含瓦斯煤层多参数实时监测及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瓦斯灾害是影响煤矿安全生产的重大灾害,严重威胁着井下工作人员的生命安全及煤炭行业可持续发展。对于含瓦斯煤层,在开采过程中煤层瓦斯流场与应力场的动态耦合贯穿于瓦斯灾害演化的全过程。对含瓦斯煤层瓦斯压力、应力及温度等相关参数的实时监测有助于深入研究煤层瓦斯流场与应力场的动态耦合关系,为瓦斯灾害的防治工作提供技术支持。本文分析了煤层应力场对煤层瓦斯渗流和封存特征的影响机理;开发了含瓦斯煤层多参数实时监测系统;提出了含瓦斯煤层采动过程及瓦斯治理效果多参数实时监测方法,并进行了应用。
     (1)分别从含瓦斯煤体弹性自调节综合效应、瓦斯低速渗流启动压力梯度和宏观应力场对孔隙裂隙闭合程度的控制三个方面分析了煤层应力场对煤层瓦斯渗流和封存特征的影响机理。阐述了煤层瓦斯流场的热力学效应,并分别从瓦斯渗流热传递和应力变化导致的热能转化两个角度分析了煤体温度变化机理。
     (2)基于煤岩力电耦合机理,提出了电磁辐射技术确定本煤层封孔位置的方法,即通过测定本煤层监测钻孔不同深处的电磁辐射值来确定钻孔的应力集中带,进而确定合理的封孔位置。
     (3)提出了采用高压胶囊配合封孔胶囊或注浆等封孔工艺密封钻孔,并利用高压胶囊监测应力的技术思路,开发了含瓦斯煤层多参数实时监测系统,该监测系统主要包括钻孔密封装置、应力监测装置、数据采集与传输装置和软件系统等四个部分,可实现对含瓦斯煤层中瓦斯压力、应力和温度等相关参数的实时监测,同时可与KJ系统联网运行,实现对监测数据的实时传输、存储与处理。
     (4)提出了采动过程含瓦斯煤层多参数实时监测方法,并建立了监测钻孔位置、监测钻孔孔间距的确定公式,实现了对采动过程中含瓦斯煤层多参数的实时监测,监测结果可用于分析各参数的耦合、演化规律及辨识灾害演化信息;采用该方法在梁北煤矿进行了应用,并结合监测结果,分析了采动过程、卸压或抽放措施前后煤层参数的流变-突变特征。
     (5)提出了瓦斯治理效果实时监测方法,考察了瓦斯治理措施实施过程煤层多参数的变化规律;并针对不同瓦斯治理措施,提出了对瓦斯治理效果进行实时监测的测点布置和仪器安装方法。
Gas disaster threatens miners' life safety and sustainable development of the country. The real-time monitor of multi-parameters, such as gas, stress and temperature et al, is of great interest for prevention and control of gas disaster. The model of gas seepage by layer is established in this paper and the impact mechanism of coal seam stress filed on coal seam gas seepage and its preservation characteristic is analyzed on the perspective of starting pressure gradient of gas seepage in low speed. The technology of real-time monitor multi-parameters of gas-bearing coal is put forward, and the system of real-time monitor containing multi-parameters of gas-bearing coal is established. The method of real-time monitor multi-parameters of gas-bearing coal in evolution of coal and rock dynamic disaster is proposed, meanwhile, the parametric testing of coal seam gas and real-time monitor method about effect of gas control are proposed and used.
     The model of gas seepage by layer is established in this paper and the impact mechanism of coal seam stress filed on coal seam gas seepage and its preservation characteristic is analyzed on the perspective of starting pressure gradient of gas seepage in low speed. The thermodynamic effect of coal seam gas flow field is elaborated. And the change mechanism of temperature field of coal seam gas is analyzed respectively with thermal gradient of gas seepage and thermal energy transformation caused by changes of stress.
     A new method of sealing monitoring borehole is proposed, that is using high pressure capsule company sealing capsule or other sealing craft to seal the borehole. The high pressure capsule can also monitor stress, thus realizes the monitoring of many parameters including gas, stress and temperature. The method of locating sealing borehole in this coal seam using EMR based on electro-stress couple mechanism was proposed.
     Real-time monitoring system is built up to monitor parameters in coal seam with gas, this system mainly includes four parts:borehole sealing device, stress monitoring device, data collecting device and application software system. The system not only can monitor relevant parameters like gas, tress and temperature synchronously, but also could transmit, storage and process the data synchronously with the help of KJ system.
     The index of real-time monitoring of the multi-parameter gas coal, which include gas pressure, environment temperature of borehole, stress of coal around borehole et al, are introduced.
     The method of real-time monitor multi-parameters of coal seam in evolution process of coal or rock dynamic disaster is put forward. That is through constructing borehole of monitoring in working face and installing monitoring system to monitor the multi-parameter coal seam with gas in synchronous and real-time. The determination formula about the space between monitoring sites and monitoring borehole is obtained. And this method is tested in LiangBei coal mine. Based on safety rheology and mutation theory and combined with each parameter variation of coal seam around measures of relief boreholes, the characteristics of safety rheology and mutation in relief and drainage measures are analyzed during mining process.
     The method of real-time monitor about parametric testing of coal seam gas and effect of gas prevention and cure is proposed, and has been applied in coal mine respectively.
     The paper has81pieces of Figures,9pieces of tables,159pieces of references.
引文
[1]林柏泉,常建华,翟成.我国煤矿安全现状及应当采取的对策分析[J].中国安全科学学报,200616(5):42-46.
    [2]何学秋.煤矿煤岩动力灾害监测预警技术进展[EB/OL].http://news.sciencenet.cn/sbhtmlnews/2011/10/250263.shtm
    [3]聂百胜,何学秋,王恩元,等.煤与瓦斯突出预测技术研究现状及发展趋势[J].中国安全科学学报,2003,13(6):40-43.
    [4]国家安全生产监督管理总局,国家煤矿安全监察局.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009.
    [5]王恩元,何学秋,李忠辉,等.煤岩电磁辐射技术及其应用[M].科学出版社,2009,北京.
    [6]俞启香.矿井瓦斯防治[M].中国矿业大学出版社,1992,徐州.
    [7]氏平增之.煤和瓦斯突出的模型研究及其机理探讨[C].第21界国际采矿安全会议论文集,1985,80-85.
    [8]周世宁,何学秋.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报,1990,19(2):1-8.
    [9]郑哲敏,陈力,丁雁生.一维瓦斯突出破碎阵面的恒稳推进[J].中国科学(A辑),1993,23(4):377-384.
    [10]俞善炳.恒温推进的煤与瓦斯突出[J].力学学报,1988,20(2):97-106.
    [11]蒋承林,俞启香.煤与瓦斯突出机理的球壳失稳假说[J].煤矿安全,1995,2:17-25.
    [12]蒋承林.煤壁突出孔洞的形成机理研究[J].岩石力学与工程学报,2000,19(2):225-228.
    [13]蒋承林,郭立稳.延期突出的机理与模拟试验[J].煤炭学报,1999,24(4):373-738.
    [14]梁冰,章梦涛,潘一山,等.煤和瓦斯突出的固流耦合失稳理论[J].煤炭学报,1995,20(5):492-496.
    [15]梁冰,章梦涛.从煤和瓦斯的耦合作用及煤的失稳破坏看突出的机理[J].中国安全科学学报,1997,7(1):6-9.
    [16]潘一山,杨小彬,章梦涛.煤体变形局部化、孔隙瓦斯压力局部化及射流——煤与瓦斯突出机理新探.煤矿瓦斯灾害防治理论战略研讨,徐州,2000.
    [17]吕绍林,何继善.关键层-应力墙瓦斯突出机理[J].重庆大学学报(自然科学版),1999,22(6):80-84.
    [18]郭德勇,韩德馨.煤与瓦斯突出粘滑机理研究[J].煤炭学报,2003,28(6):598-602.
    [19]王继仁,邓存宝,邓汉忠.煤与瓦斯突出微观机理研究[J].煤炭学报,2008,33(2):131-135.
    [20]陆卫东.煤与瓦斯突出微观机理的基础研究[D].辽宁工程技术大学博士学位论文,2009.
    [21]魏风清.煤与瓦斯突出的物理爆炸模型及预测指标研究[D].河南理工大学博士学位论文,2010.
    [22]梁冰,刘建军.煤和瓦斯突出发生过程中的温度作用机理研究[J].中国地质灾害与防治学报,2000,11(1):79-82.
    [23]李祥春,聂百胜,何学秋.振动诱发煤与瓦斯突出的机理[J].北京科技大学学报,2011,33(2):149-152.
    [24]刘明举,颜爱华,丁伟,等.煤与瓦斯突出热动力过程的研究[J].煤炭学报,2003,28(1):50-54.
    [25]胡千庭,周世宁,周心权.煤与瓦斯突出过程的力学作用机理[J].煤炭学报,2008,33(12):1368-1372.
    [26]胡千庭,梁运培,金洪伟,等.突出过程中瓦斯破坏煤体的作用机理[C].2007中国土木工程学会第十届土力学及岩土工程学术会议,770-775.
    [27]蒋承林,俞启香.煤与瓦斯突出过程中能量耗散规律的研究[J].煤炭学报,1996,21(2):173-178.
    [28]郭立稳,俞启香,蒋承林,等.煤与瓦斯突出过程中温度变化的实验研究[J].岩石力学与工程学报,2000,19(3):366-368.
    [29]焦作工学院瓦斯地质课题组.湘、赣、豫煤与瓦斯突出带地质构造特征.“六五”科技攻关项目验收鉴定报告,1983.
    [30]王凯,俞启香,周保生.煤与瓦斯突出的钻孔法预报机理及预测指标探析[J].江苏煤炭,1995,(2):13-15.
    [31]国家安全生产监督管理总局.防治煤与瓦斯突出规定[M].2009.
    [32]Xueqiu He, Enyuan Wang, Zhentang Liu. The General Charastics of Electromagnetic Radiation During Coal Fracture and Its Application in Outburst Prediction[C]. In:Proceedings of the8th U.S. Mine Ventilation Symposium, Editor Jerry C. Tien, June11-17,1999.Rolla, Missouri,81-84
    [33]Xueqiu He, Enyuan Wang, Zhentang Liu. Experimental Study On the Electromagnetic Radiation During the Fracture of Coal or Rock[C]. In:Proceedings of the'99International Symposium on Mining Science and Technology. China Beijing:Beijing, August,29-311999.133-136
    [34]锡屠根,哈明杰.突出敏感指标初探[J].煤矿安全,1991.(9):15-21.
    [35]陈健民.地应力与岩石红外辐射现象理论探讨[J].煤炭学报.1995,(3):571-579.
    [36]吕绍林.地球物理方法预测瓦斯突出研究综述[J].焦作工学院学报,2000,12(2):95-100.
    [37]王宏图,鲜学福,贺建民,等.用温度指标预测掘进工作面突出危险性的探讨[J].重庆大学学报(自然科学版),1999,22(2):34-38.
    [38]蒋承林.煤与瓦斯突出的预测模型及预测指标[J].中国矿业大学学报,1998,27(4):373-376.
    [39]胡千庭,邹银辉,文光才,等.瓦斯含量法预测突出危险新技术[J].煤炭学报,2007,32(3):276-280.
    [40]代志旭,郭明功.本煤层瓦斯压力测定新技术研究[J].煤炭科学技术,2011,39(2):46-50.
    [41]何书建.煤层瓦斯压力测定新技术[J].矿山压力与顶板管理,2003,(3):116-117.
    [42]张仁贵,彭担任.M-1型瓦斯压力测定仪[J].煤矿机械,1995,(2):39-40.
    [43]杨洋,蒋承林,何明霞.近距离煤层群条件下穿煤层瓦斯压力测定技术[J].煤炭科学技术,2011,39(2):51-54.
    [44]武金宝,刘庆安.煤层瓦斯压力在线监测技术[J].煤炭科技,2010,(3):73-74.
    [45]仇海生,张保泉.利用煤钻屑瓦斯解吸指标法测定煤层瓦斯含量[J].煤矿安全,2007(7):18-20.
    [46]赵继展,韩保山,陈志胜,等.煤层瓦斯含量计算方法探讨[J].中国煤田地质,2006,18(5):22-24.
    [47]Kissel, L F.N.Meculloch. The Direct Method of Determining Methane Content of Coalbeds for Ventilation Design[M]. U. S. Bureau of Mines Report of Invstiegations,RI7767,1993.
    [48]McLennan JD, Schafer PS, Pratt TJ. A guide to determining coalbed gas content. Gas Research Institute Report No. GRI-94/0396, Chicago, Illinois,1995.
    [49]Mavor MJ, Pratt TJ. Improved methodology for determining total gas content. Volume Ⅱ: comparative evaluation of the accuracy of gas-in-place estimates and review of lost gas models'. Gas Research Institute Report No. GRI-94/0429, Chicago, Illinois.1996.
    [50]王璞,黄鹤全,高九华.红外测温技术在煤矿中的应用[J].煤炭科学技术,2000,(8):23-25.
    [51]高尚青,邬剑明,李兴伟,等.矿用智能化钻孔测温仪的开发与研制[J].太原理工大学学报,2005,(7):447-450.
    [52]蔡美峰.岩石力学与工程[M].北京,科学出版社,2006.
    [53]Hainson B, Fairhurst C. Initiation and extension of hydraulic fractures in rock[J]. Soc Pet Eng J,1967:310-318.
    [54]张景和.利用岩石声发射Kaiser效应测定地应力的新方法[J].岩石力学与工程学报,1987,(6):347-355.
    [55]张广清,金衍,陈勉.利用围压下岩石的凯泽效应测定地应力[J].岩石力学与工程学报,2002,21(3):360-363.
    [56]Tanimoto K, Nakamura J, Fudo R. Application of acousitic emission in in-situ test[A]. Proceeding of the10th Conference on Soil Mechanics and Foundation Engineering[C]. Rotterdam:A.A. Balkema,1978,573-576.
    [57]Filimonov Y L, Lavrov A V, Shafarenko Y M, et al. Memory effects in rock salt under triaxial stress state and their use for stress measurement in a rock mass[J]. Rock Mechanics and Rock Engineering,2001,34(4):275-291.
    [58]张旭东,张艳,陈勉.利用声波研究盐岩地层地应力的现状综述[J].石油天然气学报,2008,30(3):284-286.
    [59]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965,2(1):24-37.
    [60]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报,1987,(4):74-82.
    [61]罗欣荣.煤层瓦斯运移物理模型及理论分析[J].中国矿业大学学报,1991,20(3):55-61.
    [62]赵阳升.煤体-瓦斯耦合数学模型与数值解法[J].岩石力学与工程学报,1994,13(3):229-239.
    [63]Zhao Yangsheng, Qing Huizheng, Bai Qizen. Mathematical model for solid-gas coupled problems on the methane flowing in coal seam. Acta Mechanica Solida Sinica,1993,6(4):459.
    [64]赵阳升,胡耀青,赵宝虎,等.块裂介质岩体变形与气体渗流的耦合数学模型及其应用[J].煤炭学报,2003,28(1):41-45.
    [65]刘建军,刘先贵.煤储层流固耦合渗流的数学模型[J].焦作工学院学报,1999,18(6):397-401.
    [66]刘建军,张盛宗,刘先贵,等.裂缝性低渗透油藏流-固耦合理论与数值模拟[J].力学学报,2002,34(5):779-784.
    [67]Liu Jianjun. Simulation of methane and water two-phase fluid-solid coupling flow. In: Frontiers of Rock Mechanics and sustainable development in the21st century. Sijing, Binjun bad Zhongkui(eds.). Swets&Zeitlinger B V., Lisse, Netherlands,2001:347-349.
    [68]孙培德.Sun模型及其应用——煤层气越流固气耦合模型及可视化模拟[M].杭州:浙江大学出版社,2002.
    [69]葛家理.现代油藏渗流力学原理[M].北京:石油工业出版社,2003.
    [70]阎庆来,何秋轩,孙敏荣,等.不同润湿性地层中凝析油气混合物渗流阻力的差异[J].西安石油学院学报,1987,2(1):73-78.
    [71]黄延章.低渗透油层非线性渗流特征[J].特种油气藏,1997,4(1):9-11.
    [72]冯文光.非达西低速渗流的研究现状与展望[J].石油勘探与开发,1986,(4):76-80.
    [73]刘建军,裴桂红.我国渗流力学发展现状及展望[J].武汉工业学院学报,2002,(3):99-103.
    [74]葛家理,栾志安.非线性渗流力学研究进展[J].力学进展,1984,14(4):432-439.
    [75]宋付权.低渗透多孔介质和微管液体流动尺度效应[J].自然杂志,2004,26(3):128-131.
    [76]胡勇.气体渗流启动压力实验测试及应用[J].天然气工业,2010,(11):48-50.
    [77]吴凡,孙黎娟,乔国安,等.气体渗流特征及启动压力规律的研究[J].天然气工业,2001,(1):82-84.
    [78]郭红玉,苏现波.煤储层启动压力梯度的实验测定及意义[J].天然气工业,2010,(6):52-54.
    [79]何学秋,刘明举.煤岩流变电磁动力学[M].中国矿业大学出版社.1991.
    [80]傅雪海.多相介质煤岩体物性的物理模拟与数值模拟[D].中国矿业大学博士学位论文,2001.
    [81]程云雕.鸡西矿区安全高效工作面瓦斯综合治理技术研究[D].中国矿业大学工程硕士学位论文,2009.
    [82]丁晓良,俞善炳,丁雁生,等.煤在瓦斯渗流作用下持续破坏的机制[J].中国科学(A辑),1989,(6):600-607.
    [83]丁晓良,丁雁生,俞善炳,等.煤在瓦斯一维渗流作用下的初次破坏[J].力学学报,1990,22(2):154-162.
    [84]Cheng Chemin, Tan Qingming, Yu Shanbing. Damage wave theory for coal and gas outburst. In:Wang L L, Kobayashi A. Eds. Proc of Sino-Japanese Symp RADDFS. Hefei:Press of USTC,1998.91-97.
    [85]马衍坤,王恩元,李忠辉,等.煤体瓦斯吸附渗流过程及声发射特性实验研究[J].煤炭学报,2012,37(4):641-646.
    [86]俞善炳,谈庆明,丁雁生等.含气多孔介质卸压层裂的间隔特征-突出的前兆.力学学报,1998,30(2):145~150.
    [87]任晓娟,张国辉,缪飞飞.低渗多孔介质非达西渗流启动压力梯度存在判识[J].辽宁工程技术大学学报(自然科学版),2009,28(增):273-276.
    [88]徐运亭.低渗透油藏渗流机理研究及应用[M].北京:石油工业出版社,2006.
    [89]黄延章.低渗透油藏渗流机理[M].北京:石油工业出版社,1998.
    [90]胡勇.气体渗流启动压力实验测试及应用[J].天然气工业,2010,(11):48-50.
    [91]刘建军,刘先贵,胡雅衽.低渗透岩石非线性渗流规律研究[J].岩石力学与工程学报,2003,22(4):556-561.
    [92]依呷,唐海,吕栋梁.低渗气藏启动压力梯度研究与分析[J].海洋石油,2006,26(3):51-54.
    [93]马衍坤,赵恩来,徐文全,等.煤岩渗透实验方法分析与改进[J].矿业研究与开发,2009,29(5):52-54.
    [95]刘世煌.从实测资料谈地壳近地表岩体中地应力的分布规律[J].水力发电学报,1990,28:83-85.
    [96]潘立友,王彦伦,王春秋,等.采场支架围岩关系及应用[M].徐州,中国矿业大学出版社,2008.
    [97]张国辉.煤层应力状态及煤与瓦斯突出防治研究[D].辽宁工程技术大学博士学位论文,2005.
    [98]C.R. Clarksona, R.M. Bustinb. The effect of pore structure and gas pressure upon the transport properties of coal:a laboratory and modeling study-Adsorption rate modeling[J]. Fuel,1999,(78):1345-1362.
    [99]赵国景,步道远.煤与瓦斯突出的流固两相介质力学理论及数值分析[J].工程力学,1995,12(2):1-7.
    [100]丁继辉,麻玉鹏,赵国景,等.煤与瓦斯突出的固流耦合失稳理论及数值模拟[J].工程力学,1999,16(4):47-56.
    [101]孔海陵.煤层变形与瓦斯运移耦合系统动力学研究[D].中国矿业大学博士学位论文,2009.
    [102]Clarkson, C.R., Bustin, R.M. The effect of pore structure and gas pressure upon the transport properties of coal:a laboratory and modeling study on isotherms and pore volume distributions[J]. Fuel,1999,(78):1333-1344.
    [103]Reucroft, P., Patel, H. Gas-induced swelling in coal[J]. Fuel,1986,(65):816-820.
    [104]Pan Z, Connell LD. Measurement and modelling of gas adsorption-induced coal swelling[A]. Proceedings of the international coalbed methane symposium, Tuscaloosa, Alabama,2006, Paper0636.
    [105]陈金刚,陈义,刘大全.煤基质自调节效应实验[J].天然气工业,2010,30(4):133-136.
    [106]秦勇,傅雪海,吴财芳,等.高煤级煤储层弹性自调节效应作用及其成藏效应[J].科学通报,2005,50(增刊):82-86.
    [107]S.R. Kelemen, L.M. Kwiatek. Physical properties of selected block Argonne Premium bituminous coal related to CO2,CH4, and N2adsorption [J]. International Journal of Coal Geology,2009,(77):2-9.
    [108]Elisa Battistutta, Patrick van Hemert, Marcin Lutynski, et al. Swelling and sorption experiments on methane, nitrogen and carbon dioxide on dry Selar Cornish coal[J]. International Journal of Coal Geology,2010,(84):39-48.
    [109]Busch, A., Gensterblum, Y., Krooss, B. Methane and CO2sorption and desorption measurements on dry Argonne premium coals:pure components and mixtures[J]. International Journal of Coal Geology,2003,(55):205-224.
    [110]Chikatamarla, L., Cui, X., Bustin, R. Implications of volumetric swelling/shrinkage of coal in sequestration of acid gases[J]. International Coalbed Methane Symposium Proceedings Alabama,2004.
    [111]吴财芳.煤层气成藏能量动态平衡及其地质选择过程[D].中国矿业大学博士学位论文,2004.
    [112]Satya Harpalani, Guoliang Chen. Estimation of changes in fracture porosity of coal with gas emission[J]. Fuel,1995,74(10):1491-1498.
    [113]Ziqiu X, Takashi O. Laboratory measurements on swelling in coals cause by adsorption of carbon dioxide and its impact on permeability. In:2nd International workshop on research relevant to CO2sequestration in coal seam,2003,57-66.
    [114]陈金刚.高煤级煤储层渗透率的构造-采动控制效应与作用机理[D].中国矿业大学博士学位论文,2003.
    [115]尹尚先,王尚旭.不同尺度下岩层渗透性与地应力的关系及机理[J].中国科学D辑地球科学,2006,36(5):472-480.
    [116]贺玉龙,杨立中.温度和有效应力对砂岩渗透率的影响机理研究[J].岩石力学与工程学报,2005,24(14):2420-2427.
    [117]张东明,胡千庭,袁地镜.成型煤样瓦斯渗流的实验研究[J].煤炭学报,2011,36(2):288-292.
    [118]Durucan S, Edwards JS. The effects of stress and fracturing on permeability of coal. Min Sci Technol,1986,(3):205-216.
    [119]陶云奇,许江,程明俊,等.含瓦斯煤渗透率理论分析与试验研究[J].岩石力学与工程学报,2009,28(增):3363-3370.
    [120]Yin S, Wang S. Effect and mechanism of stresses on rock permeability at different scales. Sci China Ser D Earth Sci,2006,49(7):714-23.
    [121]马衍坤,王恩元,刘贞堂,等.煤层突出危险性的属性综合评价模型研究[J].采矿与安全工程学报,2012,29(3):416-420.
    [122]程五一.煤层瓦斯渗流煤体热效应机制的研究[J].煤炭学报,2000,25(5):506-509.
    [123]牛国庆,颜爱华,刘明举.煤吸附和解吸瓦斯过程中温度变化研究[J].煤炭科学技术,2003,31(4):47-49.
    [124]张玉军,张维庆.温度梯度水分扩散对双重孔隙岩体中THM耦合影响的有限元分析[J].固体力学学报,2010,31(3):269-277.
    [125]杨新乐.低渗透煤层煤层气注热增产机理的研究[D].辽宁工程技术大学博士学位论文,2009.
    [126]王宏图,杜云贵,鲜学福,等.地球物理场中的煤层瓦斯渗流方程[J].岩石力学与工程学报,2002,21(5):644-646.
    [127]何满潮,王春光,李德建,等.单轴应力-温度作用下煤中吸附瓦斯解吸特征[J].岩石力学与工程学报,2010,29(5):865-872.
    [128]刘保县,鲜学福,徐龙君,等.地球物理场对煤吸附瓦斯特性的影响[J].重庆大学学报(自然科学版),2000,23(5):78-81.
    [129]桑树勋,朱炎铭,张时音,等.煤吸附气体的固气作用机理(Ⅰ)煤孔隙结构与固气作用[J].天然气工业,2005;25(1):13~15.
    [130]桑树勋,朱炎铭,张井,等.煤吸附气体的固气作用机理(Ⅱ)煤孔隙结构与固气作用[J].天然气工业,2005;25(1):16~18.
    [131]M.S. Gruszkiewicz a, M.T. Naney a, J.G. Blencoe a, et al. Adsorption kinetics of CO2, CH4, and their equimolar mixture on coal from the Black Warrior Basin, West-Central Alabama[J]. International Journal of Coal Geology,2009,(77):23-33.
    [132]Busch A., Kroos B.M., Gensterblum Y, et al. High-pressure adsorption of methane, carbon dioxide and their mixtures on coals with a special focus on the preferential sorption behaviour[J]. J. Geochem. Explor.2003,(78):671-674.
    [133]Busch A., Krooss B.M., Gensterblum Y., et al. CO2and CH4sorption kinetics on coal:an experimental and modeling approach[J].7th International Conference on greenhouse Gas Control Technologies,5-9September,2004. Vancouver, Canada.
    [134]Isaac I. Kantorovich, Ezra Bar-Ziv. Heat transfer within highly porous chars:a review[J]. Fuel,1999,(78):279-299.
    [135]Zhang X, Dukhan A, Kantorovich II, et al. Thermal conductivity and porous structure of char particles. Combustion and Flame,1998,(113):519-531.
    [136]郭立稳,俞启香,秦长江.龙山煤矿煤与瓦斯突出温度异常现象分析[J].矿业安全与环保,2000,27(增):53-56.
    [137]郭立稳,蒋承林.煤与瓦斯突出过程中影响温度变化的因素分析[J].煤炭学报,2000,25(4):401-403.
    [138]Gray, I. Reservoir engineering in coal seams:Part1. The physical process of gas storage and movement in coal seams[J]. SPE Reservoir Eng.,1987,(2):28-34.
    [139]Wyman, R.E. Gas resources in Elmsworth coal seams. In:Masters, J.A.(Ed.) Elmworth-Case Study of a Deep Basin Gas Field. AAPG Memoir.,1984,(38):173-187.
    [140]汪有刚,李宏艳,齐庆新,等.采动煤层渗透率演化与卸压瓦斯抽放技术[J].煤炭学报,2010,35(3):406-410
    [141]Harpalani, S., Schraufnagel, R. Shrinkage of coal matrix with release of gas and its impact on permeability of coal. Fuel,1990,(69):551-556.
    [142]J.D. St. George, M.A. Barakat. The change in effective stress associated with shrinkage from gas desorption in coal[J].. International Journal of Coal Geology,2001,(45):105-113.
    [143]Harpalani, S., Chen, G. Influence of gas production induced volumetric strain on permeability of coal. Geotech.Geol. Eng,1997,(15):303-325.
    [144]D. Jasinge, P.G. Ranjith, S.K. Choi. Effects of effective stress changes on permeability of latrobe valley brown coal[J]. Fuel,2011,(90):1292-1300.
    [145]Satya Harpalani, Guoliang Chen. Estimation of changes in fracture porosity of coal with gas emission [J]. FUEL,1995,74(10):1491-1498.
    [146]李建楼,严家平,王来斌,等.煤体瓦斯吸附与放散过程中的应力分析[J].煤炭科学技术,2011,39(7):42-45
    [147]Harpalani S, Schraufnagel RA. Shrinkage of coal matrix with release of gas and its impact on permeability of coal[J]. Fuel,1990,(69):551-556.
    [148]谭学术.穿层钻孔周围瓦斯压力分布规律的探讨[J].重庆建筑工程学院学报,1986,(3):111-120.
    [149]周晓军,马心校.穿层钻孔周围煤体次生应力变形及瓦斯流动规律的研究[J].重庆大学学报,1995,18(5):31-38.
    [150]王恩元,何学秋.煤岩变形破裂电磁辐射的实验研究[J].地球物理学报,2000,43(1):131-137.
    [151]王恩元,何学秋,刘贞堂,等.受载岩石电磁辐射特性及其应用研究[J].岩石力学与工程学报,2002,21(10):1473-1477.
    [152]王恩元,何学秋,刘贞堂,等.煤岩动力灾害电磁辐射监测仪及其应用[J].煤炭学报,2003,28(4):366-369.
    [153]Wang Enyuan, He Xueqiu, Liu Zhentang, et al. The fracture rule of electromagnetic emission during coal or rock deformation and fracture [A]. In:Proceedings of the98' International Symposium on Safety Science and Technology [C]. Beijing:Science Press,1998,356-361..
    [154]何俊,何学秋,聂百胜.煤体应力状态电磁辐射测试研究[J].采矿与安全工程学报,2006,23(1):111-114.
    [155]NIE Bai-sheng, HE Xue-qiu, LI Xiang-chun, et al.Research on attenuation characteristic of soundwave in coal or rock body[J]. Journal ofCoalScience&Engineering(China),2007,13(2):154-158.
    [156]王恩元.含瓦斯煤破裂的电磁辐射和声发射效应及其应用研究[D].中国矿业大学博士学位论文,1997.
    [157]肖红飞,何学秋,冯涛,等.单轴压缩煤岩变形破裂电磁辐射与应力耦合规律的研究[J].岩石力学与工程学报,2004,23(23):3948-3953.
    [158]白慧敏.基于煤岩力-电耦合模型的冲击地压预警技术研究[D].中国矿业大学硕士学位论文,2010.
    [159]WANG Enyuan, WANGWei, HE Xueqiu, et al. Study of Effect of Electromagnetic Radiation During Rock or Ore Fracture [A]. Progress in Safety Science and Technology [C]. Beijing/New York:Science Press:2004:847-852.
    [160]刘晓斐.冲击地压电磁辐射前兆信息的时间序列数据挖掘及群体识别体系研究[D].中国矿业大学博士学位论文,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700