豚鼠定量吸香烟模型及低剂量哌替啶对吸烟所致肺气道反应的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     吸烟可以造成全身许多脏器的功能损害。我国拥有众多的香烟消费人群,香烟消费量亦十分惊人,然而目前对吸入香烟烟雾所致的肺气道反应及相关疾病的研究还远远不够,至今尚无合适的动物定量吸香烟模型。为了开展吸烟相关疾病和药物的基础研究工作,我们希望建立豚鼠自主呼吸条件下的定量吸香烟模型,以便在实验中能够客观地、准确地观察豚鼠定量吸入香烟烟雾后的肺气道反应,了解药物对动物吸入烟雾后肺气道反应的作用。
     肺气道中的传入感觉神经C-纤维在受到香烟烟雾刺激后,可通过轴突反射在局部释放速激肽(SP、NKA),还可通过传出的胆碱能神经,释放乙酰胆碱,从而引起气道平滑肌收缩、血管通透性增高、粘液分泌增加等肺气道神经源性反应及炎症反应。我们先期的离体支气管实验研究结果和国外文献报道认为,阿片受体激动剂可通过兴奋存在于气道胆碱能神经和感觉神经末梢突触前膜上的阿片受体(主要是μ-受体),抑制气道内神经末梢释放乙酰胆碱和速激肽。于是我们设想:在整体动物身上,阿片类药物是否也具有明显抑制肺气道兴奋性神经末梢兴奋反应的作用,从而产生抑制气道平滑肌收缩、抑制血管通透性增高的肺气道神经源性反应?如果阿片类药物在整体动物身上表现了这样的抑制性效应,那么是否与经典药理学专著中有关阿片受体激动剂可能引起气道
    
    一
    张力升高的作用相矛盾?我们认为,阿片受体激动剂在治疗剂量或较大剂量
    时,确实可通过促进肥大细胞释放组胺而引起气道张力升高;如果阿片类药物
    在很低剂量应用或在很小浓度时,可能不会产生上述作用,不但不会引起气道
    张力提高,反而可能通过兴奋神经突触前阿片受体,抑制气道神经末梢释放乙
    酞胆碱和速激肽,而产生抑制肺气道反应的作用。如果这个设想在整体动物实
    验中得到证明,是否产生一定的理论意义和实际意义。为此,我们在建立的豚
    鼠定量吸香烟模型的基础上,观察了低剂量阿片受体激动剂吸替睫对香烟烟雾
    刺激引起的肺气道神经源性反应(气道平滑肌收缩和血管通透性增高反应)的
    影响。
     目的
    1.建立豚鼠自主呼吸时的定量吸香烟模型;2.测定豚鼠急性定量吸烟后气道
    阻力和肺动态顺应性的变化;3.测定豚鼠吸烟后的肺血管通透性变化;4.初
    步观察低剂量阿片受体激动剂吸替陡对豚鼠急性定量吸烟引起的肺气道反应
     的抑制作用。
    材料和方法
     建立豚鼠定量吸烟装置,该装置要求在正常大气压条件下、最小呼吸无效
     腔条件下、动物在自主呼吸状态下可以吸入定量、定浓度的香烟烟雾。在此基
     础上,实验分三部分进行:
     1.测定豚鼠急性定量吸烟后肺机械功能的变化
     Hrtey豚鼠在麻醉状态下,经自制的吸烟装置,吸入浓度为75%的香烟
     烟雾(由4RI系列高尼古丁含量的标准研究用纸烟燃烧所产生的中段烟烟雾人
     控制吸烟次数为10次;在第一次吸烟前,经相同装置吸入不含烟雾的空气作
     为对照。利用计算机MedLab生物信号采集处理系统记录吸烟后气道流速、跨
     肺压和潮气量的变化情况,由此得到吸烟后气道阻力(RL)和肺动态顺应性
     (C dyndyn)的相应变化。在同一只豚鼠上采用自身前后对照方法观察定量急性吸
     2
    
    一
    烟前后 RL和 CdTh的变化。
    2.测定豚鼠急性定量吸烟后肺气道组织血管通透性变化
     在观察吸烟所致的肺气道组织血管通透性变化实验中,采用组间对照方
    法。豚鼠经吸烟装置吸入 75%浓度的香烟烟雾 60 ml;对照组吸入空气。测定
    吸烟后 15 min时,肺气道组织的四部分:胸腔内气管段、主支气管段、近端肺
    内气道段和远端肺内气道段中伊文思蓝的渗出量,以此反映肺气道组织吸烟后
    的血管通透性变化。
    3.观察低剂量呢替睫对急性吸烟反应的影响
     一部分豚鼠在吸烟前 10 min,经颈静脉分别依次给予 0.ling仕g和 ling/
    kg剂量的吸替陡,观察这两个剂量的腑替陡对吸烟后气道阻力和肺动态顺应性
    变化的影响。另一部分豚鼠在吸烟前 10 min,经颈静脉分别给予 0刀 1,0、1,l,
    10 mg/kg剂量的咙替陡,观察这些剂量的咙替陡对定量吸烟后肺气道组织各
    段血管通透性变化的影响。
     采用 Signa Stat软件包对结果进行统计处理。
     结果
     1.建立了豚鼠定量吸香烟装置
     建立的豚鼠自主呼吸定量吸香烟装置及测定系统有如下特点:①“双通道
     单向呼吸阀”的控制阀门很灵活,呼吸通路中的无效腔(死腔)很小(约 0.5 ml),
     可保证空气和烟雾能顺利地吸入肺中;②吸烟装置能保证在大气压条件下,豚
     鼠在自主呼吸状态下,定量地吸入浓度恒定的烟雾;③为了保证豚鼠在无约束
     下吸烟和呼吸,采用了国内没有报道的、用呼吸流速积分方法得到呼吸潮气量
     VT数据的实验方法;④使用标准研究用香烟,保证了豚鼠吸入的香烟烟雾成分
     恒定;⑤用MedLab生物信号采集处理系统,连续地、客观地记录动态定量数
     据;③该实验装置也可以用于其它小动物的香烟烟雾吸入实验;还可以用于其
     它烟雾吸入
INTRODUCTION
    Inhalation of cigarette smoke could cause damage to the function of many viscera. Numerous smokers and enormous consumption of cigarettes consist in our country, whereas it is quite insufficient in the study about the airway responses to smoke and related diseases. In order to develop the basal research of diseases and therapy drugs related with cigarette smoke, we desire to establish an animal model for quantitive cigarette smoking in guinea pigs. Thus, the pulmonary responses after cigarette smoke exposure and the potential effects of certain drugs can be observed impersonally in this way.
    Cigarette smoke exposure stimulates the afferent sensory nerve C-fibers in the airways, which not only cause the release of acetylcholine (Ach) from the cholinergic nerves by vagal reflex, but also induced the release of tachykinins (SP, NKA) from the C-fiber endings via axon reflex. Furthermore, neurogenic inflammation in the airways including airway smooth muscle constriction, enhanced vascular permeability and mucus secretion can be triggered by the neurotransmitters
    
    
    released. In previous study, we have demonstrated that treatment with pethidine, a u-opioid receptor agonist inhibits the release of Ach and tachykinin from nerve endings via presynapic stimulation of the opioid receptors on airway cholinergic nerve and sensory nerve endings. It is well documented in certain related studies. In view of the increasing evidence of inhibition of opioids on airway neurogenic inflammation in separate bronchus preparations, we consider that in the whole animal, whether opioids can also inhibit excitatory responses of airway nerves and exhibit the inhibition on airway smooth muscle constriction, increased vascular permeability. Is it paradoxical with the description in the authoritative pharmacological monograph about elevatory effect of opioids in therapy dose on airway smooth muscle tone? We hypothesis that opioids used in small dose or low concentration cannot boost airway smooth muscle tone, but inhibit airway smooth muscle constriction and the enhancement of vascular permeability caused by stimulation of airway sensory nerves. If the hypothesis is correct, it might be significative in theory and in practice. Therefore, based on the model established, we try to determine the effect of low dose pethidine on airway smooth muscle constriction and increased vascular permeability induced by cigarette smoke in guinea pigs.
    AIMS
    The present study aims to establish the animal model for quantitive cigarette smoking in guinea pigs and to observe the acute responses of airways to cigarette smoking. Further, we purpose to determine the effect of low dose pethidine on the cigarette smoke-induced airway smooth muscle constriction and the increased vascular permeability in guinea pigs.
    
    MATERRIALS AND METHODS
    The device for quantitive cigarette smoking was established which demanded to permit guinea pigs to inhale fixed volume and certain concentration smoke automatically in the condition of normal atmospheric pressure and the minimum dead space. On the basis of the establishment of the smoking-device, three series of experiments were carried out.
    1. Measurement of pulmonary mechanical function after acute cigarette smoke exposure
    Hartley guinea pigs were anesthetized. Then, 75 % cigarette smoke in the 60 ml smoke-container were delivered directly into the airways via the inspiratory line of smoking-device in 10 consecutive respirator cycles. Inhaled smoke was generated from the mid-portion of a lighted cigarette (4R1 series research cigarette of standard composition). The animals were exposed to air before the first inhalation of cigarette smoke as the control. A computer MedLab system recorded all physiological signals of transpulmonary pressure, respiratory flow and tidal volume continuously. Thereout total airway resistance and dynamic lung compliance were acquired. Self-control method was used to determine the variations of total airway resistance and dynamic lung compliance in this sec
引文
1. Repine J E, Bast A, Lankhorst I, The Oxidative Stress Study Group. Oxidative stress in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 1997, 156:341-357.
    2. World Health Report. World Health Organization, Geneva. 2000.
    3.高雪芹。吸烟与呼吸系统疾病。国外医学医学地理分册,1999,20(1):31-32。
    4.洪志刚,刘声远,王迪浔。PX营养合剂对豚鼠急、慢性吸烟致气道高反应的影响。中国病理生理杂志,1999,15(10):921-923。
    5. FU Zu-hong, Yang Zong-cheng, Liu Li, et al. The influence of N-acetyl-L-cysteine on pulmonary injury and oxygen stress after smoke inhalation injury. Chin J Burns, 2002, 18: 152-154.
    6. Hong J L, Rodger I W, Lee L Y. Cigarette smoke-induced bronchoconstriction: cholinergic mechanisms, tachykinins, and cyclooxygenase products. J Appl Physiol, 1995, 78(6): 2260-2266.
    7.杨秋火。实验动物呼吸力学。见:周汉良,陈季强主编《呼吸药理学与治疗学》。北京:人民卫生出版社。1999:38-51。
    8. Rogers D F, Boschetto P, Barnes P J. Plasma exudation: correlation between
    
    Evans blue dye and radiolabelled albumin in guinea pig airways in vivo. J Pharmacol Methods, 1989, 21: 309-315.
    9. Hong J L, Rodger I W, Lee L Y. Cigarette smoke-induced bronchoconstriction: cholinergic mechanisms, tachykinins, and cyclooxygenase products. J Appl Physiol, 1995, 78(6): 2260-2266.
    10. Barnese P J. Neurogenic inflammation in the airways. Respir Physiol, 2001, 125(1-2):145-154.
    11. Spina D. Airway nerves: neurotransmitter release. Curr Opin Pharmacol, 2002, 2(3): 283-285.
    12. Matsumoto K, Aizawa H, Shigyo M, et al. Role of tachykinins in airway narrowing induced by cigarette smoke in guinea pigs. Environ Toxicol Pharmacol, 1996a, 1: 227-233.
    13. Rogers D F. Motor control of airway goblet cells and glands. Respir Physicl, 2001, 125(1-2): 129-144.
    14.方理本,翁莉霞。哌替啶对豚鼠气道神经功能的影响。现代应用药学,1995,12(4):6-8。
    15. Pype J L, Dupont L J, Demedts M G, et al. Opioids modulate the cholinergic contraction but not the nonadrenergic relaxation in guinea-pig airways in vitro. Eur Respir J, 1996, 9: 2280-2285.
    16. Reisine T, Pasternak G. Opioid analgesics and antagonists. In:Hardman JG, Limbird LE (eds): Goodman & Gilman's, Ninth Edition, The Pharmacological Basis of Therapeutics. New York: McGraw-Hill Press, 1996: 521-555.
    17. Fang L B, Morton R F, Wang A L, et al. Bronchoconstriction and delayed rapid shallow breathing induced by cigarette smoke inhalation in anesthetized rats. Lung, 1991, 169(3): 153-164.
    18. Wu Z X, Lee L Y. Airway hyperresponsiveness induced by chronic exposure to cigarette smoke in guinea pigs: role of tachykinins. J Appl Physiol, 1999, 87:
    
    1621-1628.
    19. Lei Y H, Barnes P J, Rogers D F. Mechanisms and modulation of airway plasma exudation after direct inhalation of cigarette smoke. Am J Respir Crit Care Med, 1995, 151: 1752-1762.
    20. Daoui S, Ahnaou A, Naline E. Tachykinin NK(3) receptor agonists induced microvascular leakage hypersensitivity in the guinea-pig airways. Eur J Pharmacol, 2001, 433(2-3): 199-207.
    21. WEI Er-qing, Bian Ru-lian. Vascular permeability induced by histamine aerosol, capsaicin, and electric stimulation of vagus nerves in guinea pigs. Acta pharmacol sin, 1992, 13(4): 312-314.
    22. Lee L Y, Lou Y P, Hong J L, et al. Cigarette smoke-induced bronchoconstriction and release of tachykinins in guinea pig lungs. Respir Physiol, 1995, 99: 173-181.
    23. Matsumoto K, Aizawa H, Inoue H et al. Effect of dimethylthiourea, a hydroxyl radical scavenger, on cigarette smoke-induced bronchoconstriction in guinea pigs. Eur J Pharmacol, 2000, 403(1-2): 157-161.
    24. Hong J L, Lee L Y. Cigarette smoke-induced bronchoconstriction: causative agents and role of thromboxane receptors. J Appl Physiol, 1995, 81(5): 2053-2059.
    25. Hong J L, Rodger I W, Lee L Y. Cigarette smoke-induced bronchoconstriction: cholinergic mechanisms, tachykinins, and cyclooxygenase products. J Appl Physiol, 1995, 78(6): 2260-2266.
    26. Shi Z, Yan Z, Luo W. Antigen-induced airway leakage in asthmatic guinea-pigs and the effects of BRL 55834. Zhonghua Jie He He Hu Xi Za Zhi, 1998, 21(4):229-232.
    27. Lei Y H, Barnes P J, Rogers D F. Involvement of hydroxyl radicals in neurogenic airway plasma exudation and bronchoconstriction in guinea-pigs in
    
    vivo. Br J Pharmacol, 1996, 117(3): 449-454.
    28.张小滨,王向涛,李沙,侯新朴。伊文思蓝脂质体的制备及小鼠体内的分布。北京大学学报(医学版),2002,34(4):362-364。
    29.Lei Y H, Rogers D F. Effects and interactions of opioids on plasma exudation induced by cigarette smoke in guinea pig bronchi. Am J Physiol, 1999, 276 (Lung Cell. Mol. Physiol. 20): L391-L397.
    30.颜光美。镇痛药。见:金有豫主编《药理学》(第五版)。北京:人民卫生出版社。2001:135-136。
    31. Lindstrom E G, Andersson R G G. Morphine modulates contractile responses and neurokinin A-LI release elicited by electrical field stimulation or capsaicin in a guinea pig bronchial-tube preparation. Am J Respir Crit Care Med, 1995, 151:1175-1179.
    32. Auberson S, Lacroix J S, Kordestani R K, et al. Prejunctional control of pH 6-induced bronchoconstriction by NK1, NK2, mu-opioid, alpha2-adrenoceptor and glucocorticoid receptors in guinea-pig isolated perfused lung. J Pharm Pharmacol, 1998, 50(8): 899-905.
    33. Zappi L, Nicosia F, Rocchi D, et al. Opioid agonists modulate release of neurotransmitters in bovine trachealis muscle. Anesthesiology, 1995, 83(3): 543-551.
    34. Villar M T A, Dowl L, Coggon D, et al. The influence of increased bronchial responsiveness, atopy and serum IgE on decline in FEV_1. Am J Respir Crit Care Med, 1995, 151:656-660.
    35. Murray A B, Morrison B J. The decrease in severity of asthma in children of parents who smoke since the parents have been exposing them to less cigarette smoke. J Allergy Clin Immunol, 1993, 91(1 Pt 1): 102-110.
    36. Groneberg D A, Fischer A. Endogenous opioids as mediators of asthma. Pulm Pharmacol Ther, 2001, 14: 383-389.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700