歧口凹陷古近纪热流体活动及其对碎屑岩储层的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过普通薄片鉴定、阴极发光、流体包裹体测温、岩石地球化学、有机地球化学等技术手段对区内的第三系火成岩以及与之相接触的砂岩储层特别是深部储层进行了详细的研究和分析。歧口地区的第三系火成岩主要是一套由玄武岩-辉绿岩组成的基性岩浆岩,随着时间的推移,成分上逐渐富钠贫钾。在有辉绿岩侵入的层位中,粘土矿物中的高岭石和蒙皂石的含量明显的增大;但是在深部有热流体活动的储层中,粘土矿物则表现为高岭石和绿泥石同时增大,显示出深部富CO2流体和岩浆热液共同作用的特点。区内不管是浅部(<3500m)储层的基性岩浆热液活动还是深部(>3500m)的来自上地幔的富CO2热流体活动都明显的改善了储层的物性,提高了储层的质量。
The volcanic activities are very strong in Qikou and Beitang Sag since the Tertiary, so the volcanic rock is very developed in the sag, mainly with in shallow intrusions of diabase and other means output, and main composition of magma is CO2-rich volatile components. As early as the beginning of the 60s Dagang oil field had already started to study the volcanic reservoirs, After nearly half a century of exploration and development, they have found gs 7 well diabase oil reservoir, Zhang 7 contact metamorphic oil reservoir and kou 22 Well diabase volcanic oil reservoir in the region. Magmatic activities in this area can be seen have a very close relationship with the oil and gas accumulation. According to the use of petrography, geochemistry of volcanics, fluid inclusion and organic geochemical techniques, we mainly discussed the regional magmatic activities influence mechanisms and contributions on the reservoir physical properties, especially the deep reservoir physical properties.
     The Tertiary volcanic rocks of Qikou region is mainly a set of basalt - diabase series of basic volcanic and intrusive rocks. Horizontally, the Tertiary volcanic rocks is mainly in the junction of South Dagang buried hill tectonic belt and Zhang Dong fault belt , east of sanmu buried hill tectonic belt. Longitudinal direction, they are mainly distributed in 5 layer series, incuding Kongdian group, Shahejie group, Dongying group, Guantao group, Minghuangzhen group deposition etc.
     Through the study on geochemistry of volcanics, the volcanic rocks of the region show similar characteristics with Cenozoic volcanic rocks in the the eastern of our country, which are mainly enriched in lithophile elements and high field strength elements, not loss of Nb, Ta and other elements, show a clear OIB characteristics, while enrichment of Pb, showing interior rift basalts features. Mantle properties of Beitang sag may changed during the period of Es3-Es1, transforming from enriched mantle to depleted mantle. The chemical composition of volcanic rocks performs particularly, with the passage of time (Es3→Es1) , degree of alkaline of Tertiary volcanic rocks in the study area are more and more high, chemical composition is more and more rich in Na, poor in K.
     The rocks of the region is mainly composed by terrigenous clastic rock and Tertiary volcanic rocks, the particle size of terrigenous clastic rock is relatively coarse, manily with fine sandstone and medium sandstone. Diagenesis mainly contains compaction, pressure solution, cementation, replacement, alteration and dissolution. The sequence of diagenesises is: microcrystalline calcite→early quartz overgrowth→sparry calcite→authigenic sericite, authigenic muscovite, later quartz overgrowth→authigenic chlorite, alkali feldspar overgrowth→pore filling calcite. Diagenetic stage is maily at the A period of medium diagenesis. In Qikou Sag, the depth of transformation of diagenetic stage form the early diagenesis to medium diagenesis is 3351m
     Both the shallow basic magmatic activity (<3500m) and deep thermal activity (> 3500m) from the upper mantle which is rich in CO2 fluid both have significantly improved the physical properties of the reservoir, but their impact mechanism has a great difference. The shallow magmatic hydrothermal activity is mainly caused by the intrusion of Tertiary mafic magma, the content of smectite and kaolinite at the layer where igneous rock body in place are higher than its adjacent layers. Deep thermal fluids is a major supercritical fluid, which is produced by partial melting of magma coming from lower crust or even the upper mantle. This supercritical thermal fluid has not only very high heat, but also better connectivity, which greatly increased the formation temperature of this area, and caused hydrothermal warming effect, formed large areas of abnormal high pressure zone, improved the deep reservoir physical properties. At the same time, the chemical composition of this thermal fluids is not only rich in halogen element, Fe, Si, Cu, Pb, Au, W and other elements, but also rich in CO2, H2O and other volatile components, all of which have important influence for the production of secondary porosity and improving the deep reservoir properties.
引文
[1] Anderson.R.N., Sedimentary basins as thermochemical reactors.1990 and 1991,Report of lamont Doherty Geological Observatory.1993,65~76.
    [2] Burruss R C. Diagenetic palaeotemperatures from aqueous fluid inclusions: reequilibration of inclusions in carbonate cements by burial heating[J]. Min Mag, 1987,51:477-481.
    [3] B.R.T.Simoneit et.al.Thermal Alteration of Cretaceous Black Shale by Basaltic Intrusions in the Eastern Atiantic[J].Nature, 1978,273(5663):501-504.
    [4] Bachu, S., Gunter, W.D., Perkins, E.H. Aquifer disposal of CO2-hydrodynamic and mineral trapping[J]. Energy Conversion and Management 1994. 35:269–274.
    [5] Das, A., Krishnaswami, S., Sarin, M.M., Pande, K.Chemical weathering in the Krishna basin and Western Ghats of the Deccan Traps, India: rates of basalt weathering and their controls[J]. Geochimica et Cosmochimica Acta 2005.69 (8), 2067–2084.
    [6] Eric H. Oelkers, Sigurdur R. Gislason , Juerg Matter et al.Mineral Carbonation of CO2[J].Elements, 2008,4:333-337.
    [7] Gudbrandsson, S, Wolff-Boenisch, D, Gislason, S.R.et al Dissolution rates of crystalline basalt at Ph 4 and 10 and 25–75 degrees C[J]. Mineralogical Magazine 2008.72 (1), 155–158.
    [8]Hap,B.V.,J.Hardenbol and P.R.Vail,1987, Chronology of fluctuating sea levels since the Triassic (250 million years ago to present):Science, V.235,p.1156-1167.
    [9] Hofmann, AW, White, WM. Ba, Rb and Cs in the Earth's mantle[J]. Z.Naturforsch. 1983. 38a: 256–266.
    [10] Halliday, AN, Lee, DC, Tommasini, S, et al. Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle[J]. Earth Planet. 1995.133: 379–395.
    [11] H.T. Schaef , B.P. McGrail, A.T. Owen International Journal of Greenhouse Gas Control[J]. International Journal of Greenhouse Gas Control.2010.4.249-261.
    [12] I. Tonguc? Uysal , Miryam Glikson, Suzanne D. Golding, Frank Audsley,2000, The thermal history of the Bowen Basin, Queensland, Australia: vitrinite reflectance and clay mineralogy of LatePermian coal measures, Tectonophysics 323, p.105-129.
    [13] Juerg M. Matter, W.S. Broecker, M. Stute et al. Permanent Carbon Dioxide Storage into Basalt: The CarbFix Pilot Project, Iceland [J].Energy Procedia, 2009,1:3641-3646.
    [14] McGrail BP, Schaef HT, Ho AM et al Potential for carbon dioxide sequestration in flood basalts[J]. Journal of Geophysical Research.2006.111: B12201
    [15] Magoon L B, Dow W G. The petroleum system—from source to trap. AAPG Memoir, 1994, 60:3~24
    [16] NEIL S.Summer,AVNER AVALON 1995. Dike intrusion into unconsolidated sandstone and the development ofquartzite contact zones. Pergamon, Vol. 17, No.7.
    [17] O’Reilly S Y, The nature and role of fluid in the upper mantle.Evidences in xenoliths from Victoris,Austrilia[A],Mantle Xenoliths[C].John Wileyand Sons,1987.315~323.
    [18] Rogers, K.L., Neuhoff, P.S., Pedersen, A.K.et al. CO2 metasomatism in a basalt-hosted reservoir, Nuusuuaq, West Greenland[J]. Lithos 2006. 92, 55–82.
    [19] Song, S.-R, Jones, K.W., Lindquist, W.B.et al. Synchrotron X-ray computed microtomography: studies on vesiculated basaltic rocks[J]. Bulletin of Volcanology 2001. 63, 252–263.
    [20] Song, S.-R, Jones, K.W., Lindquist, W.B.et al. Synchrotron X-ray computed microtomography: studies on vesiculated basaltic rocks[J]. Bulletin of Volcanology 2001. 63, 252–263.
    [21] USDOE, 1988. Site Characterization Plan, Reference Repository Location, Hanford Site, Washington[R], Report Number Doe/Rw-0164. vol. 3, USDOE (Ed.), USDOE,Washington, DC, Web.
    [22] Worden.R H., Dawsonite cement in the Triassic Lam Formation, Shabwa basin, Yemen: A natural analogue for apotential mineral product of subsurface CO2 storage for greenhouse gas reduction[J ]. Marine and Petroleum Geology, 2006, 23:61-77.
    [23] W H Somerton,1992 Thermal properties and temperature-related behavior of rock/fluid systems [J ]. Developments in Petroleum Science, 1992,V.37 P.v-vi.
    [24] Wang Chiyuen,Xie Xiong. Hydrofracturing and episodic fluid flow in shale-rich basin-anumerical study.AAPG Bulletin.1998,82(10):1857~1869.
    [25] Wearver C D..1989.Clays.Muds and Shales,Elsevier Sci.Pub.Comp.,New York.417—449.
    [26] W.G.Dow.Kerogen Studies and Geological Interpretations[J].Geochem.Exploer, 1977,7(2):79-99.
    [27] Wolff-Boenisch, D., Gislason, S.R., Oelkers, E.H. The effect of crystallinity on dissolution rates and CO2 consumption capacity of silicates[J]. Geochimica et Cosmochimica Acta ,2006. 70 (4), 858.
    [28]薄冬梅,姜林,唐艳军等.热流体活动与油气成藏[J].西南石油大学学报,2007,29(5):39-41.
    [29]陈荣书,何生,王青玲等.岩浆活动对有机质成熟作用的影响初探[J].石油勘探与开发,1989,1: 31-37.
    [30]邓荣敬,徐备,漆家福等.北塘凹陷古近系沙河街组三段沉积特征及储层的影响因素[J].岩石矿物学杂志. 2006, 25(3): 231-235.
    [31]邓运华.歧口凹陷及邻区上第三系油气藏形成条件和勘探前景分析[J].中国海上油气(地质),1996,10(6): 356-357
    [32]杜栩,郑洪印,焦秀琼等.异高压力与油气分布.地学前缘,1995,(2)3:137~147.
    [33]杜乐天,戎嘉树,陈安福等.地幔岩中微粒合金和还原气体[J].科学通报,1995,40(9):1788~1790.
    [34]丁魏伟,戴金星,初凤友等.黄骅坳陷港西断裂带流体包裹体地球化学特征[J].岩石学报,2007,23(9): 2288-2293.
    [35]郭长敏,施振生等.歧口凹陷沙一段砂岩成岩作用及孔隙演化[J].岩性油气藏. 2009,21(1): 35-37.
    [36]高玉巧,刘立,曲希玉.海拉尔盆地乌尔逊凹陷片钠铝石及研究意义[J].地质科技情报. 2005, 24(2): 46-49.
    [37]高知云.黄骅坳陷第三系火山岩与油气研究[R].西安,西北大学,1997.
    [38]高知云.黄骅坳陷第三系隐伏火山岩及其形成的大地构造环境初探[J].岩石学报,1986,2(4): 14-15.
    [39]龚再生,李思田,谢泰俊等.南海北部大陆边缘盆地分析与油气聚集[M].北京:科学出版社,1997,1-500.
    [40]高玉巧,刘立等.岩浆侵入活动对砂岩的改造作用研究简介[J].地质科技情报,2003,22(2):14-15.
    [41]高波,陶明信,王万春等.深部热流体对油气成藏的影响[J].矿物岩石地球化学通报,2001,20(1):30~33.
    [42] G.V.奇林格,V.A.谢列布亚科夫等著.赵文智,柳广第,苗继军等译.异常地层压力成因与预测[M].北京:石油工业出版社,2004:1~11.
    [43]胡耀军.歧口凹陷上第三系油气藏形成[D].北京.:中国地质大学. 2002.
    [44]谯汉生,方朝亮,牛嘉玉.渤海湾盆地深层石油地质[M].北京:石油工业出版社,2002, 1~33.
    [45]金之钧,朱东亚,胡文瑄等.塔里木盆地热液活动地质地球化学特征及其对储层影响[J].地质学报,2006,80 (2): 250-252.
    [46]康仁华,刘魁元,钱峥等.罗家地区下第三系辉绿岩建造及成藏特征[J].特种油气藏,20007(2):8~16.
    [47]刘立,孙晓明,马锋.大港滩海区沙一段下部方解石脉的地球化学与包裹体特征以港67井为例[J].吉林大学学报(地球科学版). 2004, 34(1): 50-53.
    [48]刘从强,谢广轰,增田彰正.中国东部新生代玄武岩的地球化学——Ⅰ.主元素和微量元素组成:岩石成因及源区特征[J].地球化学,1995,24(1): 2-4.
    [49]刘从强,谢广轰,增田彰正.中国东部新生代玄武岩的地球化学——Ⅱ.Sr、Nd、Ce同位素组成:岩石成因及源区特征[J].地球化学,1995,24(3): 205-206.
    [50]李明诚.地壳中热流体的重要源泉[J].地学前缘,1995,2(4): 155-162.
    [51]刘建章,刘伟,王存武等.沉积盆地活动热流体类型及其石油地质意义[J].海洋石油,2004,3(8): 8-10.
    [52]刘德汉,肖贤明,田辉等.含油气盆地中流体包裹体类型及其地质意义[J].石油与天然气地质,2008,29(4):491~492.
    [53]卢焕章,范宏瑞,倪培等.流体包裹体[M].北京:科学出版社,2004,11-228.
    [54]柳广第,王德强.黄骅坳陷歧口凹陷深层异常压力特征[J].石油勘探与开发,2001,28 (3):23-24.
    [55]鲁雪松,宋岩,柳少波等.幔源CO2释出机理、脱气模式及成藏机制研究进展[J].地学前缘,2008,15 (6): 293-302.
    [56]李志鹄等.火山喷气热液的化学组成和铁在气液中的性状[J].地球与环境,1980,1: 1-13.
    [57]马昌前,廖群安.黄骅坳陷区火山岩形成、分布规律研究[R].武汉,中国地质大学武汉,2007.
    [58]曲希玉,刘立,马瑞等. CO2流体对岩屑长石砂岩改造作用的实验研究[J].吉林大学学报:地球科学版,2008,38(6): 959-964.
    [59]史双双.歧口凹陷主断裂系统形成演化及油气地质意义[D].武汉.:中国地质大学. 2009.
    [60]石广仁.蒙皂石向伊利石转化的溶解沉淀模型[J].石油学报,2006,27 (6): 47-49.
    [61]田克勤,于志海,冯明等.渤海湾盆地下第三系深层油气地质与勘探[M].北京:石油工业出版社,2000:121.
    [62]王子煜,漆家福,陆克政,2000.黄骅坳陷东部构造带新生代构造沉降史分析.石油与天然气地质,21(2):127-129,167.
    [63]王桦,白云风等.歧口凹陷古近纪东营期古物源体系重建与应用[J].地球科学. 2009, 34(3): 449-451.
    [64]王江.海拉尔盆地乌尔逊含氦CO2气藏勘探前景义[J].天然气工业. 2002, 22(4): 109-111.
    [65]王大锐.塔里木盆地中、上奥陶统烃源岩的碳同位素宏观证据[J].地质论评,2000,46(3): 329-332.
    [66]王兴谋,夏斌,陈根文等.中国东部地区新生代岩浆活动对区域型CO2形成时间的制约[J].大地构造与成矿学,2004,28(3): 341-343.
    [67]王开发,李宜垠,张惠之等. Alternariatenuis菌孢热模拟生烃试验研究Ⅰ[J].沉积学报,1996,14(4):32~33.
    [68]邬金华,余素玉,许仕策等.蒙皂石伊利石化反应机理和框架性行为模式[J].地质科学,1999,34 (4): 501-503.
    [69]王海云,李捷.东北含油气盆地储层次生孔隙形成机制[J].大庆石油学院学报,1998,22 (4): 6-7.
    [70]王衍琦,张绍平,应凤祥等.阴极发光显微镜在储层研究中的应用[M].北京:石油工业出版社,1995:55.
    [71]肖坤叶,邓荣敬,杨桦等.北塘凹陷新港探区新生代岩浆活动的石油地质意义[J].石油勘探与开发. 2004, 31(2): 26-27
    [72]许浚远,张凌云,杨东胜等.歧口凹陷构造演化[J].石油试验地质,1996,18(4): 349-351.
    [73]徐义刚.用玄武岩组成反演中-新生代华北岩石圈的演化[J].地学前缘,2006,13(2): 96-101.
    [74]徐义刚.岩石圈的热-机械侵蚀和化学侵蚀与岩石圈减薄[J].矿物岩石地球化学通报,1999,18(1):2-4.
    [75]徐同台,王行信,张有瑜等.中国含油气盆地粘土矿物[M].北京:石油工业出版社,2003:160~229.
    [76]谢习农,李思田,董伟良等.热流体活动示踪标志及其地质意义——以莺歌海盆地为例[J].地球科学,1999,24(2): 184-186.
    [77]谢习农,刘晓峰,赵士宝等.异常压力环境下流体活动及其油气运移通道分析[J].地球科学,2004,29(5):580-590.
    [78]谢习农,王其允,李思田等.沉积盆地泥质岩石饿水力破裂和幕式压实作用[J].科学通报,1997,42(20):2193-2194.
    [79]杨池银.黄骅坳陷二氧化碳成因研究[J].天然气地球科学,2004,15(1): 8-10.
    [80]姚益民,梁鸿德,蔡治国等.中国油气区第三系(Ⅳ)渤海湾盆地油气区分册(M)石油工业出版社,1994,1~87.
    [81]姚合法,林承焰,侯建国.苏北盆地粘土矿物转化模式与古地温[J].沉积学报,2004,22 (1): 31-32.
    [82]鄢全树.南海新生代碱性玄武岩的特征及其地球化学动力学意义[D].青岛.:国家海洋局第一海洋研究所. 2008.
    [83]张杰,邱楠生等.黄骅坳陷歧口凹陷热史和油气成藏史[J].石油天然气地质. 2005, 26(4): 506-509.
    [84]周立宏,吴永平等.黄骅坳陷第三系火成岩与油气关系探讨[J].石油学报. 2001, 21(6): 30-34.
    [85]赵华,张福利.黄骅坳陷歧口凹陷的油气勘探方向分析[J].胜利油田职工大学报,2008,22(2): 38-39
    [86]张辉煌.东北伊通-大屯和双辽地区晚中生代-新生代玄武岩地球化学特征:岩石圈演化和太平洋再循环洋壳与玄武岩的成因联系[D].广州.:中国科学院广州地球化学研究所. 2006.
    [87]张小莉,冯乔,查明等.惠民凹陷岩浆作用对碎屑岩储层的影响[J].地质学报,2008,82 (5): 659-661.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700