2004,2004-015:43
    [58]H.P.Nawada,K.Fukuda,Role of Pyro-Chemical Processes in Advanced Fuel Cycles,J.Phys.Chem.Solids,2005,66(2-4):647
    [59]H.Imamura,T.Sakamoto,T.Matsuoka et al.,Dehydrogenation of Cyclohexane to Benzene on Lanthanide Catalysts Formed by Thermal Decomposition of Eu or Yb Metal Solutions in Liquid Ammonia.Mater,Sci.Forum,1999,315-317:471
    [60]H.Imamura,T.Sakamoto,T.Matsuoka et al.,Dehydrogenation of Cyclohexane to Benzene on Lanthanide Catalysts.Kidorui,1998,32:104
    [61]顾学民,龚毅生等,无机化学丛书(第二卷),科学出版社,1998:417
    [62]B.Bogdanovic,Angew.Chem.Int Ed.Engl,1985,24,262
    [63]范荫恒,李伟娜,应用化学,2001,18(5):389
    [64]张源魁,廖世健,徐筠等,催化学报,1996,17,489
    [65]K.E.Gonsalves,S.P.Rangarajan and J.Wang,in Handbook of Nanostructured Materials and Nanotechnology,Volume Ⅰ:Synthesis and Processing,ed.H.S.Nalwa,Academic Press,San Diego,2000,pp.1
    [66]Y.H.Fan,M.X.Wu,Q.w,S.J.Liao,etal.Preparation of Lanthanide Hydrides of Nanometric Size by the Catalytic Method,Chin.J.Chem.,2002,20(11):1450
    [67]武美霞,辽宁师范大学硕士毕业论文,2003
    [68]廖世健,孔巍,刘和众,李精奎,徐匀,温和条件下催化合成氢化锂,化学学报.1985,43,752
    [69]张一平,廖世健,徐筠,王美君,樊明兵,沈琪,温和条件下稀土氯化物-萘催化的碱金属氢化物的合成,化学学报,1991,49,329
    [70]廖世健,张双青,余淑文,活性镁及活性氢化镁的合成,化学学报,1988,46.612
    [71]刘和众,廖世健,主族金属在常温常压催化加氢,化学通报,1984,4,27
    [72]邹云玲,辽宁师范大学硕士毕业论文,2006
    [73]F.A.Cotton,G.Wiklinson,Advanced Inorganic Chemistry,4th Edn.,John Wiley & Sons,New York,1980,250
    [74]王文学,稀土元素~(170)铥及其毒性,中国工业医学杂志,2002,15(5):287
    [75]刘蓉生,稀土元素简介,四川稀土,2001,3:30
    [76]T.Liu,Y.H.Zhang,X.G.Li,Materials Chemistry and Physics,2006,97(2-3):398
    [77]E.A.Sullivan,Kirk-Othmer Encyclopedia of Chemical Technology,4th Ed.,John Wiley & Sons,New York,1995,13:613
    [78]F.A.Cotton,G.Wilkinson,Advanced Inorganic Chemistry,6th Ed.,John Wiley & Sons,New York,1999:1112
    [79]E.N.Zavadovskaya,O.K.Sharaev,G.K.Borisov Y.P.Yampolskii,E.I.Tinyakova,B.A.Zavadovskaya,Dokl.Akad.Nauk SSSR,1985,284:143
    [80]W.Koji,F.S.M.,S.Akira,Rev.Sci.Instrum,1983,54:1410
    [81]H.K.Smith,A.G.Moldovan,R.S.Craig,W.E.Wallace,S.G.Sankar,J.Solid State Chem.1980,32:239
    [82]K.Wakamori,S.M.Filipek and A.Sawaoka,Rev.Sci.instrum.,1983,54(10): 1410
    [83]H.Imamura,Y.Maeda,T.Kumai,Y.Sakata,S.Tsuchiya,Catal.Lett.,2003,88:69
    [84]A.Gudrun,Zeitschrift fuer Anorganische und Allgemeine Chemie,2002,628:1615
    [85]PDF Number:01-089-4064
    [86]H.Imamura,Y.Sakata,et al,Preparation and properties of nanocrystalline ytterbium and europium nitride(YbN and EuN),J.Alloys Compd.,2006,418,251
    [87]顾友,稀土元素铥及其应用,科普知识,2006,1
    [88]蒙红云,袁树忠,董新勇等,搀铥光纤放大器及其研究进展,飞通光电子技术,2001,1(3):167
    [89]北京师范大学无机化学教研室,等,无机化学,北京:高等教育出版社,1992.9,909
    [90]D.X.Li,Y.Haga,H.Shida,T.Suzuki,Y.S.Kwon,G.Kido,J.Phys.:Condens.Matter,1997,9,1077.
    [91]T.Nakagawa,T.Arakawa,K.Sako,N.Tomioka,T.A.Yamamoto,T.Kusunose,K.Niihara,K.Kamiya,T.Numazawa,J.Alloys Compd.,2006,408,187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700