P21蛋白在牛卵成熟过程中作用的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在哺乳动物卵子减数分裂调控中,MPF(CDK1-Cyclin B1)的活性变化起着关键性作用。P21蛋白是最早被发现并证实具有CKIs作用的Cip/Kip家族成员,在低等动物卵子中已经证实P21可以直接的抑制CDK1激酶Thr-161位点的磷酸化,从而抑制MPF的活性,但是P21在哺乳动物卵母细胞减数分裂调控中的作用尚未报道,这就是本研究关注的核心问题。
     本研究以牛卵母细胞为试验材料,首先利用地衣红染色技术观察了牛卵母细胞体外成熟以及减数分裂到有丝分裂转换过程中各个时期染色体的形态学变化,确定了牛卵母细胞各时期的具体时间段;其次从牛成纤维细胞中克隆了p21基因,并构建了pVenus-P21真核表达载体;最后运用Q-PCR和免疫荧光染色技术检测了P21在牛卵中的表达与定位,通过超表达与干扰P21蛋白初步研究了P21在M-I期和M-II期中的功能。
     研究取得以下结果:
     1.通过地衣红染色系统地观察了牛卵母细胞体外成熟过程中染色体的形态学变化特征,据此确定不同培养时间段中卵母细胞所处的细胞周期时相,建立了牛卵母细胞体外培养过程中染色体变化规律的时间进程表,即在体外培养0~5.45 h,11.40 h,13.15 h,17.10 h,18.35~24 h,大部分卵母细胞分别处于GV期、GVBD~pre-M-I期、M-I期、A-I期、T-I期、M-II期。然后比较了三种化学激活方法(Ionomycin单独使用,Ionomycin联合6-DMAP,Ionomycin联合Roscovitine)对牛卵第二极体排出以及原核形成的影响,发现Ionomycin单独使用或联合Roscovitine使用时,2 h后就有大量第二极体排出,在孤雌激活8 h后就有原核形成,在孤雌激活后16~18 h原核形成数达到最高;而应用Ionomycin联合6-DMAP使用时,会抑制第二极体的的排出;Ionomycin联合Roscovitine同样能达到Ionomycin联合6-DMAP孤雌激活牛卵的原核数。
     2.利用RT-PCR技术成功从牛成纤维细胞中克隆得到p21基因的CDS全长序列,经与NCBI上公布的p21序列对比,同源性为100%。将其连接到pVenus真核表达载体上成功构建了pVenus-P21真核表达载体,转染Hela细胞及其体外转录的cRNA显微注射卵母细胞后均能正确表达和准确定位。
     3.在mRNA水平上分别检测了不同组织以及卵母细胞与胚胎发育过程中p21的表达,并对结果进行了分析。结果表明,p21在颗粒细胞中表达较高;在卵母细胞成熟过程中的M-II期表达相对较高;在胚胎发育的不同阶段,以囊胚中p21 mRNA表达量为最高。此外,P21蛋白在卵母细胞核内分布远较细胞质丰富,表明P21具有核定位特性。在卵母细胞成熟过程中P21可以阻止卵子进入M-I期,同时促进卵母细胞从M-II期退出。
     本研究得到如下结论:建立了牛卵母细胞体外成熟培养过程中染色体形态变化的时间进程表;P21在卵母细胞成熟各时期中均有表达,P21定位在染色体及周围结构上;P21阻止卵母细胞进入M-I期,但促进卵子从M-II期退出。
Stability of maturation promoting factor (MPF; CDK1/cyclin B1) is needed for completing meiotic cell cycle arrest in mammalian oocytes. P21 is pivotal cyclin-dependent kinase inhibitors (CKIs) which belongs to a member of the Cip/Kip family, and is required for negative regulation of the cell cycle progression. P21 can directly inhibit Thr-161 phosphorylation of CDK1 in the frug oocytes, then inactivation of MPF. This study focues on effect of P21 on mammalian oocytes maturation.
     The various periods morphological changes of chromosomes during in vitro maturation and the transition from meiosis to mitosis were observed by aceto-orcein staining technique in bovine oocyte. The bovine p21 gene was cloned from cDNA simple of fibroblasts and pVenus-P21 eukaryotic expression vector was constructed. Last, the mRNA of P21 in the bovine oocytes were examined by the Q-PCR, and the protein of P21 were examined by immunofluorescence staining. The effects of P21 on exit from the M-I and M-II were preliminarily researched by over-expression and interference P21. The results were as follows:
     1. First, The various periods morphological changes of chromosomes during in vitro maturation and the transition from meiosis to mitosis were observed by aceto-orcein staining technique in bovine oocyte. The timetable of oocytes chromosome morphological events were established and the time spent on each step was determined. The germinal vesicle (GV) was present from 0 to 5.45 h, GVBD to chromatin condensation at 5.45 to 11.4 h, metaphase I at 11.4 to 13.15 h, anaphase I at 13.15 to 17.10, telophase I at 17.10 to 18.35 h, and metaphase II at 18.35 to 24 h. Then the influences of three chemical activation methods(Ionomycin alone, Ionomycin coupled with 6-DMAP, and Ionomycin coupled with Roscovitine)on the second polar body extrusion and pronuclear formation. Results show that there are a large number of second polar body after 2 h of parthenogenetic activation, and pronuclear formation in the 8 h and have the highest number of pronuclear in 16~18 h after parthenogenetic activation by ionomycin alone. But using Ionomycin combination 6-DMAP inhibited the extrusion of the second polar body, and Ionomycin combination Roscovitine also could reached such quantity that the Ionomycin combination 6-DMAP to parthenogenetic activation of bovine oocytes.
     2. Full-length sequence of p21 gene CDS was cloned and connected to pVenus eukaryotic expression vector for getting vector pVenus-P21. After transfection or microinjection by in vitro transcription cRNA, the fusion protein could be expressed efficiently and localized accurately both in Hela cells and bovine oocytes.
     3. The content of p21 mRNA were detected in different tissues, and different stage during oocytes maturation and embryo development. The mRNA of p21 in granulosa cells is relatively higher among different tissues; and the content of p21 mRNA at M II stage was higher during oocytes maturation; and the content of p21 mRNA at blastocyst during embryos development. The P21 protein located prather in nuclear than the oocyte cytoplasm. In the process of oocyte maturation, P21 can prevent the oocyte enter the M-I phase, but P21-dependent inactivation of MPF during egg activation and promote its exit from the M-II block.
     In this study, the chromosomal status of oocytes was evaluated, frequencies were computed, and the time spent on each step was determined; P21 were expressed in the period of oocyte maturation, P21 was located in the chromosome and the surrounding structure; P21 can prevent oocytes enter into the M-I phase, but it promote oocytes exit from the M-II block.
引文
陈五妍,王正虹,陈树林,韩苗苗,周涛. 2009. p21WAF1/ CIP1蛋白在小鼠卵泡与黄体中的表达.西北农林科技大学学报(自然科学版). 27(12): 29-33
    丁晓芳,罗丹,钟少红,高颖. 2010.第二极体排出时间早晚与胚胎发育潜能相关性的研究.医学分子生物学杂志. 7(4): 333-336
    窦丽芳,胡丽华,李一荣,王琳. 2008. pEGFP-P21真核表达载体构建及在AGS细胞的表达定位.临床血液学杂志:输血与检验. 21(3): 296-298
    范必勤. 2000.哺乳动物第一第二极体的研究.农业生物技术学报. 8(2): 103-105
    韩勇娟,曾水清,胡义珍,张海江. 2005. P21-GFP融合基因表达载体的构建与在视网膜色素上皮细胞的表达定位.临床眼科杂志. 13(3): 277-279
    黄雅琼,石德顺,张晓溪,张顺,陈旭健,李家洲,曾诗媛,阮桂文,赵仕花,谭世俭. 2010.猪卵母细胞体外成熟过程中的减数分裂进程.中国细胞生物学学报. 32(1): 84-90
    姜兰兰,方五旺,林丙来. 2009.转染p21基因对人宫颈癌Hela细胞的影响.安徽医药. 13(010): 1223-1225
    李鹂,黄衡宇,谢永芳. 2006. p21基因在小鼠胚胎发育过程中的表达.吉首大学学报:自然科学版. 27(2): 80-83
    林涛,李晓霞,刁云飞,祖晶,方南洙. 2008.延边黄牛卵母细胞激活后第二极体排出的研究.畜牧与兽医. 40(8): 50-52
    马所峰,罗明玖,苗义良,兰国成,王子玉,刘新勇,常仲乐,谭景和. 2004.山羊卵母细胞的减数分裂进程.实验生物学报. 37(1): 9-14
    其布日,白春玲,程磊,旭日干,李光鹏. 2009.牛体外成熟卵母细胞染色体形态学研究.中国牛业科学. 35(4): 1-5
    隋进强,云彦,刘文强,殷吉庆,胡勇策,雷安民. 2010.牛生发泡期裸卵体外成熟培养体系的建立.农业生物技术学报. 18(1): 198-204
    武迪迪,冯晨,刘莹,张杰,宗志宏,具英花,李雪松,于秉治. 2007a.小鼠受精卵早期发育过程中PKB/Akt对P21蛋白表达及定位的影响.生物工程学报. 23(3): 493-496
    武迪迪,韩晓曦,刘莹,张杰,具英花,李雪松,于秉治. 2007d. pEGFP-P21-WT及pEGFP-P21-S145A融合表达载体在小鼠卵母细胞中的定位.医学分子生物学杂志. 4(3): 243-244
    武迪迪,张杰,具英花,宗志宏,李雪松,于秉治. 2007b. P21-EGFP融合基因表达载体与卵母细胞的表达定位.贵阳医学院学报. 32(1): 5-8
    武迪迪,张盼盼,李雪松,张杰,宗志宏,于秉治. 2007c. P21蛋白在小鼠受精卵不同期的表达及定位.中国医科大学学报. 36(1): 7-8
    武建朝,王锋,洪俊君,武杰,李中原,万永杰,王瑞芳. 2008.性成熟前山羊卵母细胞减数分裂进程的研究.江苏农业科学. (1): 169-172
    严兴荣,陈冬梅,华进联,雷安民,杨艳红,都慧聪,窦忠英. 2010.两种激活处理促进小鼠孤雌胚胎原核形成.基因组学与应用生物学. 29(5): 1102-1107
    云彦,吴苏君,隋进强,胡勇策,雷安民. 2009.微量牛卵中H1 foo CDS序列的克隆及其mRNA向卵内显微注射.畜牧兽医学报. 40(11): 1630-1637
    张淑金,孟书燕,雷蕾,程祥,王华岩. 2010.定量分析诱导山羊体细胞重编程过程中端粒酶的表达变化.生物工程学报. 121(26): 1660-1667
    赵涵,李媛,高选,陈子江. 2006.人类卵母细胞减数分裂进程及形态学研究.解剖学报. 37(4): 479-483
    [http://biogps.gnf.org/#goto=genereport&id=1026. 2011]
    [http://en.wikipedia.org/wiki/Morpholino. 2011]
    Alberio, R., Zakhartchenko, V., Motlik, J., Wolf, E. 2001. Mammalian oocyte activation: lessons from the sperm and implications for nuclear transfer. Int J Dev Biol. 45(7): 797-809
    Amador, V., Ge, S., Santamaria, P.G., Guardavaccaro, D., Pagano, M. 2007. APC/C(Cdc20) controls the ubiquitin-mediated degradation of p21 in prometaphase. Mol Cell. 27(3): 462-473
    Austin, C.R. 1956. Ovulation, fertilization, and early cleavage in the hamster (Mesocricetus auratus). J R Microsc Soc. 75(3): 141-154
    Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116(2): 281-297
    Battelli, C., Nikopoulos, G.N., Mitchell, J.G., Verdi, J.M. 2006. The RNA-binding protein Musashi-1 regulates neural development through the translational repression of p21WAF-1. Mol Cell Neurosci. 31(1): 85-96
    Baus, F., Gire, V., Fisher, D., Piette, J., Dulic, V. 2003. Permanent cell cycle exit in G2 phase after DNA damage in normal human fibroblasts. EMBO J. 22(15): 3992-4002
    Benson, E.K., Zhao, B., Sassoon, D.A., Lee, S.W., Aaronson, S.A. 2009. Effects of p21 deletion in mouse models of premature aging. Cell Cycle. 8(13): 2002-2004
    Bergere, M., Lombroso, R., Gombault, M., Wainer, R., Selva, J. 2001. An idiopathic infertility with oocytes metaphase I maturation block: case report. Hum Reprod. 16(10): 2136-2138
    Bornstein, G., Bloom, J., Sitry-Shevah, D., Nakayama, K., Pagano, M., Hershko, A. 2003. Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J Biol Chem. 278(28): 25752-25757
    Brunet, S., Maro, B. 2005. Cytoskeleton and cell cycle control during meiotic maturation of the mouse oocyte: integrating time and space. Reproduction. 130(6): 801-811
    Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J.P., Sedivy, J.M., Kinzler, K.W., Vogelstein, B. 1998. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 282(5393): 1497-1501
    Chan, T.A., Hwang, P.M., Hermeking, H., Kinzler, K.W., Vogelstein, B. 2000. Cooperative effects of genes controlling the G(2)/M checkpoint. Genes Dev. 14(13): 1584-1588
    Chaube, S.K., Dubey, P.K., Mishra, S.K., Shrivastav, T.G. 2007. Verapamil reversibly inhibits spontaneous parthenogenetic activation in aged rat eggs cultured in vitro. Cloning Stem Cells. 9(4): 608-617
    Chaube, S.K., Khatun, S., Misra, S.K., Shrivastav, T.G. 2008. Calcium ionophore-induced egg activation and apoptosis are associated with the generation of intracellular hydrogen peroxide. Free Radic Res. 42(3): 212-220
    Chaube, S.K., Tripathi, A., Khatun, S., Mishra, S.K., Prasad, P.V., Shrivastav, T.G. 2009. Extracellular calcium protects against verapamil-induced metaphase-II arrest and initiation of apoptosis in agedrat eggs. Cell Biol Int. 33(3): 337-343
    Chen, M.S., Hurov, J., White, L.S., Woodford-Thomas, T., Piwnica-Worms, H. 2001. Absence of apparent phenotype in mice lacking Cdc25C protein phosphatase. Mol Cell Biol. 21(12): 3853-3861
    Chin, L., Artandi, S.E., Shen, Q., Tam, A., Lee, S.L., Gottlieb, G.J., Greider, C.W., DePinho, R.A. 1999.
    p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell. 97(4): 527-538
    Cho, S.J., Zhang, J., Chen, X. 2010. RNPC1 modulates the RNA-binding activity of, and cooperates with, HuR to regulate p21 mRNA stability. Nucleic Acids Res. 38(7): 2256-2267
    Clarke, P.R., Karsenti, E. 1991. Regulation of p34cdc2 protein kinase: new insights into protein phosphorylation and the cell cycle. J Cell Sci. 100: 409-414
    Coleman, M.L., Marshall, C.J., Olson, M.F. 2003. Ras promotes p21(Waf1/Cip1) protein stability via a cyclin D1-imposed block in proteasome-mediated degradation. EMBO J. 22(9): 2036-2046
    Dash, B.C., El-Deiry, W.S. 2005. Phosphorylation of p21 in G2/M promotes cyclin B-Cdc2 kinase activity. Mol Cell Biol. 25(8): 3364-3387
    De Smedt, V., Poulhe, R., Cayla, X., Dessauge, F., Karaiskou, A., Jessus, C., Ozon, R. 2002. Thr-161 phosphorylation of monomeric Cdc2. Regulation by protein phosphatase 2C in Xenopus oocytes. J Biol Chem. 277(32): 28592-28600
    Donahue, R.P. 1968. Maturation of the mouse oocyte in vitro. I. Sequence and timing of nuclear progression. J Exp Zool. 169(2): 237-249
    Dulic, V., Kaufmann, W.K., Wilson, S.J., Tlsty, T.D., Lees, E., Harper, J.W., Elledge, S.J., Reed, S.I. 1994.
    p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell. 76(6): 1013-1023
    Dumont, J., Umbhauer, M., Rassinier, P., Hanauer, A., Verlhac, M.H. 2005. p90Rsk is not involved in cytostatic factor arrest in mouse oocytes. J Cell Biol. 169(2): 227-231
    Dupre, A., Suziedelis, K., Valuckaite, R., de Gunzburg, J., Ozon, R., Jessus, C., Haccard, O. 2002.
    Xenopus H-RasV12 promotes entry into meiotic M phase and cdc2 activation independently of Mos and p42(MAPK). Oncogene. 21(42): 6425-6433
    Felsher, D.W., Zetterberg, A., Zhu, J., Tlsty, T., Bishop, J.M. 2000. Overexpression of MYC causes p53-dependent G2 arrest of normal fibroblasts. Proc Natl Acad Sci U S A. 97(19): 10544-10548
    Filipowicz, W., Bhattacharyya, S.N., Sonenberg, N. 2008. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 9(2): 102-114
    Frank-Vaillant, M., Haccard, O., Ozon, R., Jessus, C. 2001. Interplay between Cdc2 kinase and the c-Mos/MAPK pathway between metaphase I and metaphase II in Xenopus oocytes. Dev Biol. 231(1): 279-288
    Frank-Vaillant, M., Haccard, O., Thibier, C., Ozon, R., Arlot-Bonnemains, Y., Prigent, C., Jessus, C. 2000. Progesterone regulates the accumulation and the activation of Eg2 kinase in Xenopus oocytes. J Cell Sci. 113: 1127-1138
    Frank-Vaillant, M., Jessus, C., Ozon, R., Maller, J.L., Haccard, O. 1999. Two distinct mechanisms control the accumulation of cyclin B1 and Mos in Xenopus oocytes in response to progesterone. Mol Biol Cell. 10(10): 3279-3288
    Furuno, N., Ogawa, Y., Iwashita, J., Nakajo, N., Sagata, N. 1997. Meiotic cell cycle in Xenopus oocytesis independent of cdk2 kinase. EMBO J. 16(13): 3860-3865
    Galat, V., Zhou, Y., Taborn, G., Garton, R., Iannaccone, P. 2007. Overcoming MIII arrest from spontaneous activation in cultured rat oocytes. Cloning Stem Cells. 9(3): 303-314
    Gartel, A.L. 2005. The conflicting roles of the cdk inhibitor p21(CIP1/WAF1) in apoptosis. Leuk Res. 29(11): 1237-1238
    Gartel, A.L., Goufman, E., Najmabadi, F., Tyner, A.L. 2000. Sp1 and Sp3 activate p21 (WAF1/CIP1) gene transcription in the Caco-2 colon adenocarcinoma cell line. Oncogene. 19(45): 5182-5188
    Gartel, A.L., Radhakrishnan, S.K. 2005. Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res. 65(10): 3980-3985
    Gartel, A.L., Tyner, A.L. 1999. Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp Cell Res. 246(2): 280-289
    Goodrowe, K.L., Hay, M., King, W.A. 1991. Nuclear maturation of domestic cat ovarian oocytes in vitro. Biol Reprod. 45(3): 466-470
    Goud, A.P., Goud, P.T., Diamond, M.P., Abu-Soud, H.M. 2005. Nitric oxide delays oocyte aging. Biochemistry. 44(34): 11361-11368
    Goud, A.P., Goud, P.T., Diamond, M.P., Gonik, B., Abu-Soud, H.M. 2008. Reactive oxygen species and oocyte aging: role of superoxide, hydrogen peroxide, and hypochlorous acid. Free Radic Biol Med. 44(7): 1295-1304
    Grana, X., Reddy, E.P. 1995. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene. 11(2): 211-219
    Griffiths-Jones, S., Saini, H.K., van Dongen, S., Enright, A.J. 2008. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36(Database issue): D154-158
    Gu, Y., Turck, C.W., Morgan, D.O. 1993. Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit. Nature. 366(6456): 707-710
    Gui, C.Y., Ngo, L., Xu, W.S., Richon, V.M., Marks, P.A. 2004. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci U S A. 101(5): 1241-1246
    Haberland, M., Montgomery, R.L., Olson, E.N. 2009. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 10(1): 32-42
    Han, S.J., Chen, R., Paronetto, M.P., Conti, M. 2005. Wee1B is an oocyte-specific kinase involved in the control of meiotic arrest in the mouse. Curr Biol. 15(18): 1670-1676
    Han, S.J., Conti, M. 2006. New pathways from PKA to the Cdc2/cyclin B complex in oocytes: Wee1B as a potential PKA substrate. Cell Cycle. 5(3): 227-231
    Hansen, D.V., Pomerening, J.R., Summers, M.K., Miller, J.J., Ferrell, J.E., Jr., Jackson, P.K. 2007. Emi2 at the crossroads: where CSF meets MPF. Cell Cycle. 6(6): 732-738
    Hansen, D.V., Tung, J.J., Jackson, P.K. 2006. CaMKII and polo-like kinase 1 sequentially phosphorylate the cytostatic factor Emi2/XErp1 to trigger its destruction and meiotic exit. Proc Natl Acad Sci U S A. 103(3): 608-613
    Harms, K., Nozell, S., Chen, X. 2004. The common and distinct target genes of the p53 family transcription factors. Cell Mol Life Sci. 61(7-8): 822-842
    Heikinheimo, O., Toner, J.P., Lanzendorf, S.E., Billeter, M., Veeck, L.L., Gibbons, W.E. 1996. Messenger ribonucleic acid kinetics in human oocytes--effects of in vitro culture and nuclear maturational status. Fertil Steril. 65(5): 1003-1008
    Holt, J.E., Tran, S.M., Stewart, J.L., Minahan, K., Garcia-Higuera, I., Moreno, S., Jones, K.T. 2011. The APC/C activator FZR1 coordinates the timing of meiotic resumption during prophase I arrest in mammalian oocytes. Development. 138(5): 905-913
    Holt, J.E., Weaver, J., Jones, K.T. 2010. Spatial regulation of APCCdh1-induced cyclin B1 degradation maintains G2 arrest in mouse oocytes. Development. 137(8): 1297-1304
    Homer, H., Gui, L., Carroll, J. 2009. A spindle assembly checkpoint protein functions in prophase I arrest and prometaphase progression. Science. 326(5955): 991-994
    Isoda, M., Kanemori, Y., Nakajo, N., Uchida, S., Yamashita, K., Ueno, H., Sagata, N. 2009. The extracellular signal-regulated kinase-mitogen-activated protein kinase pathway phosphorylates and targets Cdc25A for SCF beta-TrCP-dependent degradation for cell cycle arrest. Mol Biol Cell. 20(8): 2186-2195
    Ito, J., Shimada, M., Hochi, S., Hirabayashi, M. 2007. Involvement of Ca2+-dependent proteasome in the degradation of both cyclin B1 and Mos during spontaneous activation of matured rat oocytes. Theriogenology. 67(3): 475-485
    Javelaud, D., Wietzerbin, J., Delattre, O., Besancon, F. 2000. Induction of p21Waf1/Cip1 by TNFalpha requires NF-kappaB activity and antagonizes apoptosis in Ewing tumor cells. Oncogene. 19(1): 61-68
    Jiang, H., Lin, J., Su, Z.Z., Collart, F.R., Huberman, E., Fisher, P.B. 1994. Induction of differentiation in human promyelocytic HL-60 leukemia cells activates p21, WAF1/CIP1, expression in the absence of p53. Oncogene. 9(11): 3397-3406
    Jones, K.T. 2004. Turning it on and off: M-phase promoting factor during meiotic maturation and fertilization. Mol Hum Reprod. 10(1): 1-5
    Jung, Y.S., Qian, Y., Chen, X. 2010. Examination of the expanding pathways for the regulation of p21 expression and activity. Cell Signal. 22(7): 1003-1012
    Karaiskou, A., Cayla, X., Haccard, O., Jessus, C., Ozon, R. 1998. MPF amplification in Xenopus oocyte extracts depends on a two-step activation of cdc25 phosphatase. Exp Cell Res. 244(2): 491-500
    Karaiskou, A., Perez, L.H., Ferby, I., Ozon, R., Jessus, C., Nebreda, A.R. 2001. Differential regulation of Cdc2 and Cdk2 by RINGO and cyclins. J Biol Chem. 276(38): 36028-36034
    Kaznelson, D.W., Bruun, S., Monrad, A., Gjerlov, S., Birk, J., Ropke, C., Norrild, B. 2004. Simultaneous human papilloma virus type 16 E7 and cdk inhibitor p21 expression induces apoptosis and cathepsin B activation. Virology. 320(2): 301-312
    Kenan, D.J., Query, C.C., Keene, J.D. 1991. RNA recognition: towards identifying determinants of specificity. Trends Biochem Sci. 16(6): 214-220
    Khaleghpour, K., Svitkin, Y.V., Craig, A.W., DeMaria, C.T., Deo, R.C., Burley, S.K., Sonenberg, N. 2001.
    Translational repression by a novel partner of human poly(A) binding protein, Paip2. Mol Cell. 7(1): 205-216
    Kim, D.K., Cho, E.S., Lee, S.J., Um, H.D. 2001. Constitutive hyperexpression of p21(WAF1) in human U266 myeloma cells blocks the lethal signaling induced by oxidative stress but not by Fas. BiochemBiophys Res Commun. 289(1): 34-38
    Kim, G.Y., Mercer, S.E., Ewton, D.Z., Yan, Z., Jin, K., Friedman, E. 2002. The stress-activated protein kinases p38 alpha and JNK1 stabilize p21(Cip1) by phosphorylation. J Biol Chem. 277(33): 29792-29802
    Kubiak, J.Z. 1989. Mouse oocytes gradually develop the capacity for activation during the metaphase II arrest. Dev Biol. 136(2): 537-545
    Kubiak, J.Z., Weber, M., de Pennart, H., Winston, N.J., Maro, B. 1993. The metaphase II arrest in mouse oocytes is controlled through microtubule-dependent destruction of cyclin B in the presence of CSF. EMBO J. 12(10): 3773-3778
    Kubiak, J.Z., Weber, M., Geraud, G., Maro, B. 1992. Cell cycle modification during the transitions between meiotic M-phases in mouse oocytes. J Cell Sci. 102 ( Pt 3)(457-467
    Kumagai, A., Dunphy, W.G. 1991. The cdc25 protein controls tyrosine dephosphorylation of the cdc2 protein in a cell-free system. Cell. 64(5): 903-914
    Lefebvre, C., Terret, M.E., Djiane, A., Rassinier, P., Maro, B., Verlhac, M.H. 2002. Meiotic spindle stability depends on MAPK-interacting and spindle-stabilizing protein (MISS), a new MAPK substrate. J Cell Biol. 157(4): 603-613
    Levasseur, M., Carroll, M., Jones, K.T., McDougall, A. 2007. A novel mechanism controls the Ca2+ oscillations triggered by activation of ascidian eggs and has an absolute requirement for Cdk1 activity. J Cell Sci. 120(Pt 10): 1763-1771
    Levasseur, M., McDougall, A. 2003. Inositol 1,4,5-trisphosphate (IP3) responsiveness is regulated in a meiotic cell cycle dependent manner: implications for fertilization induced calcium signaling. Cell Cycle. 2(6): 610-613
    Levran, D., Farhi, J., Nahum, H., Glezerman, M., Weissman, A. 2002. Maturation arrest of human oocytes as a cause of infertility: case report. Hum Reprod. 17(6): 1604-1609
    Lewis, B.P., Burge, C.B., Bartel, D.P. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 120(1): 15-20
    Li, G.P., Liu, Y., Bunch, T.D., White, K.L., Aston, K.I. 2005. Asymmetric division of spindle microtubules and microfilaments during bovine meiosis from metaphase I to metaphase III. Mol Reprod Dev. 71(2): 220-226
    Li, M., Yin, S., Yuan, J., Wei, L., Ai, J.S., Hou, Y., Chen, D.Y., Sun, Q.Y. 2008. Cdc25A promotes G2/M transition in oocytes. Cell Cycle. 7(9): 1301-1302
    Li, Y., Jenkins, C.W., Nichols, M.A., Xiong, Y. 1994. Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. Oncogene. 9(8): 2261-2268
    Lincoln, A.J., Wickramasinghe, D., Stein, P., Schultz, R.M., Palko, M.E., De Miguel, M.P., Tessarollo, L., Donovan, P.J. 2002. Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation. Nat Genet. 30(4): 446-449
    Liu, J., Grimison, B., Lewellyn, A.L., Maller, J.L. 2006. The anaphase-promoting complex/cyclosome inhibitor Emi2 is essential for meiotic but not mitotic cell cycles. J Biol Chem. 281(46): 34736-34741
    Liu, L., Ju, J.C., Yang, X. 1998. Parthenogenetic development and protein patterns of newly matured bovine oocytes after chemical activation. Mol Reprod Dev. 49(3): 298-307
    Loi, P., Ledda, S., Fulka, J., Jr., Cappai, P., Moor, R.M. 1998. Development of parthenogenetic and cloned ovine embryos: effect of activation protocols. Biol Reprod. 58(5): 1177-1187
    Madgwick, S., Jones, K.T. 2007. How eggs arrest at metaphase II: MPF stabilisation plus APC/C inhibition equals Cytostatic Factor. Cell Div. 2(4
    Madgwick, S., Nixon, V.L., Chang, H.Y., Herbert, M., Levasseur, M., Jones, K.T. 2004. Maintenance of sister chromatid attachment in mouse eggs through maturation-promoting factor activity. Dev Biol. 275(1): 68-81
    Maller, J.L., Schwab, M.S., Gross, S.D., Taieb, F.E., Roberts, B.T., Tunquist, B.J. 2002. The mechanism of CSF arrest in vertebrate oocytes. Mol Cell Endocrinol. 187(1-2): 173-178
    Marangos, P., Carroll, J. 2004. The dynamics of cyclin B1 distribution during meiosis I in mouse oocytes. Reproduction. 128(2): 153-162
    Maton, G., Lorca, T., Girault, J.A., Ozon, R., Jessus, C. 2005. Differential regulation of Cdc2 and Aurora-A in Xenopus oocytes: a crucial role of phosphatase 2A. J Cell Sci. 118(Pt 11): 2485-2494
    Maton, G., Thibier, C., Castro, A., Lorca, T., Prigent, C., Jessus, C. 2003. Cdc2-cyclin B triggers H3 kinase activation of Aurora-A in Xenopus oocytes. J Biol Chem. 278(24): 21439-21449
    Matsumoto, T., Sowa, Y., Ohtani-Fujita, N., Tamaki, T., Takenaka, T., Kuribayashi, K., Sakai, T. 1998.
    p53-independent induction of WAF1/Cip1 is correlated with osteoblastic differentiation by vitamin D3. Cancer Lett. 129(1): 61-68
    Matsushita, S., Tani, T., Kato, Y., Tsunoda, Y. 2004. Effect of low-temperature bovine ovary storage on the maturation rate and developmental potential of follicular oocytes after in vitro fertilization, parthenogenetic activation, or somatic cell nucleus transfer. Anim Reprod Sci. 84(3-4): 293-301
    Mayes, M.A., Sirard, M.A. 2002. Effect of type 3 and type 4 phosphodiesterase inhibitors on the maintenance of bovine oocytes in meiotic arrest. Biol Reprod. 66(1): 180-184
    Mehlmann, L.M. 2005. Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction. 130(6): 791-799
    Mehlmann, L.M., Jones, T.L., Jaffe, L.A. 2002. Meiotic arrest in the mouse follicle maintained by a Gs protein in the oocyte. Science. 297(5585): 1343-1345
    Minucci, S., Pelicci, P.G. 2006. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 6(1): 38-51
    Mitalipov, S.M., White, K.L., Farrar, V.R., Morrey, J., Reed, W.A. 1999. Development of nuclear transfer and parthenogenetic rabbit embryos activated with inositol 1,4,5-trisphosphate. Biol Reprod. 60(4): 821-827
    Miyamoto, S., Hidaka, K., Jin, D., Morisaki, T. 2009. RNA-binding proteins Rbm38 and Rbm24 regulate myogenic differentiation via p21-dependent and -independent regulatory pathways. Genes Cells. 14(11): 1241-1252
    Miyara, F., Aubriot, F.X., Glissant, A., Nathan, C., Douard, S., Stanovici, A., Herve, F., Dumont-Hassan, M., LeMeur, A., Cohen-Bacrie, P., Debey, P. 2003. Multiparameter analysis of human oocytes at metaphase II stage after IVF failure in non-male infertility. Hum Reprod. 18(7): 1494-1503
    Moor, R.M., Crosby, I.M. 1986. Protein requirements for germinal vesicle breakdown in ovine oocytes. J Embryol Exp Morphol. 94: 207-220
    Moore, G.D., Ayabe, T., Kopf, G.S., Schultz, R.M. 1996. Temporal patterns of gene expression of G1-Scyclins and cdks during the first and second mitotic cell cycles in mouse embryos. Mol Reprod Dev. 45(3): 264-275
    Mrazek, M., Fulka Jr, J., Jr. 2003. Failure of oocyte maturation: possible mechanisms for oocyte maturation arrest. Hum Reprod. 18(11): 2249-2252
    Mukherjee, S., Conrad, S.E. 2005. c-Myc suppresses p21WAF1/CIP1 expression during estrogen signaling and antiestrogen resistance in human breast cancer cells. J Biol Chem. 280(18): 17617-17625
    Nabti, I., Reis, A., Levasseur, M., Stemmann, O., Jones, K.T. 2008. Securin and not CDK1/cyclin B1 regulates sister chromatid disjunction during meiosis II in mouse eggs. Dev Biol. 321(2): 379-386
    Nagai, T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K., Miyawaki, A. 2002. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol. 20(1): 87-90
    Niault, T., Hached, K., Sotillo, R., Sorger, P.K., Maro, B., Benezra, R., Wassmann, K. 2007. Changing Mad2 levels affects chromosome segregation and spindle assembly checkpoint control in female mouse meiosis I. PLoS One. 2(11): e1165
    Niculescu, A.B., 3rd, Chen, X., Smeets, M., Hengst, L., Prives, C., Reed, S.I. 1998. Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol. 18(1): 629-643
    Ocampo, M.B., Ocampo, L.T., Kanagawa, H. 1990. Timing of sequential changes in chromosome configurations during the 1st meiotic division of pig oocytes cultured in vitro. Jpn J Vet Res. 38(3-4): 127-137
    Ocker, M., Schneider-Stock, R. 2007. Histone deacetylase inhibitors: signalling towards p21cip1/waf1. Int J Biochem Cell Biol. 39(7-8): 1367-1374
    Oh, J.S., Han, S.J., Conti, M. 2010. Wee1B, Myt1, and Cdc25 function in distinct compartments of the mouse oocyte to control meiotic resumption. J Cell Biol. 188(2): 199-207
    Oh, J.S., Susor, A., Conti, M. 2011. Protein Tyrosine Kinase Wee1B is Essential for Metaphase II Exit in Mouse Oocytes. Science xpress
    Oh, Y.T., Chun, K.H., Park, B.D., Choi, J.S., Lee, S.K. 2007. Regulation of cyclin-dependent kinase inhibitor p21WAF1/CIP1 by protein kinase Cdelta-mediated phosphorylation. Apoptosis. 12(7): 1339-1347
    Okano, H., Kawahara, H., Toriya, M., Nakao, K., Shibata, S., Imai, T. 2005. Function of RNA-binding protein Musashi-1 in stem cells. Exp Cell Res. 306(2): 349-356
    Orphanides, G., Lagrange, T., Reinberg, D. 1996. The general transcription factors of RNA polymerase II. Genes Dev. 10(21): 2657-2683
    Park, S.Y., Lee, J.H., Ha, M., Nam, J.W., Kim, V.N. 2009. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol. 16(1): 23-29
    Parker, S.B., Eichele, G., Zhang, P., Rawls, A., Sands, A.T., Bradley, A., Olson, E.N., Harper, J.W., Elledge, S.J. 1995. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science. 267(5200): 1024-1027
    Perry, A.C., Verlhac, M.H. 2008. Second meiotic arrest and exit in frogs and mice. EMBO Rep. 9(3): 246-251
    Pirino, G., Wescott, M.P., Donovan, P.J. 2009. Protein kinase A regulates resumption of meiosis by phosphorylation of Cdc25B in mammalian oocytes. Cell Cycle. 8(4): 665-670
    Prives, C., Gottifredi, V. 2008. The p21 and PCNA partnership: a new twist for an old plot. Cell Cycle. 7(24): 3840-3846
    Qian, Y., Chen, X. 2008. ID1, inhibitor of differentiation/DNA binding, is an effector of the p53-dependent DNA damage response pathway. J Biol Chem. 283(33): 22410-22416
    Qian, Y.W., Erikson, E., Taieb, F.E., Maller, J.L. 2001. The polo-like kinase Plx1 is required for activation of the phosphatase Cdc25C and cyclin B-Cdc2 in Xenopus oocytes. Mol Biol Cell. 12(6): 1791-1799
    Raz, T., Ben-Yosef, D., Shalgi, R. 1998. Segregation of the pathways leading to cortical reaction and cell cycle activation in the rat egg. Biol Reprod. 58(1): 94-102
    Reis, A., Chang, H.Y., Levasseur, M., Jones, K.T. 2006. APCcdh1 activity in mouse oocytes prevents entry into the first meiotic division. Nat Cell Biol. 8(5): 539-540
    Rekas, A., Alattia, J.R., Nagai, T., Miyawaki, A., Ikura, M. 2002. Crystal structure of venus, a yellow fluorescent protein with improved maturation and reduced environmental sensitivity. J Biol Chem. 277(52): 50573-50578
    Richard, F.J., Sirard, M.A. 1996a. Effects of follicular cells on oocyte maturation. I: Effects of follicular hemisections on bovine oocyte maturation in vitro. Biol Reprod. 54(1): 16-21
    Richard, F.J., Sirard, M.A. 1996b. Effects of follicular cells on oocyte maturation. II: Theca cell inhibition of bovine oocyte maturation in vitro. Biol Reprod. 54(1): 22-28
    Rogers, N.T., Hobson, E., Pickering, S., Lai, F.A., Braude, P., Swann, K. 2004. Phospholipase Czeta causes Ca2+ oscillations and parthenogenetic activation of human oocytes. Reproduction. 128(6): 697-702
    Ross, P.J., Yabuuchi, A., Cibelli, J.B. 2006. Oocyte spontaneous activation in different rat strains. Cloning Stem Cells. 8(4): 275-282
    Saha, P., Eichbaum, Q., Silberman, E.D., Mayer, B.J., Dutta, A. 1997. p21CIP1 and Cdc25A: competition between an inhibitor and an activator of cyclin-dependent kinases. Mol Cell Biol. 17(8): 4338-4345
    Sarmento, L.M., Huang, H., Limon, A., Gordon, W., Fernandes, J., Tavares, M.J., Miele, L., Cardoso, A.A., Classon, M., Carlesso, N. 2005. Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27 Kip1 degradation. J Exp Med. 202(1): 157-168
    Schmidt, A., Rauh, N.R., Nigg, E.A., Mayer, T.U. 2006. Cytostatic factor: an activity that puts the cell cycle on hold. J Cell Sci. 119(Pt 7): 1213-1218
    Sharma, P.S., Sharma, R., Tyagi, R. 2008. Inhibitors of cyclin dependent kinases: useful targets for cancer treatment. Curr Cancer Drug Targets. 8(1): 53-75
    Sheaff, R.J., Singer, J.D., Swanger, J., Smitherman, M., Roberts, J.M., Clurman, B.E. 2000. Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol Cell. 5(2): 403-410
    Sherr, C.J. 1996. Cancer cell cycles. Science. 274(5293): 1672-1677
    Shoji, S., Yoshida, N., Amanai, M., Ohgishi, M., Fukui, T., Fujimoto, S., Nakano, Y., Kajikawa, E., Perry, A.C. 2006. Mammalian Emi2 mediates cytostatic arrest and transduces the signal for meiotic exit via Cdc20. EMBO J. 25(4): 834-845
    Shu, L., Yan, W., Chen, X. 2006. RNPC1, an RNA-binding protein and a target of the p53 family, isrequired for maintaining the stability of the basal and stress-induced p21 transcript. Genes Dev. 20(21): 2961-2972
    Sirard, M.A., First, N.L. 1988. In vitro inhibition of oocyte nuclear maturation in the bovine. Biol Reprod. 39(2): 229-234
    Sirard, M.A., Florman, H.M., Leibfried-Rutledge, M.L., Barnes, F.L., Sims, M.L., First, N.L. 1989.
    Timing of nuclear progression and protein synthesis necessary for meiotic maturation of bovine oocytes. Biol Reprod. 40(6): 1257-1263
    Smits, V.A., Klompmaker, R., Vallenius, T., Rijksen, G., Makela, T.P., Medema, R.H. 2000. p21 inhibits Thr161 phosphorylation of Cdc2 to enforce the G2 DNA damage checkpoint. J Biol Chem. 275(39): 30638-30643
    Solc, P., Saskova, A., Baran, V., Kubelka, M., Schultz, R.M., Motlik, J. 2008. CDC25A phosphatase controls meiosis I progression in mouse oocytes. Dev Biol. 317(1): 260-269
    Soria, G., Podhajcer, O., Prives, C., Gottifredi, V. 2006. P21Cip1/WAF1 downregulation is required for efficient PCNA ubiquitination after UV irradiation. Oncogene. 25(20): 2829-2838
    Suh, E.J., Kim, T.Y., Kim, S.H. 2006. PP2Cgamma-mediated S-phase accumulation induced by the proteasome-dependent degradation of p21(WAF1/CIP1). FEBS Lett. 580(26): 6100-6104
    Suh, E.J., Kim, Y.J., Kim, S.H. 2009. Protein phosphatase 2Cgamma regulates the level of p21Cip1/WAF1 by Akt signaling. Biochem Biophys Res Commun. 386(3): 467-470
    Tamura, H., Takasaki, A., Miwa, I., Taniguchi, K., Maekawa, R., Asada, H., Taketani, T., Matsuoka, A., Yamagata, Y., Shimamura, K., Morioka, H., Ishikawa, H., Reiter, R.J., Sugino, N. 2008. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res. 44(3): 280-287
    Tang, W., Wu, J.Q., Guo, Y., Hansen, D.V., Perry, J.A., Freel, C.D., Nutt, L., Jackson, P.K., Kornbluth, S. 2008. Cdc2 and Mos regulate Emi2 stability to promote the meiosis I-meiosis II transition. Mol Biol Cell. 19(8): 3536-3543
    Tarkowski, A.K. 1966. An Air-Drying Method for Chromosome Preparations from Mouse Eggs. Cytogenetics. 5(394-400
    Terret, M.E., Lefebvre, C., Djiane, A., Rassinier, P., Moreau, J., Maro, B., Verlhac, M.H. 2003. DOC1R: a MAP kinase substrate that control microtubule organization of metaphase II mouse oocytes. Development. 130(21): 5169-5177
    Tripathi, A., Khatun, S., Pandey, A.N., Mishra, S.K., Chaube, R., Shrivastav, T.G., Chaube, S.K. 2009.
    Intracellular levels of hydrogen peroxide and nitric oxide in oocytes at various stages of meiotic cell cycle and apoptosis. Free Radic Res. 43(3): 287-294
    Tripathi, A., Kumar, K.V., Chaube, S.K. 2010. Meiotic cell cycle arrest in mammalian oocytes. J Cell Physiol. 223(3): 592-600
    Tsurumi, C., Hoffmann, S., Geley, S., Graeser, R., Polanski, Z. 2004. The spindle assembly checkpoint is not essential for CSF arrest of mouse oocytes. J Cell Biol. 167(6): 1037-1050
    Vigneron, C., Perreau, C., Dalbies-Tran, R., Joly, C., Humblot, P., Uzbekova, S., Mermillod, P. 2004.
    Protein synthesis and mRNA storage in cattle oocytes maintained under meiotic block by roscovitine inhibition of MPF activity. Mol Reprod Dev. 69(4): 457-465
    Vincent, C., Cheek, T.R., Johnson, M.H. 1992. Cell cycle progression of parthenogenetically activatedmouse oocytes to interphase is dependent on the level of internal calcium. J Cell Sci. 103 ( Pt 2)(389-396
    Vousden, K.H., Prives, C. 2009. Blinded by the Light: The Growing Complexity of p53. Cell. 137(3): 413-431
    Wang, W., Nacusi, L., Sheaff, R.J., Liu, X. 2005. Ubiquitination of p21Cip1/WAF1 by SCFSkp2: substrate requirement and ubiquitination site selection. Biochemistry. 44(44): 14553-14564
    Wassmann, K., Niault, T., Maro, B. 2003. Metaphase I arrest upon activation of the Mad2-dependent spindle checkpoint in mouse oocytes. Curr Biol. 13(18): 1596-1608
    Webb, R.J., Marshall, F., Swann, K., Carroll, J. 2002. Follicle-stimulating hormone induces a gap junction-dependent dynamic change in [cAMP] and protein kinase a in mammalian oocytes. Dev Biol. 246(2): 441-454
    Webb, R.L., Findlay, K.A., Green, M.A., Beckett, T.L., Murphy, M.P. 2010. Efficient activation of reconstructed rat embryos by cyclin-dependent kinase inhibitors. PLoS One. 5(3): e9799
    Wehrend, A., Meinecke, B. 2001. Kinetics of meiotic progression, M-phase promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase) activities during in vitro maturation of porcine and bovine oocytes: species specific differences in the length of the meiotic stages. Anim Reprod Sci. 66(3-4): 175-184
    Whitaker, M. 2006. Calcium at fertilization and in early development. Physiol Rev. 86(1): 25-88
    Wiebusch, L., Hagemeier, C. 2010. p53- and p21-dependent premature APC/C-Cdh1 activation in G2 is part of the long-term response to genotoxic stress. Oncogene. 29(24): 3477-3489
    Willis, P., Caudle, A.B., Fayrer-Hosken, R.A. 1991. Equine oocyte in vitro maturation: influences of sera, time, and hormones. Mol Reprod Dev. 30(4): 360-368
    Winston, N.J. 1997. Stability of cyclin B protein during meiotic maturation and the first mitotic cell division in mouse oocytes. Biol Cell. 89(3): 211-219
    Wu, J.Q., Kornbluth, S. 2008. Across the meiotic divide - CSF activity in the post-Emi2/XErp1 era. J Cell Sci. 121(Pt 21): 3509-3514
    Wulf, G.M., Liou, Y.C., Ryo, A., Lee, S.W., Lu, K.P. 2002. Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J Biol Chem. 277(50): 47976-47979
    Xiong, Y., Zhang, H., Beach, D. 1992. D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell. 71(3): 505-514
    Xu, Z., Abbott, A., Kopf, G.S., Schultz, R.M., Ducibella, T. 1997. Spontaneous activation of ovulated mouse eggs: time-dependent effects on M-phase exit, cortical granule exocytosis, maternal messenger ribonucleic acid recruitment, and inositol 1,4,5-trisphosphate sensitivity. Biol Reprod. 57(4): 743-750
    Yu, Z.K., Gervais, J.L., Zhang, H. 1998. Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci U S A. 95(19): 11324-11329
    Zeng, P.Y., Berger, S.L. 2006. LKB1 is recruited to the p21/WAF1 promoter by p53 to mediate transcriptional activation. Cancer Res. 66(22): 10701-10708
    Zhang, H., Hannon, G.J., Beach, D. 1994. p21-containing cyclin kinases exist in both active and inactive states. Genes Dev. 8(15): 1750-1758
    Zhang, M., Ouyang, H., Xia, G. 2009. The signal pathway of gonadotrophins-induced mammalian oocyte meiotic resumption. Mol Hum Reprod. 15(7): 399-409
    Zhang, Y., Fujita, N., Tsuruo, T. 1999. Caspase-mediated cleavage of p21Waf1/Cip1 converts cancer cells from growth arrest to undergoing apoptosis. Oncogene. 18(5): 1131-1138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700