水稻颖花内稃突变体pd1的遗传分析及其基因定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻作为人类最主要的食物来源之一,其颖花发育结果直接影响其产量和品质,因此,水稻花器官特别是与产量、品质密切相关的雌雄蕊和内外稃的相关基因研究就具有十分重要的现实意义。水稻的花器官从外至内包括了1片外稃、1片内稃、2枚浆片、6枚雄蕊以及1个雌蕊(1个子房和2个柱头),此外,其基部还有2片退化的颖片以及2片护颖。
     与双子叶植物花器官发育研究相比,水稻等单子叶植物的相关研究还相对滞后,研究者们利用双子叶植物发育基因的保守序列对水稻的基因组文库以及cDNA文库进行筛选,获得了很多MADS-box基因,但由于缺乏与性状的联系,大多数基因的确切功能无法明确。利用花器突变体研究花发育相关基因更能直接地明确基因功能。
     在籼稻品种93-11的Y射线辐照诱变处理后代中,我们发现了1株内稃发育不完全的突变体材料pd1,突变体经多代不同环境自交种植,确认该突变性状能够稳定遗传。本研究对该突变体进行了花器官结构的解剖、观察,相关突变性状的遗传分析,相关基因的精细定位研究,以及候选基因预测,其主要结果如下:
     (1)花器官结构观察:突变体颖花的1个外稃、2枚浆片和1个雌蕊等均发育正常。但1个内稃发育不良,呈现短小的类叶片状,致使整个小花弯曲;雄蕊数目减少为4枚;花粉育性、结实率和千粒重明显下降。
     (2)水稻颖花内稃突变体的遗传分析:在抽穗期,对突变体pdl与苏御糯杂交的F1代和F2代植株进行观察、调查。结果表明,F1代植株的小花发育正常,表明该性状为隐性性状。对F2代性状调查结果进行χ2测验(χ2c<χ20.05=3.84),正常株数目与内稃发育突变株数目的比例符合3:1分离比,表明了该突变性状是受1对隐性基因控制的。
     (3)突变体相关基因的精细定位:利用图位克隆方法,以突变体pd1与苏御糯构建的F2代以及pd1与日本晴、热研构建的F2代、F3代作为定位群体,运用SSR标记将PD1基因定位于第1染色体着丝粒下方的RM11239-RM11245之间约69Kb物理区间。
     (4)PD1候选基因预测:检索水稻基因组序列,目标区间共有10个开放阅读框(ORF),其中6个预测基因具有表达信息。LOC_Os01g40120为LYAR-type C2HC zinc finger结构的基因,仅在花中表达,最终确定LOC_Os01g40120作为候选基因的首选将作进一步功能研究。
As one of the popular food for human beings, the glume flower development results of rice influences its yield and quality. Consequently, the research of stamen、pistil、lemma and palea genes for rice flower development especially related to yield、guality is with very important practical significance.The floral organ of rice, which belongs to gramineae monocot, includes 1 lemma、1 palea、2 lodicules、6 stamen and 1 pistil (1 ovary and 2 stigmas), besides, the basal of floral organ has 2 degenerative glumes and 2 protective glumes.
     Compared to the research of floral organ development model of the dicot, the research of floral organ development model of monocot is backward. Rresearchers are screeneing the rice's genomic library and cDNA library by the conserved sequence of monocot development genes, and have got lots of MADS-box genes. However, because of lacking of points of junction for characters, the exact function of majority genes are not sure. Using floral organ mutations in research of genes for flower development is more effective.
     In the Y ray irradiation mutagenic treatment progenies of rice varieties 93-11, we found 1 mutation with ateliosis palea and its mutant character is genetic stability in the different environmental multiple generational self-cross planting. The research has done genetic analysis of mutant character of the mutation, anatomical observation of its flower structure, fine mapping of related gene, and prediction of candidate genes, main results are as follows:
     (1) Anatomical observation floral structure:except 1 lemma、2 lodicules and 1 pistil of the normal rice glume flower, the mutation glume flower has 1 dysplasia bladed palea, which causatives the flower bending; the number of stamen decreased to 4 only; pollen fertility、seed setting rate and 1000-grain weight decreased significantly.
     (2) Genetic analysis of rice glume palea mutation:in the heading stage, we have done observation and inverstigation of F1/F2 population which from pd1 and Suyunuo. As a result, the flowers of F1 population have normal phenotype, so it's recessive phenotype. Afterχ2 testing(x2c     (3) Fine mapping of related gene:by based cloning, using F2 population from pd1 and Suyunuo; F2 population and F3 population from pd1 and Nipponbare、Reyan, we have fine mapped the related gene PD1 in a 69Kb interval between RM11239 and RM11245 under the centromere of Chrl.
     (4)Prediction of candidate genes of PD1:after searching the genomic sequence, there are 10 ORFs in the target interval,6 of them have expression information. LOC_Os01g40120 only express in flower, and has domain LYAR-type C2HC zinc finger. So, LOC_Os01g40120 has been determined as the first candidate gene for further functional research.
引文
1.布坎南,格鲁依森姆,琼斯主编.瞿礼嘉,顾红雅,白书农,等主译.植物生物化学与分子生物学,北京,科学出版社,2004.2.
    2.白素兰,刘永胜,孙敬三,朱立煌,2008,水稻颖花开裂基因srs-1定位及其同源异型功能分析,中国科学,30(4):337-341.
    3. 储黄伟,刘海生,李 晖,王红梅,韦嘉励,李娜,丁淑燕,黄海,马红,黄潮锋,罗达,袁政,刘文轩,张大兵,2005,水稻叶状颖壳突变体Oslh的遗传分析和OsLH基因的定位,植物生理与分子生物学学报,31(6):594-598.
    4. 陈少游,2008,一个水稻生殖发育突变体的遗传分析及基因定位,硕士学位论文,福建农林大学生命科学学院,导师:王峰,pp.30-45.
    5.计慎敏,2008,水稻花序结构以及颖片发育的重要调控因子OsMADS34基因的功能分析,硕士学位论文,上海交通大学生命科学学院,导师:张大兵,pp.14-16.
    6.刘坚,郭龙彪,钱前.水稻花器官发育基因的研究进展.中国稻米,2007年,第3期.
    7. 李进波,夏明元,万丙良,杜雪树,查中萍,喻大昭,戚华雄,2008,一个水稻颖壳扭曲突变体的遗传分析与基因定位,中国水稻科学,22(6):658-660.
    8. 罗 琼,周开达,刘国庆,徐吉臣,肖 晗,朱立煌.水稻无内稃突变体的遗传分析和基因定位.遗传学报,29(3):230-234.2002.
    9. 罗琼,周开达,王文明,汪旭东,肖晗,王秀红,朱立煌,2001,一个新的水稻叶片和雌蕊发育异常突变体的遗传分析及其基因的分子标记定位,科学通报,46(15):1279-1280.
    10.李爱宏,武茹,张亚芳,汤雯,吴昌银,潘学彪.2006.一个水稻多重颖壳突变体的形态学观察及初步遗传分析.中国水稻科学,20(4):348-354.
    11.李进波,夏明元,万丙良,杜雪树,查中萍,喻大昭,戚华雄.2008.一个水稻颖壳扭曲突变体的遗传分析与基因定位.中国水稻科学,22(6):658-660.
    12.刘翔,左开井,黎 颖,许洁婷,陈雨,张飞,孙小芬,唐克轩.植物花器官发育模型及相关转录因子的研究.扬州大学学报(农业与生命科学版).2009年,第30卷第4期.
    13.刘晓玲,毛毕刚,刘华清,陈建民,田大刚,王锋,2009,一个水稻开颖不育突变体ohsl(t)的遗传分析及基因定位,分子植物育种,7(2):413-419.
    14.李云峰,2008,水稻小穗不确定性基因LHS1-3和雄蕊雌蕊化基因PS的图位克隆与功能分析,博士学位论文,西南大学农学与生物科技学院,导师:何光华,pp.43-69.
    15.李云峰,罗洪发,杨正林,钟秉强,何光华.2004.水稻雄蕊雌蕊化突变体的遗传分析.中国水稻科学,18(6):499-502.
    16.毛毕刚,刘华清,陈建民,陈在杰,彭永宏,王锋,2008,两个水稻生殖器官突变体的形态特征 和遗传分析,分子植物育种,6(2):233-238.
    17.彭慧娟,2007,水稻无内稃突变体的花器形态观察与基因定位,硕十学位论文,湖南农业大学农学院,导师:刘国华,pp.55-60.
    18.王力先,王永飞.被子植物花发育的ABC模型研究进展.安徽农学通报,Anhui Agri. Sci. Bull. 2007,13 (8):49-51.
    19.吴先军,王彬,韩赞平,谢兆辉,牟春红,汪旭东.水稻长颖花突变体LRS的鉴定.中国农业科学,2004,37(3):453-455.
    20.薛大伟,2006,两个水稻花器官突变体的遗传分析,博士学位论文,中国农业科学院,导师:钱前,pp.55-60.
    21.杨德卫-叶新福.水稻颖花突变体的最新研究进展.分子植物育种,2010年,第8卷,第1期,第106-116页.
    22. Agrawal G K, Abe K, Yamazaki M, Miyao A, and Hirochika H,2005, Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene, Plant Mol Biol,59(1):125-135.
    23. Alvarez J and Smyth D R, CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS, Development,1999,126:2377-2386.
    24. Ambrose B A, Lerner D R, Ciceri P, et al. Molecular and genetics analyses of Silkyl gene reveal conservation in floral organ specification between eudicots and monoeots. Molecular Cell,2000,5: 569-579.
    25. Angenent G C, Franken J, Busscher M, et al. A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell,1995,7:1569-1582.
    26. Angenent G C, Busscher M, Franken J, et al. Differential expression of two MADS box genes in wild-type and mutant petunia flowers [J]. Plant Cell,1992,4(8):983-993.
    27. Bowman J L, Smyth D R, Meyerowitz E M. Genetic interactions among floral homeotic genes of Arabidopsis. Development,1991,112:1-20.
    28. Causier B, Castillo R, Zhou J, et al. Evolution in action:following function in duplicated floral homeotic genes [J]. Curr Biol,2005,15(16):1508-1512.
    29. Chen Z X, Wu J G, Ding W N, et al Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice. Planta, 2006,223:882-890.
    30. Coen E S, Meyerowitz E M. The war of the whorls:Genetic interactions controlling flower development. Nature,1991,353:31-37.
    31. Colombo L, Franken J, Koetje E, et al. The Petunia MADS box gene FBP 11 determines ovule identity. Plant Cell,1995,7:1859-1868.
    32. Dinneny J R, Yadegari R, Fischer R L, et al. The role of JAGGED in shaping lateral organs. Development.2004,131:1101-1110.
    33. Ditta G, Pinyopich A, Robles P, et al. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol,2004,14:1935-1940.
    34. Dreni L, Jacchia S, Fornara F, et al. The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice [J]. Plant J,2007,52(4):690-699.
    35. Fornara F, Parenicova L, Falasca G, Pelucchi N, Masiero S, Ciannamea S, Lopez D Z, Altamura M M, Colombo L, and Kater M M,2004, Functional characterization of, a member of the AP1/SQUA subfamily of OsMADS18 box genes, Plant Physiol,135(4):2207-2219.
    36. Goto K, Meyerowitz E M.Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA [J]. Genes Dev,1994,8 (13):1548-1560.
    37. Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature,2001,409:525-529.
    38. Horigome A, Nagasawa N, Ikeda K, et al. Rice OPEN BEAK is a negative regulator of class 1 Knox genes and a positive regulator of class B floral homeotic gene, Plant J 2009,58:724-736.
    39. Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, and Nagato Y,2005, Rice plant development:from zygote to spikelet, Plant Cell Physiol,46 (1):23-47.
    40. Jeno J S, Jang S, Lee S, Nam J, Kim C, Lee S H, Chung Y Y, Kim S R, Lee Y H, Cho Y G, and An G, 2000, Leafy hull sterile] is a homeotic mutation in a rice MADS box gene affecting rice flower development, The Plant Cell,12(6):871-884.
    41. Jeon J S, Lee S, Jung K H, Yang W S, Yi G H, Oh B G, and An G H,2000, Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression office MADS-box genes, Mol Breed,6(6):581-592.
    42. Jiang L, Qian Q, Mao L, et al. Characterization of the Rice Floral organ Number Mutant fon3. Journal of Integraive Plant Biology,2005,47(1):100-106.
    43. Jofuku K D, den Boer B G, Van Montagu M, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2 [J]. Plant Cell,1994,6(9):1211-1225.
    44. Kang H G, Jeon J S, Lee S, et al. Identification of class B and class C floral organ identity genes from rice. Plant Mol Biol,1998,38:1021-1029.
    45. Kaufmann K, Melzer R, Theissen G, et al. MIKC-type MADS-domain proteins:structural modularity, protein interactions and net work evolution in land plants [J]. Gene,2005,347(2):183-198.
    46. Kim S, Yoo M, Albert V A, et al Phylogeny and diversification of B-function genes in angiosperms: evolutionary and functional implications of a 260-million year old duplication.2004, Am J Bot 91: 2102-2118.
    47. Kobayashi K, Maekawa M, Miyao A, et al. PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant and Cell Physiology Advance Access published November 19,2009.
    48. Kramer E M, Hall J C. Evolutionary dynamics of genes controlling floral development [J]. Curr Opin Plant Biol,2005,8 (1):13-18.
    49. Kramer E M, Jaramillo M A, Di Stilio V S, et al. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms [J]. Genetics,2004,166 (2):1011-1023.
    50. Kyozuka J, Takeshi K, Masakazu M, et al. Spatially and temporally regulated expression of rice MARS box gene with similarity to Arabidopsis class A, B and C genes. Plant Cell Physio,2000,41(6): 710-718.
    51. Kyozuka J, Shimamoto K. Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants. Plant Cell Physiol.2002,43, 130-135.
    52. Lee S, Jeon J S, An K, et al. Alteration of floral organ identity in rice through ectopic expression of OsMADS16. Planta,2003,17,904-911.
    53. Li A, Zhang Y, Wu X, et al. DH1, a LOB domain-like protein required for glume formation in rice Plant Mol Biol,2008,66:491-502.
    54. Librojo A, Khush G. Chromosomal location of some mutant genes through the Use of Primary trisomics in rice. In:Rice Genetics. IRRL, Manila, Philippines,1985,249-255.
    55. Litt A and Kramer E M. The ABC model and the diversification of floral organ identity. Seminars in Cell & Developmental Biology,2010,21,(1),129-137.
    56. Li Y, Xu P Z, Zhang H Y, Peng H, Zhang Q F, Wang X D, and Wu X J,2007, Characterization and identification of a novel mutant fon (t) on floral organ number and floral organ identity in rice, Journal of Genetics and Genomics,34 (8):730-737.
    57. Luo H, Li Y, Zhong B, Xie R, Ren M, Luo D, and He G,2006, Fine mapping of a pistilloid-stamen (PS) gene on the short arm of chromosome 1 in rice, Genome,49(8):1016-1022.
    58. Luo Q, Zhou K, Zhao X, et al. Identification and fine mapping of a mutant gene for palealess spikelet in rice. Planta,2005,221:222-230.
    59. Ma H, Pampilis C D. The ABCs of floral evolution. Cell,2000,101:569-579.
    60. Malcomber S T, Kellogg E A. Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses. Plant Cell,2004,16(7):1692-1706.
    61. Moon Y H, Kang H G, An G, and Jung J Y,1999, Identification of a rice APETALA3 homologue by yeast two-hybrid screening, Plant Mol Biol,40(l):167-177.
    62. Munster T, Wingen L U, Faigl W, Werth S, Saedler H, and Theissen G,2001, Characterization of three GLOBOSA-like MADS-box genes from maize:evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses, Gene,262(1-2):1-13.
    63. Nagasawa N, Miyoshi M,Kitano H, et al. Mutations associated with floral organ Number in rice. Planta,1996,198,627-633.
    64. Pelaz S, Ditta G S, Baumann E, et al. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature,2000,405:200-203.
    65. Pelaz S, Gustaf son 2Brown C, Kohalmi S E, et al. APETALA1 and SEPALLATA3 interact to promote flower development [J]. Plant J,2001,26(4):385-394.
    66. Pelaz S, Tapia-Lopez R, Alvarez-Buylla E, et al. Conversion of leaves into petals in Arabidopsis. Curr Biol,2001,11:182-184.
    67. Pelucchi N, Formara F, Favalli C, Masiero S, Lago C, Pe M.E, Colombo L, and Kater M.M,2002, Comparative analysis of rice MADS-box genes expressed during flower development, Sex. Plant.Reprod,15(3):113-122.
    68. Pinyopich A, Ditta G S, Savidge B, et al. Assessing the redundancy of MADS-box genes during carpel and ovule development [J]. Nature,2003,424(6944):85-88.
    69. Prasad K, Parameswaran S, and Vijayraghavan U,2005, OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early acting regulator of inner floral organs, Plant J,43(6):915-928.
    70. Reinheimer R, Malcomber S T, and Kellogg E A. Evidence for distinct roles of the SEPALLATA gene LEAFY HULL STERILE] in Eleusine indica and Megathyrsus maximus (Poaceae). Evolution & Development,2006,8 (3):293-303.
    71. Rounsley S D, Di t ta G S, Yanof sky M F, et al. Yanof sky, diverse roles for MADS box gene s in Arabidopsis development [J]. Plant Cell,1995,7(8):1259-1269.
    72. Sanguinetti C J, Dias N E and Simpson A J G. Rapid silver staining and recover of PCR products separated on polyacrylamide gels. Biotechniques.1994,17:915-919.
    73. Szecsi J, Joly C, Bordji K et al. BIGPETALp, a bHLH transcription factor is involved in the control of Arabidopsis petal size. The EMBO Journal,2006,25:3912-3920.
    74. Takeda K,1987, Open hull male sterile mutant in rice, Rice Genetics Newsletter,4:78-79.
    75. Theissen G. Development of floral or gan identity:stories f ro m t he MADS house [J]. Curr Opin Plant Biol,2001,4(1):75-85.
    76. Theissen G, Saedler H. Plant biology:Floral quartets [J]. Nature,2001.409 (6819):469-71.
    77. Vandenbussche F, Vriezen W, Smalle J, et al. Toward the Analysis of the Petunia MADS Box Gene Family by Reverse and Forward Transposon Insertion Mutagenesis Approaches:B, C, and D Floral organ Identity Functions Require SEPALLATA-Like MADS Box Gene in Petunia. The Plant Cell,2003, 15,2680-2693.
    78. Wagner D, Sablowski R W, Meyerowitz E M. Transcriptional activation of APETALA1 by LEAFY[J]. Science,1999,285 (5427):582-584.
    79. Wang H M, Chu H W, Liu H S, Li X X, Yang G D, Zhang D B, and Yong K L,2007, Phenotypic characterization of arice mutant Oiyza sativa extraordinary glume I (Oseg 1) and its genetic analysis, Journal of Shanghai University,11 (6):619-622.
    80. Wang K J, Tang D, Hong L L, et al. DEP and AFO Regulate Reproductive Habit in Rice. PLoS Genetics,2010,6(1):1-9.
    81. Weigel D, Meyerowitz E M. The ABCs of floral homeotic genes. Cell,1994,78:203-209.
    82. Xiao H, Tang J F, Li Y F, et al, STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice, Plant J,2009,59:789-801.
    83. Yamaguchi T, Lee D Y, Miyao A, et al. Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell.2006,18(1):15-28.
    84. Yamaguchi T, Nagasawa N, Kawasaki S, et al. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. The Plant Cell,2004,16:500-510.
    85. Yang Y, Xiang H, Jack T. Pistillata-5, an Arabidopsis B class mutant with strong defects in petal but not in stamen development [J].Plant J,2003,33 (1):177-188.
    86. Yanofsky M F, Ma H, Bowman J L, et al. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors [J]. Nature,1990,346 (6279):35-39.
    87. Yoshida A, Suzaki T, Tanaka W, et al The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. PNAS,2009,106 (47):20103-20108.
    88. Zahn L M, Lee bens-Mack J H, Arrington J M, et al. The evolution of the SEPALLATA sub-family of MADS-box genes:a preangio sperm origin with multiple duplications throughout angiosperm history [J]. Genetics,2005,169 (4):2209-2223.
    89. Zhang Q F, Xu J D, Li Y, Xu P Z, Zhang H Y, and Wu X J,2007, Morphological, anatomical and genetic analysis for a rice mutant with abnormal hull, Journal of Genetics and Genomics,34(6): 519-526.
    90. Zhang X M, Li S G, Wang Y P, and Wu X J,2004, Morphogenesis, anatomical observation and genetic analysis of a long hull floral organ mutant in rice, Acta Botanica Sinica,46(4):451-456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700