风力发电机齿轮传动系统随机振动分析及动力可靠性概率优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风力发电机工作环境恶劣,常年经受无规律的变向变负荷的风力作用及强阵风的冲击,加之高空架设、维修困难等原因,对其可靠性和使用寿命都提出了比一般机械系统高得多的要求。作为风力发电机传动系统的关键部件,齿轮传动系统需要承受高度不稳定的随机动载荷和比其他传动机构高得多的疲劳循环,是风力发电机失效率最高的部件之一。因此,研究风力发电机齿轮传动系统的动力学行为和可靠性对提高风力发电机的稳定可靠运行有重要的现实意义。
     本文结合国家自然科学基金资助项目(50975294)——“基于柔性多体动力学的风电传动系统可靠性研究”的研究任务,依据风力发电机的实际工况,针对其齿轮传动系统的动力学和可靠性等问题进行了深入研究。主要研究内容包括以下几个方面:
     ①风力发电机齿轮传动系统固有特性分析。
     基于齿轮动力学理论和Lagrange方程,运用集中参数法建立了某1.5MW风力发电机齿轮传动系统的纯扭转动力学模型。将风力发电机齿轮传动系统中齿轮的弹性模量、质量密度、工作齿宽和分度圆直径视为随机变量,根据随机摄动理论推导了系统特征值统计特征的表达式。应用随机摄动法研究了齿轮物理参数和几何参数随机变异时系统固有频率的统计特征,定量分析了各参数随机变异对系统固有频率的影响。
     ②风力发电机齿轮传动系统随机振动分析。
     考虑齿轮时变啮合刚度、综合传递误差和阻尼等因素,建立了考虑制造误差的风力发电机齿轮传动系统纯扭转动力学模型。基于随机波动(SV)模型来获取风场的随机风速序列,根据空气动力学理论得到了齿轮传动系统的外部激励。系统地分析了风力发电机齿轮传动系统的内部激励特征,对刚度激励和传递误差进行了分析和模拟。提出了风力发电机齿轮传动系统外部载荷和参数随机变异时系统动态响应的求解方法。通过数值仿真得到了载荷和参数随机变异时系统各响应量和齿轮副间动态啮合力的统计特征,并分析了载荷和参数随机变异对系统动态响应的影响。
     ③载荷和参数随机性对系统动力可靠性的影响分析。
     依据雨流计数原则,对各齿轮副的动态啮合力进行循环计数,得到变幅疲劳载荷的频次数。采用Geber二次曲线等效方法计算得到了随机风载作用下传动系统等效应力幅值和频次。建立了基于概率疲劳累积损伤理论的风电齿轮传动系统动力可靠度模型,利用概率疲劳累计损伤理论推导计算了零件及系统的动力可靠度。研究了各参数随机变异时系统动力可靠度随时间的变化规律。分析了参数随机性对传动系统动力可靠度的影响,并将计算结果与Monte-Carlo法的计算结果进行了对比。
     ④基于动力可靠性的系统概率优化设计
     根据风力发电机齿轮传动系统的结构模型,以传动系统各构件扭转位移均值和体积最小为优化目标,以影响传动系统动态性能和可靠性的参数为优化设计变量,以传动系统的可靠度、参数随机性对可靠性的影响、以及各轮齿正常啮合的条件和强度等为约束条件,建立了用于风力发电机齿轮传动系统可靠性概率优化设计的数学模型。对系统优化问题的求解方法进行了探讨。对风力发电机齿轮传动系统进行了实例优化,并将优化结果与设计结果和Monte Carlo法的优化结果进行了对比,验证了本文优化方法的可行性。
     ⑤风力发电机齿轮增速箱随机振动测试
     根据相似理论设计制造了风力发电机齿轮增速箱,并搭建了振动测试试验台。根据风力发电机齿轮传动系统的工作特点,测量了各种随机载荷工况下各测点的动态响应,经过数值积分和统计分析得到了风力发电机齿轮传动系统随机振动的统计特征。将理论分析结果与试验结果进行对比分析,发现理论分析结果与试验结果比较吻合,从而验证了本文随机振动分析方法的正确性。
As wind turbine working condition is bad, and withstand the variable wind loads orstrong gusts, coupled with installed overhead and difficult to maintain requests higherreliability and longer service life than the general mechanical system. Gear transmissionsystem need to withstand the highly fluctuating load and much higher cyclic fatiguethan other transmission mechanism as the key components of drive system of windturbine, and it is one of the highest failure rate components of wind turbine. Therefor,the study of dynamic behavior and reliability of gear transmission system of windturbine has an important practical significance to improve the stable and reliableoperation of the wind turbine.
     According to the research task of the National Natural Science Foundation ofChina (50975294)“Reliability research of wind turbine transmission besed on theflexible multi-body dynamics”, and considering the practical operating condition ofwind turbine, the dynamics and the reliability problems are investigated fairlycomprehensively and deeply in this dissertation. The main researches are as following:
     ①Inherent characteristic analysis of gear transmission system of wind turbine.
     According to gear mesh theory and Lagrange equation, the torsional dynamicmodel for gear transmission system of1.5MW wind turbine is developed bylumped-parameter method. The expression of the statistical characteristics of the systemeigenvalues is derived based on the stochastic perturbation theory. The statisticalcharacteristics of system eigenvalues are researched taking the elastic modulus, massdensity, tooth width and pitch diameter as random variables, and the influence of theseparameters on the system natural frequency are also studied.
     ②Random vibration analysis of gear transmission system of wind turbine
     A dynamic model of planetary gear transmission system of wind turbine wasdeveloped with considering the time-varying mesh stiffness, transmission error anddamp. Random wind velocity is obtained based on the Stochastic Volatility (SV) model,and the external excitation of the gear transmission system is got according toaerodynamic theory on the basis of the dynamic model of the system. Thecharacteristics of internal excitation of the multi-stage gear transmission system areanalysed, and a solving algorithm for system response of wind turbine gear transmissionsystem when the external loads and design parameters are random variable. The statistical characteristics of the vibration displacement and dynamic dynamic meshingforce are obtained by numuerical simulation, and the influence of these parameters onsystem dynamics are also be analysed.
     ③The influence of randomness of loadings and parameters on dynamic reliabilityof gear transmission system.
     According to rain flow counting principle, the dynamic meshing forces have beenconverted into a series of amplitude fatigue load spectrum blocks. Then, the equivalentamplitude and frequency will be get using equivalent method of Geber quadratic curve.Finally, the dynamic reliability model of components and system have been set upaccording the theory of probability fatigue damage cumulative. The change laws withtime of system reliability with the random variation of parameters has been calculated,and the influence of random parameters on dynamic reliability of components havebeen studied and compared with the results of Monte Carlo method.
     ④Probability optimization design of wind turbine gear transmission system basedon dynamic reliability
     A probability optimal mathematic model of wind turbine gear transmission systemis built with goals of the maximum of the mean vibration displacement of systemcomponents and minimum volume, design variables of parameters which have aninfluence on system dynamics and reliability, comstrains of the reliability of geartransmission system, and the influence of random parameters on system reliability andthe normal meshing conditions and strength of gears. A solving algorithm for systemprobability optimal model is presented based on the system dynamic reliability analysisand probability optimal mathematic model. Then, an optimized example of geartransmission system of wind turbine is given. The optimization results is compared todesign results and the Monte Carlo optimization results to verify the feasibility of theoptimization method.
     ⑤Random vibration test of wind turbine gearbox
     The wind turbine gearbox used testing is designed and manufactured based on thesimilitude theory,and the test fig is set up for dynamic characteristics testing of windturbine gearbox. According to the working characteristics of wind turine geartransmission system, the dynamic responses of each point have been measured under avariety of random load conditions, and the statistical characteristics of the randomvibration of wind turine gear transmission system have been obtained through statistical analysis and numerical integration. The comparison analysis between theory calculationand test results shows that the theory model is correct and effective.
引文
[1]李本立,宋宪耕,贺得馨,等.风力机结构动力学[M].北京航空航天大学出版社,1999.
    [2]张学峰.风桨还需政策推—促进我国风电产业发展的建议[J].中国电力企业管理,2009(4):44-45.
    [3]李亚西,武鑫,赵斌,等.世界风力发电现状及发展趋势[J].太阳能,2004,1:6-7.
    [4]世界风电网信息中心.中国风能发展目标有可能提前10年实现,http://www.86wind.com/infoldetail/37-8923.html.2009,2.9.
    [5]张博.风力发电机齿轮传动系统动态优化设计[D].重庆:重庆大学,2008.
    [6] A.Parey, N.Tandom. Spur gear dynamic models including defects: a review. Shock andVibration Digest,2003,35(6):465-478.
    [7] A.Kahraman, R.Singh. Interactions between time-varying mesh stiffness and clearancenon-linearities in a geared system[J]. Journal of Sound and Vibration,1991,146(1):135-155.
    [8] A.Kahraman, R.Singh. Non-linear dynamics of a spur gear pair[J]. Journal of Sound andVibration,1990,142(1):49-75.
    [9] A.Kahraman, R.Singh. Non-linear dynamics of a geared rotor-bearing system with multipleclearances[J]. Journal ofSound and Vibration,1991,144(1):469-506.
    [10] Shing,T.K. Tsai, Lung-Wen, Krishnaprasad, P.S. Dynamic model of a spur gear system withbacklash and friction consideration[C]. American Society of Mechanical Engineers, DesignEngineering Division (Publication) DE,1994,71(2):155-163.
    [11] M.T.Khabou, N.Bouchaala, F.Chaari, et al. Study of a spur gear dynamic behavior intransient regime [J].Mechanical Systems and Signal Processing,2011,25:3089–3101.
    [12] G.Sika, P.Velex. Analytical and numerical analysis of gears in the presence of engineacyclism[C]. ASME J. Mech. Des,2008(130):1-6.
    [13] P.Velex, M.Maatar. A mathematical model for analyzing the influence of shape deviationsand mounting errors on gear dynamic behavior[J]. Journal of Sound and Vibration,1996,191(5):629-660.
    [14] Y.Wang, W.J.Zhang. Stochastic vibration model of gear transmission systems consideringspeed-dependent random errors[J]. Nonlinear Dynamics,1998,17(2):187-203.
    [15] H.Vinayak, R.Singh, C.Padmanabhan. Linear dynamic analysis of multi-mesh transmissionscontaining external, rigid gears[J]. Journal of Sound and Vibration,1995,185(1):1-32.
    [16]高建平,方宗德,杨宏斌.具有时变刚度传递误差及间隙的齿轮系统动力学分析[J].航空学报,1999,20(5):440-444.
    [17]孙月海,张策,潘凤章等.直齿圆柱齿轮传动系统振动的动力学模型[J].机械工程学报,2000,36(8):47-50+54.
    [18]邵忍平,沈允文,孙进才.齿轮减速器系统可变固有特性动力学研究[J].航空学报,2001,22(1):64-68.
    [19]王三民,沈允文,董海军.含摩擦和间隙直齿轮副的混沌与分叉研究[J].机械工程学报,2002,38(9):8-11.
    [20]王立华,李润方,林腾蛟,等.齿轮系统时变刚度和间隙非线性振动特性研究[J].中国机械工程,2003,14(13):1143-1146.
    [21]王晓笋,巫世晶,周旭辉,等.含侧隙非线性齿轮传动系统的分岔与混沌分析[J].振动与冲击,2008,1(13):53-56.
    [22]苏程,尹朋平.齿轮系统非线性动力学特性分析[J].中国机械工程,2011,11(16):1922-1928.
    [23] R.G.Parker, S.M.Vijayakar, T.Imajo. Non-linear dynamic response of a spur gear pair:modeling and experimental comparisons[J]. Journal of Sound and Vibration,2000,237(3):435-455.
    [24] I.Howard, S.Jia, J.Wang. The dynamic modeling of a spur gear in mesh including frictionand a crack[J]. Mechanical Systems and Signal Processing,2001,15(5):831-853.
    [25] S.Baud, P.Velex. Static and dynamic tooth loading in spur and helical gearedsystems-experiments and model validation[J]. ASME Journal of Mechanical Design,2002,124(2):334-346.
    [26] A.Andersson, L.Vedmar. Adynamic model to determine vibrations in involute helicalgears[J]. Journal of Sound and Vibration,2003,260(2):195-212.
    [27] M.Vaishya, R.Singh. Strategies for modeling friction in gear dynamics[J]. ASME Journal ofMechanical Design,2003,125(2):383-393.
    [28] Y.Cai, T.Hayashi. Optimum modification of tooth profile for a pair of spur gears to make itsrotational vibration equal zero[J]. American Society of Mechanical Engineers, DesignEngineering Division (Publication) DE,1992,43(2):453-460.
    [29] F.L.Litvin, I.H.Seol, D.Kirn, et al. Kinematic and geometric models of gear drives[J].ASME Journal of Mechanical Design,1996,118(4):544-550.
    [30] M.Maatar, P.Velex. Quasi-static and dynamic analysis of narrow-fced helical gears withprofile and lead modifications[J]. ASME Journal of Mechanical Design,1997,119(4):474-480.
    [31] Y.Zhang, Z.Fang. Analysis of transmission errors under load of helical gears with modifiedtooth surfaces[J]. ASME Journal of Mechanical Design,1997,119(1):120-126.
    [32] J.Yi, J.Zheng, T.Yang, et al. Solving the control problem for electrochemical geartooth-profile modification using an artificial neural network[J]. International Journal ofAdvanced Manufacturing Technology,2002,19(1):8-13.
    [33] T.Hidaka, Y.Terauchi. Dynamic behavior of planetary gear (1st report:load distribution inplanetary gear)[J]. Bulletion of the JSME-Japan Society of Mechanical Engineers,1976,19(132):690-698.
    [34] T.Hidaka, Y.Terauchi, K.Ishioka. Dynamic behavior of planetary gear (2streport:displacement of sun gear and ring gear)[J]. Bulletion of the JSME-Japan Society ofMechanical Engineers,1976,19(138):1563-1570.
    [35] T.Hidaka, Y.Terauchi. M.Nohara et al. Dynamic behavior of planetary gear (3streport:displacement of ring gear in direction of line of action)[J]. Bulletion of theJSME-Japan Society of Mechanical Engineers,1977,20(150):1663-1672.
    [36] T.Hidaka, Y.Yoshio, et al. Analysis of dynamic tooth load on planetary gear[J]. Bulletin ofthe JSME,1980,23(176):315-323.
    [37] Bahgat B.M, Osman, M.O.M, Sankar, T.S. On the dynamic gear tooth loading of planetarygearing as affected by bearing clearances in high-speed machinery[J]. Journal ofMechanisms, Transmissions and Automation in Design, Transaction of the ASME,1981,107:430-436.
    [38] August A, Kasuba R. Torsional vibration and dynamic loads in a basic planetary gearsystem[J]. Journal of Acoustics, Stress, and Reliability in Design. Transaction of the ASME,1986,108:348-353.
    [39] Parker R.G. A physical explanation for the effectiveness of planet phasing to suppressplanetary gear vibration[J]. Journal of Sound and Vibration,2000,236(4):561-573.
    [40] Parker R.G. Mesh phasing for epicyclic gear vibration. Proceedings of the InternationalConference on Mechanical Transmission[C], Chongqing, P.R. China,2001,4:53-57.
    [41] A.Kahraman. Planetary gear train dynamics[J]. Journal of Mechanical Design,1994,116(3):713-720.
    [42] A.Kahraman. Natural-modes of planetary gear trains[J]. Journal of Sound and Vibration,1994,173(1):125-130.
    [43] A.Kahraman. Load sharing characteristics of planetary transmissions[J]. Mechanism andMachine Theory,1994,29(8):1151-1165.
    [44] Saada A, Velex P. An extended model for the analysis of the dynamic behavior of planetarytrains[J]. Journal of Mechanical Design, Transaction of the ASME,1995,117:241-247.
    [45] J.Lin, R.G.Parker. Analytical characterization of the unique properties of planetary gear freevibration[J]. Journal of Vibration and Acoustics,1999,121(3):316-321.
    [46] J.Lin, R.G.Parker. Structured vibration characteristics of planetary gears with unequallyspaced planets[J]. Journal of Sound and Vibration,2000,233(5):921-928.
    [47] J.Lin, R.G.Parker. Natural frequency veering in planetary gears[J]. Mechanics of Structuresand Machines,2001,29(4):411-429.
    [48] J.Lin, R.G.Parker. Sensitivity of planetary gear natural frequencies and vibration modes tomodel parameters[J]. Journal of Sound and Vibration,1999,228(1):109-128.
    [49] J.Lin, R.G.Parker. Planetary gear parametric instability caused by mesh stiffness variation[J].Journal of Sound and Vibration,2002,249(1):129-145.
    [50] T.Sun, H.Y.Hu. Nolinear dynamics of a planetary gear system with multiple clearances[J].Mechanism and Machine Theory,2003,38:1371-1390.
    [51] V.K.Ambarisha, R.G.Parker. Suppression of planet mode response in planetary geardynamics through mesh phasing[J]. Journal of Vibration and Acoustics, Transactions of theASME,2006,128:133-142.
    [52] V.K.Ambarisha, R.G.Parker. Nonlinear dynamics of planetary gears using analytical andfinite element models[J]. Journal of Sound and Vibration,2007,302:577-595.
    [53] V.Abousleiman, P.Velex. A hybrid3D finite element/lumped parameter model forquasi-static and dynamic analysis of planetary/epicyclic gear sets[J]. Mechanism andMachine Theory,2006,41:725-748.
    [54] F.Chaari, T.Fakhfakh, R.Hbaieb, et al. Influence of manufacturing errors on the dynamicbehavior of planetary gears[J]. International Journal of Advanced ManufacturingTechnology,2006,27:738-746.
    [55] D.R.Kiracofe, R.G.Parker. Structured vibration modes of general compound planetary gearsystems[J]. Journal of Vibration and Acoustics, Transactions of the ASME,2007,129:1-16.
    [56] X.H.Wu, R.G.Parker. Modal properties of planetary gears with an elastic continuum ringgear[J]. Journal of Applied Mechanics, Transactions of the ASME,2008,75(3),ArticleNumber:031014.
    [57] R.G.Parker, X.H.Wu. Vibration modes of planetary gears with unequally spaced planets andan elastic ring gear[J]. Journal of Sound and Vibration,2010,329:2265-2275.
    [58] T.Eritenel, R.G.Parker. Modal properties of three-dimensional helical planetary gears[J].Journal of Sound and Vibration,2009,325:397-420.
    [59] W.Bartelmus, R.Zimroz. Vibration condition monitoring of planetary gearbox under varyingexternal load[J]. Mechanical Systems and Signal Processing,2009,23:246-257.
    [60] M.Inapolat, A.Kahraman. A theoretical and experimental investigation of modulationsidebands of planetary gear sets[J]. Journal of Sound and Vibration,2009,323:677-696.
    [61] M.Inapolat, A.Kahraman. A dynamic model to predict modulation sidebands of a planetarygear set having manufacturing errors[J]. Journal of Sound and Vibration,2010,329:371-393.
    [62] A.Kahraman, S.Vijayakar. Effect of internal gear flexibility on the quasi-static behavior of aplanetary gear set[J]. Journal of Mechanical Design,2010,123:408-415.
    [63] Y.Guo, R.G.Parker. Sensitivity of general compound planetary gear natural frequencies andvibration modes to model parameters[J]. Journal of Vibration and Acoustics, Transactions ofthe ASME,2010,132, Article Number:011006.
    [64] Woohyung Kim, Ji Yeong Lee, Jintai Chung. Dynamic analysis for a planetary gear withtime-varying pressure angles and contact ratios[J]. Journal of Sound and Vibration,2012,331(4):883-901.
    [65]杨富春,周晓军,郑津洋.复式行星齿轮传动系统综合动力学模型及振动特性研究[J].振动与冲击,2011,30(8):144-148.
    [66]巫世晶,刘振皓,王晓笋,等.基于谐波平衡法的复合行星齿轮传动系统非线性动态特性[J].机械工程学报,2011,47(1):55-61.
    [67]卜忠红,刘更,吴立言.滑动轴承支承人字齿轮行星传动固有特性分析[J].机械工程学报,2011,47(1):80-88.
    [68]王世宇,王建,曹树谦,等.锥齿行星齿轮传动模态特性分析[J].振动工程学报,2011,24(4):376-381.
    [69]孙智民,沈允文,李素有.封闭行星齿轮传动系统的扭振特性研究[J].航空动力学报,2001,16(2):163-166.
    [70]秦大同,邢子坤,王建宏.基于动力学和可靠性的风力发电齿轮传动系统参数优化设计[J].机械工程学报,2008,44(7):24-31.
    [71] M. Inalpolat, A. Kahraman. Dynamic modeling of planetary gears of automatictransmission[J]. Proc. IMechE, Part K: J.Multi-body Dynamics,2008,222:229-242.
    [72] Heter,ED, Moore,MG. Factors affecting design and reliability of high performance gears inprocess compressor trains[J]. ASME Journal of Mechanical Design,1971,24(3):238-245.
    [73] Pahl,G. Reliability and state of development of large gear drives in power plants[J].Gas(Philadephia),1972,52(5):404-415.
    [74] Rao,S.S. Reliability analysis and design of epicyclic gear trains[J]. Journal of MechanicalDesign, Transactions of the ASME,1979,101(3):625-632.
    [75] Rao,S.S, Das,G. Reliability based optimum design of gear trains[J]. Journal of Mechanisms,Transmissions, and Automation in Design,1984,106(1):17-22.
    [76] Snesarev,G.A. Calculating the reliability of reduction gears[J]. Soviet engineering research,1982,2(8):41-43.
    [77]陈历祥.齿轮强度的可靠性设计方法[J].华中工学院学报,1982,10(3):121-130.
    [78] E.M AL-Shareedah, H Alawi. Reliability analysis of bevel gears with and with out backsupport[J]. Mechanism and Machine Theory,1987,22(1):13-20.
    [79] Savage,M, Brikmanis, C.K, Lewicki, D.G, et al. Life and reliability modeling of bevel gearreductions[J]. Journal of Mechanisms, Transmission, and Automation in Design,1988,110(2):189-196.
    [80]任凯春,申哲.复杂工况下齿轮接触强度可靠性设计研究[J].程度科技大学学报,1988,4(40):87-94.
    [81] Pan,T.S, Rao,S.S. Fault tree approach for the reliability analysis of gear trains[J]. Journal ofMechanisms, Transmissions, and Automation in Design,1988,110(3):348-353.
    [82]吴波.齿轮可靠性模型及其可靠度计算[J].齿轮,1988,12(6):11-15.
    [83] Vagin,N.S, Deulin,E.A, Usov,A.B. Design calculation of a hermetically sealed harmonicgear transmission and prediction of its reliability when working in vacuum[J]. SovietEngineering Research,1989,9(11):7-9.
    [84]胡水华,张子正.行星齿轮传动的系统可靠性仿真[J].武汉工学院学报,1990,12(3):17-26.
    [85] Walter, Fritz. Gear wheels quickly and reliably tested[J]. Werkstatt und Betried,1994,127(10):800-803.
    [86] Nagamura, Kazuteru, Terauchi, Yoshio, Martowibowo, Sigit, Yoewono. Study on gearbending fatigue strength design based on reliability engineering[J]. JSME InternationalJournal, Series C: Dynamics, Control, Robotics, Design and Manufacturing,1994,37(4):795-803.
    [87] Yang,Q.J. Fatigue test and reliability design of gears[J]. International Journal of Fatigue,1996,18(3):171-177.
    [88]陶晋,王小群,谈嘉祯.40Cr调质齿轮弯曲强度可靠性试验研究[J].北京科技大学学报,1997,19(5):482-484.
    [89] He,X. Oyadiji,S.O. Study of practical reliability estimation method for a gear reductionunit[C]. Proceedings of the IEEE International Conference on Systems, Man andCybernetics,1999,1:1948-1953.
    [90] J. J. Coy, D. P. Townsend and E. V. Zaretsky, Analysis of Dynamic Capacity ofLow-contact-ratio Spur Gears Using Lundberg-Palmgren Theory, NASA TN D-8029.
    [91] J. J. Coy, and E. V. Zaretsky, Life Analysis of Helical Gear Sets Using Lundberg-Palmgrentheory, NASA TN D-8045.
    [92] Q. J. Yang, Fatigue Test and Reliability Design of Gears, International Journal of Fatigue,1996, Vol.18, No.3.
    [93] M. Savage, C. A. Paridon and J. J. Coy, Reliability Model for Planetary Gear Train[J].National Aeronautics and Space Administration Cleveland oh Lewis Research Center,1982.
    [94] X. Q. Peng,Liu Geng, Wu Liyan, G. R. Liu and K. Y. Lam, A Stochastic Finite ElementMethod for Fatigue Reliability Analysis of Gear Teeth Subjected to Bending, ComputationalMechanics,1998, Vol.21.
    [95] Krol,I.A, Aronzon,A.N. The method of reliability estimation for a mechanism containingelectric drive connected to gear reducer[J]. Elektrotekhnika,2004,8:26-29.
    [96] Lv,Sh. Z, Liu H.N, Zhang D.W, et al. Reliability calculation model of gears consideringstrength degradation[C]. IE and EM2009-Proceedings2009IEEE16th InternationalConference on Industrial Engineering and Engineering Management,2009, Article number:5344467.
    [97] Syzrantseva K.V. Development of a method to calculate the strength reliability of toothgears based on the fatigue resistance when the teeth bend[J]. Journal of MachineryManufacture and Reliability,2009,38(6):552-556.
    [98]游世辉,曾德长,冯云华.用Taylor展开随机无网格点插值法分析齿轮的可靠性[J].机械设计与研究,2006,22(2):50-52.
    [99]胡青春,段福海,吴上生.封闭行星齿轮传动系统的可靠性研究[J].2007,18(2):146-149.
    [100]孙淑霞,孙志礼,李良巧,等.基于威布尔分布和极限状态理论的齿轮传动可靠性设计[J].设计与研究,2007,7(3):11-13.
    [101]吴上生,段福海,胡青春.系统参数配置对多级行星齿轮传动可靠性的影响[J].机械设计,2007,24(10):43-46.
    [102]秦大同,邢子坤,王建宏,等.基于动力学的风力发电齿轮传动系统可靠性评估[J].重庆大学学报,2007,30(12):1-6.
    [103] Utkin,V.S. Contact-strength estimates of the reliability of conical gears with limitedststistical information[J].2010,30(1):7-10.
    [104] Y. M. Zhang, Qiaoling Liu and Bangchun Wen, Pactical Reliability Based Design of GearPairs, Mechanism and Machine Theory,2003, Vol.38.
    [105] Guo Zhigang, Feng Yunwen, Hang Wei, et al. Reliability analysis of extending-retractinglock system of landing gear[C]. Progress in Safety Science and Technology Volume4:Proceedings of the2004International Symposium on Safety Science and Technology,2004,4:608-612.
    [106] Yang Zhou, Zhang Yimin, Zhang Xufang, et, al. Reliability-based sensitivity design of gearpairs with non-Gaussian random parameters[C]. Applied Mechanics and Materials,2012,121-126:3411-3418.
    [107] Li Chang, Zhao Guangbing, Han Xing. A method of reliability sensitivity analysis for geardrive system[C]. Applied Mechanics and Materials,2012,130-134:2311-2315.
    [108] Jin Xiangyang, Zhang Tiefeng, Zhao Lili, et al. research on the reliability of box for textbed[C]. Applied Mechanics and Materials,2012,121-126:1744-1748.
    [109]樊俊星,邓召义.航空齿轮传动的可靠性优化设计[J].上海大学学报m2001,7(3):205-208.
    [110]龚小平,仝崇楼,刘万俊,等.行星齿轮减速器可靠性优化设计[J].机械设计与制造,2001(5):1-2.
    [111] Albers Albert, Weiler Helge, Bangert Claudia, et al. Robustness and reliability analyses foroptimizing a planetary gear under realistic basic conditions[J]. VDI Berichte,2007,1984:213-224.
    [112]秦大同,古西国,王建宏,等.兆瓦级风力机齿轮传动系统动力学分析与优化[J].重庆大学学报,2009,32(4):408-414.
    [113]王安麟,蒋涛,昝鹏宇,等.大型行星齿轮系统可靠性设计的多目标优化[J].中国工程机械学报,2009,7(3):253-257.
    [114]陈器,常星.盾构机三级行星齿轮减速器可靠性优化设计[J].矿山机械,2010,38(24):27-30.
    [115] Mo Wenhui. Monte carlo simulation of reliability for gear[C]. Advanced Materials Research,2011,268-270:42-45.
    [116] Mo Wenhui. Reliability optimization design of gear box[C]. Advanced Materials Research,2011,284-286:2509-2512.
    [117] A.Kahraman,1993, Effect of axial vibrations on the dynamic of a helical gear pair, ASMEVibration and Acoustics,115(1),33-38.
    [118] H.Iida et al,1980, Coupled torsional-flexural vibration of a shaft in a geared system of rotor(1st report), Bull. JSME,23(186),2111-2118.
    [119] H.Iida et al,1985, Coupled torsional-flexural vibration of a shaft in a geared system (3rdreport), Bull. JSME,28(245),2694-2701.
    [120] Parker.R.G, Agashe V, Vijayakar S M. Dynamic response of a planetary gear system using afinite element/contact mechanics model[J]. Trans. ASME J. Mech. Ddsign,2000,122(3):304-310.
    [121]王世宇,张策,宋轶民,等.行星传动固有特性分析[J].中国机械工程,2005(16):1461-1465.
    [122]陈塑寰.随机参数结构的振动理论[M].吉林科学技术出版社,1992,12.
    [123]李杰.随机结构系统—分析与建模[M].科学出版社,1996,10.
    [124] Musial W, Butterfield S, Mcniff B. Improving wind turbine gearbox. European Wind EnergyConference[C]//Milan, Italy, NREL/CP-500-41548, May7-10,2007. Springfield: U.SDepartment of Commerce National Technical Information Service,2007.
    [125]朱才朝,黄泽好,唐倩,等.风力发电齿轮箱系统耦合非线性动态特性的研究[J].机械工程学报,2005,41(8):204-208.
    [126]王旭东,林腾蛟,李润方,等.风力发电机组齿轮系统内部动态激励和响应分析[J].机械设计与研究,2006,22(3):47-49.
    [127] Peeters, J. L. M, Sas, P. and Vandepitte, D.2006.“Analysis of internal drive train dynamicsin a wind turbine.”Wind Energy,2005,9:141–161.
    [128]蒋祥林,王春峰.基于贝叶斯原理的随机波动率模型分析及其应用[J].系统工程,2005,23(10):22-28.
    [129]李润方,王建军.齿轮系统动力学[M].科学出版社,1997,3.
    [130] Lambros Katafygiotis, Sai Hungcheung. Wedge simulation method for calculating thereliability of linear dynamical systems[J]. Probabilistic Engineering Mechanics,2004,19:229-238.
    [131] Lambros Katafygiotis, Sai Hungcheung. Domain decomposition method for calculating thefailure probability of linear dynamic systems subjected to Gaussian stochastic loads[J].Journal of Engineering Mechanics,2006,132(5):475-486.
    [132]刘佩,姚谦峰.基于概率简单叠加法则的动力可靠度高效计算方法[J].工程力学,2010,27(4):1-4.
    [133]乔红威,吕震宙,关爱锐,等.平稳随机激励下随机结构动力可靠性分析的多项式逼近法[J],工程力学,2009,26(2):60-64.
    [134] Lupoil A, Franchinl P, Schotanus M. Seismic Risk evaluation of RC bridge structures[J].Earthquake Engineering and Structural Dynamics,2003,32(8):1275-1290.
    [135] Franchin P. Reliability of uncertain inelastic structures under earthquake excitation[J].Journal of Engineering Mechanics,2004,130(2):180-191.
    [136] PEETERS J. L. M, SAS, P. and VANDEPITTE, D.“Analysis of internal drive traindynamics in a wind turbine.”Wind Energy,2005,9:1ake41–161.
    [137]徐灏.疲劳强度设计[M].北京:机械工业出版社,1983.
    [138] Lqnatishchev.R.M. Refinement of outlook at contact strength of gears and new potentialityof increase of their reliability[J]. Problemy Prochnosti i Nadezhnos’ti Mashin,1992,12:68-70.
    [139] J.N.Yang, M.D.Liu. Residual strength degradation model and theory of periodic proof testsfor traphite eposy laminates[J]. Journal of Composite Materials,1977,11(2):176-203.
    [140]刘善维.机械零件的可靠性优化设计[M].中国科学技术出版社,1993.10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700