用户名: 密码: 验证码:
老采空区残余沉降非线性预测理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
老采空区上方兴建建(构)筑物作为一项行之有效的采矿塌陷地利用措施,兼具增加建设用地、恢复地物景观、改善矿区生态环境等优点,在采矿塌陷地治理中有着广阔的应用前景。本文在收集、分析老采空区地表沉陷资料的基础上,采用非线性理论,系统研究了老采空区时空变形规律、预测方法及预测参数体系,构建了老采空区上方建筑地基稳定性评价模型,为老采空区上方建筑利用提供了必要的技术支持。主要成果如下:
     (1)提出了地表动态沉降的全过程预测模型,并将其与概率积分法相结合,建立了采动区地表任意点在任意时刻沿任意方向的移动变形预测模型。分析了老采空区残余沉降持续时间、残余沉降量与地质采矿条件之间的关系。研究表明,基岩厚度越大、工作面推进速度越小,则残余沉降量越大、残余沉降持续时间越长。
     (2)研究并建立了老采空区概率积分法动态参数体系。统计分析表明,采动程度越高,残余下沉系数和残余主要影响角正切越小;基岩采厚比越大,时间参数越小,下沉系数和主要影响角正切的变化过程越缓慢。
     (3)提出了概率积分法参数辨识的多尺度核偏最小二乘回归方法(multi-scale KPLS),为缺乏实测资料的矿区求取概率积分法参数提供了一种新的方法。建立了概率积分法修正模型,实例分析表明,该模型较好地解决了下沉曲线和水平移动曲线在边界附近收敛过快的问题。
     (4)开展了老采空区残余沉降时变特征的多尺度分析。分析表明,老采空区残余沉降具有明显的周期性,各变化周期表现出一定的阶段性;同一采空区中,不同测点有相等或近似相等的显著变化周期和持续时间。
     (5)针对老采空区残余沉降序列具有随机波动性的特点,建立了老采空区残余沉降预测的WT-SVM、GM-Markov和DGM(2,2)模型,分别适用于观测序列长度l≥20、10≤l<20和6≤l<10等情况下的残余沉降预测,其预测步长不宜超过l/5步、4步和2步。
     (6)提出了导水裂缝带高度预测的模糊支持向量机模型(FSVM),以导水裂缝带高度不能与建筑物荷载扰动深度相重叠进行荷载作用下的老采空区稳定性评价;建立了老采空区稳定性的模糊可拓评价模型。实例分析表明,上述两种评价方法与基于概率积分法修正模型的老采空区残余沉降预测相结合应用于老采空区稳定性评价是可行、有效的。
     该论文有图66幅,表47个,参考文献202篇。
Building on the old goaf, an effective measure to reclaim subsidence land induced by mining, will be widely applied for treating the subsidence land ascribing for these advantages, such as increasing available construction ground, resuming the scenery of old goaf surface, improving the environment of the mining area, and so on. On the basis of collecting and analyzing the field data of surface subsidence and using non-linear theories, the law of spatio-temporal deformation, prediction methods and parameters system were studied systemically and the evaluation model of foundation stability of old goaf buildings was constructed, which would provide the indispensable technology support for construction utilization above the old goaf. The main results are as follows:
     (1) Integrated prediction model of surface dynamic subsidence was proposed in this dissertation, and combining with probability-integral method, another prediction model was presented to calculate the movement and deformation of arbitrary point in mining area in any direction and at any time. The relationship was analyzed between geological mining conditions and the duration time and value of residual subsidence. The results show that the duration and the value of residual subsidence increase with increasing the thickness of rock strata and decreasing the advance speed of the working face.
     (2) Dynamic parameters system of probability-integral method was established. Statistical analysis shows that residual subsidence coefficient and the main influential angle tangent decrease with increasing the mining degree, and the time parameter decreases with increasing the ratio of rock strata and mining thickness and the movement process of subsidence coefficient and the main influential angle tangent become slower.
     (3) A novel method named multi-scale kernel partial least-squares regression (multi-scale KPLS) was proposed to identify parameters of the probability-integral method in mining area lacking of filed data, at the same time, amended probability-integral method was put forward in this dissertation, which effectively solved the problems of quick convergence on the edge of subsidence and horizontal movement curves.
     (4) Multiple scales analysis on time variational character of old goaf residual subsidence was carried out. It has been found that residual subsidence of the old goaf presents obvious periodicity, and each cycle shows certain characteristics; in the same goaf, there are equal or approximately equal notable periodicity and duration time in different observation points.
     (5) Aiming at the character of random fluctuation of residual subsidence sequence of old goaf, three prediction models of it were presented in this dissertation, including wavelet support vector machines (WT-SVM), grey Markov prediction model (GM-Markov) and discrete grey model of 2 order 2 variables (DGM(2,2)), which was applicable to predict the length of observation sequence l conforming to the requirements of l≥20, 10≤l<20 and 6≤l<10 respectively. Meanwhile, the corresponding prediction step should limit within l/5, 4 and 2 respectively.
     (6) Height prediction of water fractured zone based on fuzzy SVM was brought forward. According to the prediction value, stability of the old goaf could be concluded by the criterion, namely, the old goaf is steady if the influential depth does not reach the water fractured zone. Moreover, stability evaluation of old goaf based on fuzzy extension model was proposed to estimate whether the old goaf was suitable for buildings or not. A case study was given in this dissertation and the results indicated that the two methods mentioned above and residual subsidence prediction based on amended probability-integral method could be adopted to evaluate the old goaf stability effectively.
     There are 66 figures, 47 tables and 202 references in this dissertation.
引文
[1]钱鸣高.煤炭的科学开采[J].煤炭学报,2010,35(4):529–534.
    [2]郭力方.“十二五”煤炭发展雏形初现[N].中国能源报,2010–11–05(5).
    [3]李连济.我国煤炭城市采空塌陷灾害及防治对策研究[R].太原:山西省社科院,2004.
    [4]郭广礼.老采空区上方建筑地基变形机理及其控制[M].徐州:中国矿业大学出版社,2001.
    [5]颜荣贵.地基开采沉陷及其地表建筑[M].北京:冶金工业出版社,1995.
    [6]童立元,刘松玉,邱钰.高速公路下伏采空区危害性评价与处治技术[M].南京:东南大学出版社,2006.
    [7] Jung H C,Kim S W,Jung H S,et al. Satellite observation of coal mining subsidence by persistent scatterer analysis[J]. Engineering Geology,2007,92:1–13.
    [8] Gueguen Y,Deffontaines B,Fruneau B,et al. Monitoring residual mining subsidence of Nord/Pas–de–Calais coal basin from differential and Persistent Scatterer Interferometry(Northern France)[J]. Journal of Applied Geophysics,2009,69:24–34.
    [9] Herrera G,Tomas R,Lopez–Sanchez J M,et al. Advanced DInSAR analysis on mining areas:La Union case study(Murcia,SE Spain)[J]. Engineering Geology,2007,90:148–159.
    [10] O Connor K M,Murphy E W. TDR monitoring as a component of subsidence risk assessment over abandoned mines[J]. International Journal Rock Mechanics & Mining Science,1997,34(3–4),paper No. 230.
    [11] Chrzanowski A,Monahan C,Roulston B. Integrated monitoring and modelling of ground subsidence in potash mines[J]. International Journal Rock Mechanics & Mining Science,1997,34(3–4),paper No. 55.
    [12] Davies P,Fryer J. Photogrammetric monitoring of deformation caused by mine subsidence[J]. Australian Survey,1995,40(1):5–9.
    [13] Singh K B,Singh T N. Ground movements over longwall workings in the Kamptee coalfield,India[J]. Engineering Geology,1998,50:125–139.
    [14] Goulty N R,Al–Rawahy S Y S. Reappraisal of time–dependent subsidence due to longwall coal mining[J]. Quarterly Journal of Engineering Geology,1996,29(l):83–91.
    [15] Yao X L,Reddish D J. Analysis of residual subsidence movements in the UK coalfields[J]. Quarterly Journal of Engineering Geology and Hydrogeology,1994,27(1):15–23.
    [16] Yao X L,Reddish D J. Discussion on analysis of residual subsidence movements in the UK coalfields[J]. Quarterly Journal of Engineering Geology and Hydrogeology,1994,27(4):383–385.
    [17] Donnelly L J,Culshaw M G,Bell F G. Longwall mining–induced fault reactivation and delayed subsidence ground movement in British coalfields[J]. Quarterly Journal of Engineering Geology and Hydrogeology,2008,41(3):301–314.
    [18] Donnelly L J. A review of international cases of fault reactivation during mining subsidence and fluidabstraction[J]. Quarterly Journal of Engineering Geology and Hydrogeology,2009,42(1):73–94.
    [19] Huck P J,Chugh Y P,Jennings M. Subsidence control in abandoned coal mines:US practices[C]// Chugh Y P. Ground Control in Room and Pillar Mining. Society of Mining Engineers of AIME,1982:151–154.
    [20] Yavuz H. An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of longwall coal mines[J]. International Journal of Rock Mechanics & Mining Sciences,2004,41:193–205.
    [21] Kim K D,Lee S,Oh H J. Assessment of ground subsidence hazard near an abandoned underground coal mine using GIS[J]. Environmental Geology,2006,50:1183–1191.
    [22] Statham I,Treharne G. Subsidence due to abandoned mining in the South Wales coalfield,UK:Causes,mechanisms and environmental risk assessment[C]// Proceedings of the Fourth International Symposium on Land Subsidence. Paris:IAHS Press,1991:143–152.
    [23] Al Heib M,Nicolas M,Noirel J F. Residual subsidence analysis after the end of coalmine work,Example from Lorraine colliery,France[C]// Colloque International Post–Mining 2005,2005:1–9.
    [24] Palchi V. Influence of physical characteristics of weak rock mass on height of caved zone over abandoned subsurface coal mines[J]. Environmental Geology,2002,42:92–101.
    [25] Kies A,Storoni A,Tosheva Z. Radon measurements as a monitoring possibility for mining subsidence occurrence[J]. Journal of Mining Science,2006,42(5):518–522.
    [26] Soni A K,Singh K K K,Prakash A. Shallow cover over coal mining:A case study of subsidence at Kamptee colliery,Nagpur,India[J]. Bulletin of Engineering Geology and the Environment,2007,66:311–318.
    [27]袁礼明.条带开采岩层移动机理及地表移动计算的研究[D].北京:中国矿业大学,1985.
    [28]谭志祥,卫建清,邓喀中,等.房式开采地表沉陷规律实测研究[J].焦作工学院学报,2003,(4):255–258.
    [29]谭志祥,钱晓虎,邓喀中,等.条带开采地表沉陷规律实测研究[J].矿山压力与顶板管理,2004,(1):80–82.
    [30]郭文兵,邓喀中,邹友峰.条带开采的非线性理论研究与应用[M].徐州:中国矿业大学出版社,2005.
    [31]谭志祥,邓喀中.建筑物下采煤理论与实践[M].徐州:中国矿业大学出版社,2009.
    [32]郭广礼,邓喀中,谭志祥,等.深部老采区残余沉降预计方法及其应用[J].辽宁工程技术大学学报(自然科学版),2002,21(1):1–3.
    [33]陈晓斌,张家生,安关峰,等.高速公路采空区地面变形计算方法[J].岩土工程学报,2007,29(2):191–197.
    [34]胡海峰,赵阳升,康建荣,等.煤矿采空区跨度和延续时间与地面残余变形的相关规律及实证[J].岩石力学与工程学报,2008,27(1):65–71.
    [35]康建荣,赵阳升.停采后覆岩及地表下沉率随时间变化实验分析[J].辽宁工程技术大学学报,2005,24(3):324–326.
    [36]郭高川,段瑞,杜建伟.采空区残余地表移动变形对建筑物影响的探讨[J].煤炭工程,2008,(5):72–74.
    [37]李仁民,刘松玉,方磊.高速公路下伏多层采空区地表沉陷的预计评价方法[J].东南大学学报(自然科学版),2002,32(4):648–652.
    [38]余学义.采动区地表剩余变形对高等级公路影响预计分析[J].西安公路交通大学学报,2001,21(4):9–12.
    [39]杨治林.采空区上方建筑物地基附近的地表沉陷[J].煤田地质与勘探,2007,35(2):49–51.
    [40]张宏贞,邓喀中,谭志祥.老采空区残余移动变形分区研究[J].矿山压力与顶板管理,2005,(2):32–34.
    [41]常江.老采空区上方建筑物地基稳定性的研究[J].西安矿业学院学报,1995,15(1):29–33.
    [42]汪吉林,丁陈建,张云,等.老采空区地基变形对地面建筑影响的数值分析[J].采矿与安全工程学报,2008,25(4):476–480.
    [43]白志辉,李亮,陈冉丽,等.老采空区上方地基稳定性及残余变形规律研究[J].煤矿开采,2009,14(2):39–41.
    [44]王生俊,贾学民,韩文峰,等.高速公路下伏采空区剩余沉降量FLAC3D计算方法[J].岩石力学与工程学报,2005,24(19):3545–3550.
    [45]孙雅洁,孙占法,张永波.荷载作用下老采空区上方地表移动变形规律的数值模拟研究[J].华北科技学院学报,2006,3(2):9–11.
    [46]张文泉,卢玉华,宫红月,等.老空区上方地面沉降与建筑物稳定性分析评价[J].山东矿业学院学报(自然科学版),1999,18(3):13–15.
    [47] Shahriar K,Amoushahi S,Arabzadeh M. Prediction of surface subsidence due to inclined very shallow coal seam mining using FDM[C]// Coal 2009:Coal Operators Conference. University of Wollongong & the Australasian Institute of Mining and Metallurgy,2009,130–139.
    [48]鲍莱斯基M.岩体力学[M].于振海,刘天泉译.北京:煤炭工业出版社,1985.
    [49]崔希民,缪协兴,赵英利,等.论地表移动过程的时间函数[J].煤炭学报,1999,24(5):453–456.
    [50]彭小沾,崔希民,臧永强.时间函数与地表动态移动变形规律[J].北京科技大学学报,2004,26(4):341–344.
    [51]刘义生,方君实,王家臣.地表动态下沉过程实测分析与预测研究[J].矿山压力与顶板管理,2002,(2):94–96.
    [52]李德海.覆岩岩性对地表移动过程时间影响参数的影响[J].岩石力学与工程学报,2004,23(22):3780–3784.
    [53]常占强,王金庄.关于地表点下沉时间函数的研究——改进的克诺特时间函数[J].岩石力学与工程学报,2003,22(9):1496–1499.
    [54]徐洪钟,李雪红.基于Logistic增长模型的地表下沉时间函数[J].岩土力学,2005,26(增):151–153.
    [55]刘玉成,曹树刚,刘延保.可描述地表沉陷动态过程的时间函数模型探讨[J].岩土力学,2010,31(3):925–931.
    [56]穆满根.采空区地表移动变形的时间影响参数[J].中国地质灾害与防治学报,2009,20(3):56–58,62.
    [57]张宏贞,邓喀中,刘洪义.老采空区残余下沉系数的神经网络模型研究[J].采矿与安全工程学报,2009,26(3):322–326.
    [58]张安兵.动态变形监测数据混沌特性分析及预测模型研究[D].徐州:中国矿业大学,2009.
    [59]童立元,赖远明,刘松玉,等.高速公路下伏多层倾斜采空区危害性评价数值模拟[J].工程地质学报,2007,15(1):114–118.
    [60]武崇福,刘东彦,方志.FLAC3D在采空区稳定性分析中的应用[J].河南理工大学学报(自然科学版),2007,26(2):136–140.
    [61]曹君陟,刘立民,黄修东.采空区地基稳定性有限元模拟[J].煤矿开采,2005,10(1):3–5.
    [62]骆念海,邓喀中,郭广礼,等.老采空区地基稳定性的有限元模拟研究[J].山东煤炭科技,1999,(增):40–42.
    [63]曾晟,孙冰,刘解兰,等.锡矿山五窿道老采空区建筑地基稳定性数值模拟分析[J].矿冶工程,2009,29(1):18–22.
    [64]邱贤德,黄木坤,王心飞,等.数值计算在采空区稳定性评价中的应用[J].矿山压力与顶板管理,2002,(4):105–107,110.
    [65]李培现,谭志祥,王磊,等.FLAC在老采空区地基稳定性评价中的应用研究[J].煤矿开采,2009,(10):11–14.
    [66]王树仁,张海清,慎乃齐,等.下伏采空区桥隧工程变形及受力响应特征分析[J].岩石力学与工程学报,2009,28(6):1144–1151.
    [67]罗周全,刘晓明,吴亚斌,等.基于Surpac和Phase2耦合的采空区稳定性模拟分析[J].辽宁工程技术大学学报(自然科学版),2008,27(4):485–488.
    [68]王秀格,乔兰,孙歆硕.地下采空区上输电塔基稳定性的数值模拟[J].金属矿山,2008,(3):110–113,143.
    [69]张向东,张淑坤,杨奎清.高速公路与下伏采空区相互作用分析[J].科学技术与工程,2008,8(2):436–440.
    [70]汪吉林,吴圣林,丁陈建,等.复杂地貌多煤层采空区的稳定性评价[J].煤炭学报,2009,34(4):466–471.
    [71]滕永海,张俊英.老采空区地基稳定性评价[J].煤炭学报,1997,22(5):504–508.
    [72]张俊英.地表新增荷载对采空区上方覆岩的影响规律[J].煤炭学报,2008,33(2):166–170.
    [73]张永波.老采空区建筑地基稳定性及其变形破坏规律的研究[D].太原:太原理工大学,2005.
    [74]马金荣,刘辉,季翔,等.煤矿废弃采空区建筑场地稳定性研究[J].建筑科学,2006,22(4):21–24.
    [75]王永申,姜升,杨凌,等.煤矿采空区建筑地基应考虑的一些基本条件[J].矿山测量,2006,(2):75–78.
    [76]王明立,胡炳南,赵有星.采煤沉陷区工程建筑物地基的稳定性分析[J].煤炭科学技术,2006,34(3):72–75.
    [77]吴侃,王悦汉,邓喀中.采空区上覆岩层移动破坏动态力学模型的应用[J].中国矿业大学学报,2000,29(1):34–36.
    [78]张长敏,祁丽华,慎乃齐.采空区建筑地基稳定性评价研究[J].湖南科技大学学报(自然科学版),2006,21(4):47–50.
    [79]王志学,王永岩,李剑光.采空区悬顶岩梁模型的蠕变分析[J].辽宁工程技术大学学报,2007,26(增):83–85.
    [80]贺广零,洪芳,王艳苹.采空区煤柱-顶板系统失稳的力学分析[J].建筑科学与工程学报,2007,24(1):31–36.
    [81]张俊英.采空区地表建筑地基稳定性模糊综合评价方法[J].北京科技大学学报,2009,31(11):1368–1372.
    [82]韩科明,李凤明.采煤沉陷区稳定性综合评价指标体系的建立[J].中国矿业,2008,17(9):42–45.
    [83]汪吉林,姜波.煤矿采空区稳定性的模糊综合评判[J].矿山压力与顶板管理,2005,(2):29–31,34.
    [84]徐必根,王春来,唐绍辉.大体积采空区岩体结构面聚类分布特征研究[J].工程地质学报,2008,16(5):639–644.
    [85]杨扬,冯乃琦,余珍友.层次分析和隶属函数在采空区稳定性评价中的应用[J].矿冶工程,2008,28(5):23–26.
    [86]戴兰芳,苏胜昔,李文秀.采空区地表建筑物基础稳定性的Fuzzy测度分析[J].岩土力学,2004,25(11):1791–1794.
    [87]蒋卫东,李夕兵,胡柳青.基于灰色定权聚类的采空区上部地表稳定性分析[J].矿冶工程,2002,22(4):15–17.
    [88]谢盛青.基于层次分析法采空区稳定性影响因素权重分析[J].中国钼业,2009,33(4):34–37.
    [89]李爱兵,尹彦波.支持向量机对采空区稳定时间的预计[J].岩土力学,2005,6(增):231–234.
    [90]丁陈建,汪吉林.神经网络法的采空区地基稳定性评价[J].采矿与安全工程学报,2009,26(2):208–211.
    [91]余学义,赵兵朝,李瑞斌.采动区公路路基和路面的协同作用模型[J].长安大学学报(自然科学版),2008,28(4):35–38.
    [92] Bell F G,de Bruyn I A. Subsidence problems due to abandoned pillar workings in coal seams[J]. Bulletin of Engineering Geology and the Environment,1999,57:225–237.
    [93] Singh K B,Dhar B B. Sinkhole subsidence due to mining[J]. Geotechnical and Geological Engineering,1997,15(4),327–341.
    [94] Bekendam R F,Pottgens J J. Ground movements over the coal mines of southern Limburg,The Netherlands,and their relation to rising mine waters[C]// Proceedings of the Fifth International Symposium on Land Subsidence. Paris:IAHS Press,1995:3–12.
    [95] Price D G. Strategies to assess the hazards presented by abandoned room and pillar mines[C]// Proceedings of the Fifth International Symposium on Land Subsidence. Paris:IAHS Press,1995:101–106.
    [96] Gerolymatou E,Nova R. An analysis of chamber filling effects on the remediation of flooded gypsum and anhydrite mines[J]. Rock Mechanics and Rock Engineering,2008,41(3):403–419.
    [97] Deb D,Choi S O. Analysis of sinkhole occurrences over abandoned mines using fuzzy reasoning:A case study[J]. Geotechnical and Geological Engineering,2006,24:1243–1258.
    [98] Karfakis M G. Chimney subsidence over abandoned coal mines[J]. International Journal of Mining and Geological Engineering,1987,5:131–141.
    [99] Marino G G,Gamble W. Mine subsidence damage from room and pillar mining in Illinois[J]. International Journal of Mining and Geological Engineering,1986,4,129–150.
    [100] Singh K B. Pot–hole subsidence in Son–Mahanadi master coal basin[J]. Engineering Geology,2007,89:88–97.
    [101] Szwedzicki T. Pre–and post–failure ground behaviour:Case studies of surface crown pillar collapse[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36:351–359.
    [102] Palchik V. Prediction of hollows in abandoned underground workings at shallow depth[J]. Geotechnical and Geological Engineering,2000,18:39–51.
    [103] Bell F G,Bullock S E T,Halbich T F J,et al. Environmental impacts associated with an abandoned mine in the Witbank coalfield,South Africa[J]. International Journal of Coal Geology,2001,45:195–216.
    [104]刘秉正,彭建华.非线性动力学[M].北京:高等教育出版社,2004.
    [105]朱旺喜.非线性科学在矿山灾害及控制研究中的应用——国家自然科学基金矿业学科资助项目分析[J].岩石力学与工程学报,2007,26(1):211–214.
    [106] Cristianini N,Shawe–Taylor J. An introduction to support vector machines and other kernel–based learning methods[M],Cambridge:Cambridge University Press,2000.
    [107] VAPNIK V N.统计学习理论的本质[M].张学工,译.北京:清华大学出版社,2000:128–130.
    [108]苗夺谦,李道国.粗糙集理论、算法与应用[M].北京:清华大学出版社,2008.
    [109]宋晓秋.模糊数学原理与方法[M].徐州:中国矿业大学出版社,1999.
    [110] Glover F. Tabu search–Part I[J]. Operations Research Society of America Journal on Computing,1989,1(3):190–206.
    [111] Glover F. Tabu sarch–Part II[J]. Operations Research Society of America Journal on Computing,1990,2(1):4–32.
    [112] Holland J. Adaptation in natural and artificial systems[M]. Michigan:The University of Michigan Press,1975.
    [113] Kennedy J,Eberhart R C. Particle swarm optimization[C]// Proceedings IEEE International Conference on Neural Networks,IV. Piscataway,NJ:IEEE Service Center,1995,1942–1948.
    [114] Dorigo R,Raniezzo S,Colorni A. Ant system:Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems,Man and Cybernetics,Part B,1996,26(1):29–41.
    [115]刘思锋,党耀国,方志耕.灰色系统理论及其应用(3版)[M].北京:科学出版社,2005.
    [116]蔡文,杨春燕,林伟初.拓工程方法[M].北京:科学出版社,1997.
    [117]魏诺,周恩毅.线性科学与非线性科学哲学思想研究[J].西安建筑科技大学学报(社会科学版),2008,27(3):60–63.
    [118]冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000.
    [119]谢和平.分形-岩石力学导论[M].北京:科学出版社,1996.
    [120]于广明.矿山开采沉陷的非线性理论与实践[M].北京:煤炭工业出版社,1998.
    [121]陈红江,李夕兵,高科.突变级数法在采空区塌陷预测中的应用[J].安全与环境学报,2008,8(6):108–111.
    [122]秦玉金,马丕梁.邻近层卸压带高度神经网络预测模型的研究[J].煤炭科学技术,2006,34(7):81–85.
    [123]郭文兵,邓喀中,邹友峰.概率积分法预计参数选取的神经网络模型[J].中国矿业大学学报,2004,33(3):322–326.
    [124]张仪萍,俞亚南,张土乔.时变参数灰色沉降预测模型及其应用[J].浙江大学学报(工学版),2002,36(4):357–360.
    [125]张庆松,高延法,刘松玉,等.基于粗集与神经网络相结合的岩移影响因素分析与开采沉陷预计方法研究[J].煤炭学报,2004,29(1):22–25.
    [126]张文艺,钟梅英,蔡建安,等.岩性与覆岩破坏高度关系的模糊聚类分析[J].陕西煤炭,2001,(1):37–38,21
    [127]刘立民,刘汉龙,陈爱道,等.建筑物塌陷损坏评价的物元模型及其应用[J].防灾减灾工程学报,2003,23(2):94–99.
    [128]邓九英,杜启亮,毛宗源,等.基于粗糙集与支持向量机的分类算法[J].华南理工大学学报(自然科学版),2008,36(5):123–127.
    [129]刘衡秋,刘钦甫,孟召.模糊综合评判在煤层顶板稳定性评价中的应用[J].煤田地质与勘探,2002,30(4):18–20.
    [130]谭志祥.采动区建筑物地基、基础和结构协同作用理论与应用研究[D].徐州:中国矿业大学,2004.
    [131]苏国韶,冯夏庭.基于粒子群优化算法的高地应力条件下硬岩本构模型的参数辨识[J].岩石力学与工程学报,2005,24(17):3029–3034.
    [132]于广明,谢和平,孙洪泉,等.矿山开采沉陷的非线性机制和规律研究[J].中国科学基金,1999,(1):28–30.
    [133]何国清,杨伦,凌赓娣,等.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1991.
    [134]邹友峰,邓喀中,马伟民.矿山开采沉陷工程[M].徐州:中国矿业大学出版社,2003.
    [135]余学义,党天虎,潘宏宇,等.采动地表动态沉陷的流变特性[J].西安科技学院学报,2003,23(2):131–134.
    [136]黄乐亭,王金庄.地表动态沉陷变形规律与计算方法研究[J].中国矿业大学学报,2008,37(2):211–215.
    [137]中华人民共和国国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[S].北京:煤炭工业出版社,2000.
    [138]邢黎峰,孙明高,王元军.生物生长的Richards模型[J].生物数学学报,1998,13(3):348–353.
    [139]李凤日,吴俊民,鲁胜利.Richards函数与Schnute生长模型的比较[J].东北林业大学学报,1993,21(4):15–24.
    [140] Kennedy J,Eberhart R C. Particle swarm optimization[C]// Proceedings IEEE International Conference on Neural Networks,IV. Piscataway,NJ:IEEE Service Center,1995:1942–1948.
    [141] Shi Y H,Eberhart R C. A modified particle swarm optimizer[C]// Proceedings of the IEEE International Conference on Evolutionary Computation. Piscataway:IEEE Press,1998:69–73.
    [142] Parsopoulos K E,Vrahatis M N. Recent approaches to global optimization problems through particle swarm optimization[J]. Natural Computing,2002,(1):235–306.
    [143] Angeline PJ. Evolutionary optimization versus particle swarm optimization :Philosophy and performance differences[C]// Proceedings of the 7th Annual Conference on Evolutionary Programming. Berlin:Springer–Verlag,1998:601–610.
    [144]李金凤,杨启贵,徐卫亚.基于改进粒子群算法CHPSO-DS的面板坝堆石体力学参数反演[J].岩石力学与工程学报,2008,27(6):1229–1235.
    [145] Reynolds R G. An introduction to cultural algorithms[C]// Proceedings of the Third Annual Conference on Evolutionary Programming. New Jersey:World Scientific,1994:131–139.
    [146] Jin X,Reynolds R G. Using knowledge–based evolutionary computation to solve nonlinear constraint optimization problems : A cultural algorithm approach[C]// Proceedings of the 1999 Congress on Evolutionary Computation. Washington DC:IEEE Press,1999:1672–1678.
    [147]阳春华,谷丽姗,桂卫华.自适应变异的粒子群优化算法[J].计算机工程,2008,34(16):188–190.
    [148]高尚,杨静宇.混沌粒子群优化算法研究[J].模式识别与人工智能,2006,19(2):266–270.
    [149]宁必锋,褚国娟,马春丽,等.一种改进的混合粒子群优化算法[J].渤海大学学报(自然科学版),2010,31(1):37–43.
    [150]刘怀亮,高鹰,许若宁,等.一种新的改进粒子群优化方法[J].计算机工程与应用,2010,46(12):38–41.
    [151]胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861–868.
    [152] Eberhart RC,Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]// Proceedings of the 2000 Congress on Evolutionary Computation. Piscataway:IEEE,2000:84–88.
    [153] Clerc M,Kennedy J. The particle swarm:Explosion stability and convergence in a multi–dimensional complex space[J]. IEEE Transactions on Evolution Computer,2002,6(1):58–73.
    [154]柯晶,钱积新,乔谊正.一种改进粒子群优化算法.电路与系统学报,2003,8(5):87–91.
    [155]刘大海,李宁,晁阳.SPSS15.0统计分析[M].北京:清华大学出版社,2008.
    [156]胡青峰,崔希民,李春意,等.基于Broyden算法的概率积分法预计参数求取方法研究[J].湖南科技大学学报(自然科学版),2009,24(1):5–8.
    [157]查剑锋,贾新果,郭广礼.概率积分法求参初值选取的均匀设计方法[J].金属矿山,2006,(11):27–29.
    [158]吴侃,葛家新,王铃丁,等.开采沉陷预计一体化方法[M].徐州:中国矿业大学出版社,1998.
    [159]李培现,谭志祥,闫丽丽,等.基于支持向量机的概率积分法参数计算方法[J].煤炭学报,2010,35(8):1247–1251.
    [160]王惠文,吴载斌,孟洁.偏最小二乘回归的线性与非线性方法[M].北京:国防工业出版社,2006.
    [161]马莎,姜彤,黄志全,等.岩体变形模量偏最小二乘回归与神经网络关联性研究[J].岩石力学与工程学报,2004,23(22):3770–3774.
    [162] Rosipal R,Trejo L J. Kernel partial least squares regression in reproducing kernel Hilbert space[J]. Journal of Machine Learning Research,2002,2:97–123.
    [163] Bennett K P,Embrechts M J. An optimization perspective on kernel partial least squares regression[C]// Suykens J A K,Horvath G,Basu S,et al. Advances in Learning Theory:Methods,Models and Applications. Amsterdam:IOS Press,2003:227–250.
    [164]汪洪桥,孙富春,蔡艳宁,等.多核学习方法[J].自动化学报,2010,36(8):1037–1050.
    [165] Sonnenburg S,Ratsch G,Schafer C,et al. Large scale multiple kernel learning[J]. Journal of Machine Learning Research,2006,7:1531–1565.
    [166] Gonen M,Alpaydin E. Localized multiple kernel learning[C]// Proceedings of the 25th International Conference on Machine Learning,2008:352–359.
    [167] Rakotomamonjy A,Canu S. Frames,reproducing kernels,regularization and learning[J]. Journal of Machine Learning Research,2005,6:1485–1515.
    [168] Ozogur–Akyuz S,Weber G W. Learning with infinitely many kernels via semi–infinite programming[C]// Proceedings of the EURO Mini Conference on Continuous Optimization and Knowledge Based Technologies. Neringa:Vilnius Gediminas Technical University Publishing House,2008:342–348.
    [169]郭创新,朱承治,张琳,等.应用多分类多核学习支持向量机的变压器故障诊断方法[J].中国电机工程学报,2010,30(13):128–134.
    [170] Subrahmanya N,Shin Y C. Sparse multiple kernel learning for signal processing applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(5):788–798.
    [171] Pozdnoukhov A,Kanevski M. Multi–scale support vector regression for hot spot detection and modeling[J]. Stochastic Environmental Research and Risk Assessment,2007,22(5):647–660.
    [172]吴涛.核函数的性质、方法及其在障碍检测中的应用[D].长沙:国防科学技术大学,2003.
    [173] Witten I H,Frank E. Data mining:Practical machine learning tools and techniques[2nd Edition][M]. San Fransisco:Morgan Kaufmann Publishers,2005.
    [174]孙延奎.小波分析及其应用[M].北京:机械工业出版社,2005.
    [175] Torrence C,Gilbert P C. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society,1998,79(1):61–78.
    [176] Farge M. Wavelet transforms and their applications to turbulence[J]. Annual Reviews of Fluid Mechanics,1992,24:395–457.
    [177] Gilman D L,Fuglister F J,Mitchell Jr J M. On the power spectrum of“red noise”[J]. Journal of the Atmospheric Science,1963,20:182–184.
    [178] Mallat S. A theory for multi resolution signal decomposition:The wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674–693.
    [179]赵雪花,黄强,吴建华.基于灰色马尔可夫链的径流序列模式挖掘[J].武汉大学学报(工学版),2008,41(1):1–4.
    [180]谭冠军.GM(1,1)模型的背景值构造方法和应用[J].系统工程理论与实践,2000,20(5):98–103.
    [181]罗党,刘思峰,党耀国.灰色模型GM(1,1)优化[J].中国工程科学,2003,5(8):50–53.
    [182]王正新,党耀国,刘思峰.基于离散指数函数优化的GM(1,1)模型[J].系统工程理论与实践,2008,38(2):61–67.
    [183]张怡,魏勇,熊常伟.灰色模型GM(1,1)的一种新优化方法[J].系统工程理论与实践,2007,27(4):141–146.
    [184]张大海,江世芳,史开泉.灰色预测公式的理论缺陷及改进[J].系统工程理论与实践,2002,8(2):140–142.
    [185] Liu Bin,Liu Sifeng,Zhai Zhenjie,et al. Optimum time response sequence for GM(1,1)[J]. Chinese Journal of Management Science,2003,11(4):54–57.
    [186]谢乃明.灰色系统建模技术研究[D].南京:南京航空航天大学,2008.
    [187]姚天祥,刘思峰,党耀国.初始值优化的离散灰色预测模型[J].系统工程与电子技术,2009,31(10):2394–2398.
    [188]任奋华,蔡美峰,来兴平,等.采空区覆岩破坏高度监测分析[J].北京科技大学学报,2004,26(2):115–117.
    [189]孙亚军,徐智敏,董青红.小浪底水库下采煤导水裂隙发育监测与模拟研究[J].岩石力学与工程学报,2009,28(2):238–245.
    [190]马亚杰,李建民,郭立稳,等.基于ANN的煤层顶板导水断裂带高度预测[J].煤炭学报,2007,32(9):926–929.
    [191]孙云普,王云飞,郑晓娟.基于遗传-支持向量机法的煤层顶板导水断裂带高度的分析[J].煤炭学报,2009,34(12):1610–1615.
    [192] Lin C,Wang S. Fuzzy support vector machines[J]. IEEE Transactions on Neural Networks,2002,13(2):464–471.
    [193]杜树新,吴铁军.回归型加权支持向量机方法及其应用[J].浙江大学学报(工学版),2004,38(3):302–306.
    [194]康永华.采煤方法变革对导水裂缝带发育规律的影响[J].煤炭学报,1998,23(3):262–266.
    [195]程金泉.导水裂隙带发育高度研究[J].煤炭科技,2002,(3):5–6.
    [196]谈小龙,徐卫亚,梁桂兰.可拓方法在岩石边坡整体安全评价中的应用[J].岩石力学与工程学报,2009,28(12):2503–2509.
    [197]张瑞钢,钱家忠,马雷,等.可拓识别方法在矿井突水水源判别中的应用[J].煤炭学报,2009,34(1):37–42.
    [198]金洪波,张世文,黄元仿.可拓理论在矿区土地破坏程度评价中的应用[J].岩土力学,2010,31(9):2704–2710.
    [199]郭德勇,郑茂杰,郭超.煤与瓦斯突出预测可拓聚类方法及应用[J].煤炭学报,2009,34(6):783–787.
    [200]中华人民共和国建设部.GB50007–2002建筑地基基础设计规范[S].北京:中国建筑工业出版社,2002.
    [201]中华人民共和国建设部.GB50009–2001建筑结构荷载规范[S].北京:中国建筑工业出版社,2002.
    [202]中华人民共和国建设部.GB 50021–2001岩土工程勘察规范[S].北京:中国建筑工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700