锥头弹丸正撞击下金属靶板破坏模式的理论和数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对刚性锥头弹丸侵彻延性金属靶板的问题进行了较全面的理论研究和数值模拟。分析了不同模式下的破坏现象与破坏机理,建立了适用于不同破坏模式的侵彻模型,成功预测了弹道极限、侵彻耗能和残余速度。研究了不同破坏模式的转化关系,提出了一个适用于不同锥角的刚性弹丸撞击延性金属靶板的靶板破坏模式相图。利用ABAQUS的二次开发模块VUMAT,嵌入了含损伤的JC本构程序,并成功用于不同锥角弹丸正撞击金属靶板的数值模拟。本文的研究和结论可以用于弹丸几何尺寸的优化设计,也可以用来进行防护结构的安全计算(设计)和安全评估。本文的主要内容包括一下几个方面:
     系统地研究了锥头弹丸撞击下金属靶板的扩孔破坏。假定会属薄靶板的变形由整体变形和局部变形两部分构成,局部变形分析采用采用准静态的柱形空穴膨胀理论结合构造的考虑靶板背面自由表面效应的柱形空穴膨胀理论的修正函数,给出了靶板对弹丸阻力的表达式,从而计算出局部变形耗能。整体变形的分析采用Wen-Jones模型的近似准静态方法,认为靶板的受力达到靶板的极限载荷后才发生整体变形,靶板的整体变形满足一定的载荷一位移关系,从而计算出整体耗能。通过推导给出了薄靶板的临界穿透耗能公式和弹道极限公式。然后讨论了模型的适用范围,根据靶板是否发生整体变形给出了一个区分薄靶和厚靶的判断条件。对于厚靶的穿透,假定靶板只发生局部变形,改进了的Wen的有关侵彻力的半经验公式,静阻力部分由准静态空穴膨胀结合自由表面修正效应函数给出,动阻力部分与弹丸的瞬时速度有关,结合运动方程给出了弹丸的残余速度和靶板的弹道极限公式。公式的预测结果与实验数据非常吻合。
     建立了锥头弹丸撞击下靶板发生冲塞破坏的理论模型。对Wen-Jones模型进行了扩展,考虑了弹头压入阶段消耗的能量,分析了带有总体变形的薄靶的冲塞破坏。对于厚靶的冲塞破坏,只考虑局部变形的影响。首先,研究了平头弹丸正撞击下金属靶板的绝热剪切冲塞破坏,在考虑了一个热粘塑性本构的基础上修正了Bai-Johnson模型,得到了穿透能量、弹丸残余速度和弹道极限的计算公式,并与文献中的相关实验结果进行了比较。并结合Wen-Jones模型研究了带有整体变形的局部简单剪切破坏向局部化的绝热剪切冲塞破坏的临界转化条件。然后将建立的平头弹丸的绝热剪切冲塞破坏模型推广到锥头弹丸的绝热剪切冲塞破坏。
     对于锥头弹丸撞击下厚靶的冲塞破坏分为两种情况:两阶段模型和三阶段模型。两阶段模型包括压入阶段和绝热冲塞阶段:三阶段模型包括压入阶段、侵彻阶段和绝热冲塞阶段,压入阶段和侵彻阶段与厚靶的扩孔过程类似,靶体材料对弹丸的阻力通过空穴膨胀理论给出,绝热冲塞阶段计算了绝热剪切耗能,经过推导给出了求解靶板的弹道极限公式,并与实验结果进行了对比。
     讨论了破坏模式产生影响的几种因素,着重分析了弹丸正撞击下弹头的几何形状、材料的力学性能和靶板的几何参数等对金属靶板破坏模式产生的影响。结合实验现象介绍了不同的破坏模式,研究了不同破坏模式之间发生转化的条件,通过理论分析得出了对应条件下的破坏模式发生转换的临界锥角,最终给出了不同厚度靶板在不同锥角刚性弹丸正撞击下的破坏模式相图。
     利用ABAQUS/VUMAT嵌入了含损伤的JC本构,对平头弹丸侵彻金属靶板进行了数值模拟,分析了不同网格密度对计算结果的影响,与实验结果进行了对比,发现数值计算很好的模拟出了靶板弹道极限随厚度变化曲线的弯折现象(kink),而且弹道极限的计算结果与实验结果符合很好,验证了开发的VUMAT的可靠性。然后用开发的VUMAT对不同锥角的弹丸撞击不同厚度金属靶板的破坏过程进行了计算,模拟结果表明:随着弹丸锥角的增加,有限厚度靶板的破坏模式由扩孔转化到冲塞破坏,靶板的抗弹能力随之降低。对弹丸的运动和侵彻过程中受力等进行了分析,发现弹丸侵彻过程中可能与靶板发生多次碰撞,并与理论分析进行了比较和讨论。
A combined numerical and theoretical study is presented in this thesis to examine the penetration and perforation of ductile metal plates subjected to impact by conical-nosed projectiles.Failure modes of metal plates under normal impact by conical-nosed projectiles are discussed,and for different failure modes corresponding theoretical models are established to predict ballistic limits of the plates,residual velocities of the projectiles and perforation energies.Based on the analysis of critical conditions for the transition of different failure modes,a simplified failure (mechanism) diagram for metallic plates under normal impact by conical-nosed projectiles is proposed.Numerical simulations with ABAQUS/VUMAT in which a modified JC constitutive relation with damage is adopted are performed to study the influence of various parameters on the perforation behaviour of metal plates.The findings and conclusions of the investigations conducted in the thesis are helpful for the design of kenietic energy projectiles,protective structures and safety assessment. This paper mainly consists of the following parts:
     Analytical equations for the perforation of fully-clamped thin metallic plates are derived based on the assumption that plate deformation consists of local piercing as well as global response.Local piercing is analyzed by using quasi-static cylindrical cavity expansion theory with free surface effects whilst global deformation is evaluated by adopting the method employed in the Wen-Jones model.Simple analytical equations are obtained to predict the perforation energy and the ballistic limits.Furthermore,the range of applicability of the model is discussed and a criterion for differentiating a thin plate from a thick target is proposed by comparing the collapse load with the maximum local piercing load.For thick plates,based on the assumption that the deformation is localized and that the impact energy is dissipated only by penetration,Modified Wen's semi-empirical equation is applied to the perforation of thick metallic plates,It is further assumed that the mean pressure offered by the target materials to resist the projectiles consists of two parts:a quasi-static part due to the elastic-plastic deformation of the target materials and a dynamic part due to penetration velocity.Equations are obtained for the residual velocity and ballistic limit.It transpires that the present model predictions are in good agreement with available experimental data for metallic plates struck normally by conical-nosed projectiles.
     The plugging failure of metallic plates struck normally by a rigid conically-nosed projectile is studied in detail.A modified Bai-Johnson model is suggested herein for the adiabatic shear plugging of a ductile metal plate struck transversely by a flat-ended projectile based on the theories of adiabatic shear instability and thermo-viscoplastic constitutive relationship of ductile metals.By assuming that at post-instability the plate continues to deform the total energy absorbed in the adiabatic shear plugging is analyzed and an expression for the ballistic limit is derived. Furthermore,a critical condition is obtained for differentiating localized adiabatic shear plugging from simple shear plugging failure with global deformations by comparing the model suggested in this paper and the Wen-Jones model.It transpires that the present theoretical predictions are in good agreement with available experimental data in terms of the ballistic limits,perforation energies,residual velocities and the critical transition condition for the modes of plugging failure of ductile metal plates subjected to impact by flat-nosed missiles.
     For the plugging failure of thick metallic plates struck by rigid conical-nosed projectiles,two theoretical models are suggested depending on the perforation process. There are two cases for the perforaton process,viz.(1) indentation of conical nose, followed by adiabatic plugging formation;(2) indentation of conical nose,penetration (ductile hole enlargement) and then followed by final adiabatic shear plugging. Equations are obtained for residual velocity and ballistic limit for both cases and are compared with available experiments.It is shown tha the present model predictions are in good agreement with the available experimental results
     The effects of projectile nose shape,properties of plate material,and ratio of plate thickness to projectile diameter on the failure modes are discussed.Based on the analysis of critical conditions for the transition between ductile hole enlargement (piercing) and plugging failure,a simplified failure(mechanism) diagram for the perforation of metallic plates subjected to impact by conical-nosed projectiles at normal incidence is proposed.
     Numerical simulations with ABAQUS/VUMAT into which a modified JC constitutive relation with damage is incorporated are performed to study the perforaion and penetration of metallic plates struck normally by flat-ended and conical-nose projectiles.Transient deformation and perforation process are obtained. It is shown that with increasing target thickness,target deformation becomes more and more localized and that the present numerical model is capable of reproducing the experimental observations including the "kink" effect.It is also shown that projectile cone angle has significant effect on the perforation modes of ductile metal plates and that for smaller cone angles plates fail by piercing or ductile hole growth and for larger cone angles plates fail by shear plugging or ductile hole enlargement plus shear plugging depending upon the ratio of plate thickness to projectile diameter.Numerical results are found to be in good agreement with available test data for the perforation of steel plates struck normally by flat-ended projectiles.
引文
[1]Johnson W.Impact Strength of Materials.London:Edward Arnold,1972.
    [2]Backman ME,Goldsmith W.The mechanics of penetration of projectiles into targets,Int J Engng Sci 1978;16:1-99.
    [3]Corbett GG,Reid SR,Johnson W.Impact loading of plates and shells by free-flying projectiles.Int J hnpact Eng 1996;18:144-230.
    [4]Bulson PS.Explosive Loading of Engineering Structures.London:Chapman & Hall 1997:141-161.
    [5]Goldsmith W.Non-ideal projectile impact on targets,Int J hnpact Eng 1999;22:95-395.
    [6]Ben-Dor G,Dubinsky A,Elperin T.Ballistic impact:recent advances in analytical modeling of plate penetration dynamics- a review.Applied Mechanics Reviews 2005;58:355-371.
    [7]钱伟长。穿甲力学。北京:国防工业出版社,1984。
    [8]赵国志。穿甲工程力学。北京:兵器工业出版社,1992。
    [9]王礼立,余同希,李永池。冲击动力学进展。合肥:中国科学技术大学出版社,1992。
    [10]胡时胜。材料动力学讲义。中国科技大学五系,2002。
    [11]张国伟。终点效应及其应用技术。北京:国防工业出版社,2006。
    [12]Mescall JF.In structural mechanics computer programs.Pilkey W,Saczalski S and Schaeffer H(editors).Virginia:University of Virginia Press,1974.
    [13]Meyers MA,Murr LE.Shock Waves and High-strain-rate Phenomena in Metals.Concepts and Applications.New York and London:Plenum Press,1981.
    [14]Robins B.New Principles of Gunnery(Mathematical Tracts of the late Benjamin Robins).London:Nourse,1761.
    [15]Robertson HP.Terminal Ballistics.National Research Council 1941,Washington.
    [16]Poncelet JV.Cours de mecanique industrielle,Paris,1829/1835.
    [17]Bahsforth F.Motion of Projectile,Asher,London,1873.
    [18]Heli(?) F.Trait(?) de balistique(?)xperimentale,vol.1(avec la collaboration de M.Hugoniot)(1st ed.1864) Paris:Gauthier-Villars,1884.
    [19]刘修骥。坦克系统设计。北京:国防工业出版社,1988。
    [20]Gwaltney RC.Missile generation and protection in light-water-cooled power reaction plants.USA,Tennessee,Oak Ridge National Laboratory,Report ORNL-USTC-22,1968.
    [21]Ohte S,Yoshizawa H,Chiba N,Shida S,Impact strength of steel plates by projectiles Bull.JSME 1982 25.206 1226-1231.
    [22]U.S.Army Ballistic Research Laboratories.A penetration equations handbook.(Joint technical coordination group),Aberdeen Proving Ground,Maryland,1977.
    [23]NDRC.Effects of impact and explosion.Washington D C,National Deffence Research Committee,Vol.1,Summarry Technical Report of Division 2,1946.
    [24]Neilson AJ.Empirical equations for the perforation of mild steel plates.Int.J.Impact Eng,1985;3:137-142.
    [25]Jowett J,The effects of missile impact on thin metal structures.UKAEA Safety and Reliability Directorate Report 1986,No.S.R.D378.
    [26]Wen HM,Jones N.In:Bulson PS,editor.Semi-empirical equations for the perforation of plates struck by a mass,Structure Under Shock and Impact (SUSI)Ⅱ,Computational Mechanics Publications,1992:369-380.
    [27]Corbett GG,Reid SR.Quasi-static and dynamic local loading of monolithic simply-supported steel plate.Int J Impact Eng,1993;13(3):423-441.
    [28]Gupta N K.Normal impact of ogive nosed projectiles on thin plates.Int J Impact Eng 2001;25:641-660.
    [29]Wen HM.Predicting the penetration and perforation of FRP laminates struck normally by projectiles with different nose shapes.Compos Struct 2000;49(3):321-329.
    [30]Wen HM.Penetration and perforation of thick FRP laminates.Compos Sci Technol 2001;61(8):1163-1172.
    [31]Reid SR,Wen HM.Perforation of FRP laminates and sandwich panels subjected to missile impact.Impact Behaviour of Fibre-Reinforced Composite Materials and Structures,Reid SR and Zhou G (eds),Woodhead Publishing Limited,Cambridge,2000.
    [32]Wen HM.Predicting the penetration and perforation of targets struck by projectiles at normal incidence.Mech Struct Mach 2002;30(4):543-577.
    [33]Taylor,Gl.The formation and enlargement of a circular hole in a thin plastic sheet.Quart J Mech Appl Math 1948;1:103-124.
    [34]Frieberger W.A problem in dynamic plasticity:the enlargement of a circular hole in a flat sheet.Proc Camb Phil Soc 1952;48:135-148.
    [35]Kumari S.The finite expansion of a circular in an infinite plate:a dynamic solution.Int J Mech Sci 1975;17:23-29.
    [36]Thompson WT.An approximate theory of armor penetration.J Appl Phys 1955;V26.
    [37]Woodward R.L.The penetration of metal targets by conical projectiles.Int J Mech Sci 1978;20:349-359.
    [38]Recht RF,Ipson TW.Ballistic perforation dynamics.J Appl Mech,1963;30:385-391.
    [39]Zaid M,Paul B.Mechanics of high speed projectile perforation.J Franklin Inst 1957;264:117-126.
    [40]Calder C A,Goldsmith W.Plastic deformation and perforation of thin plates resulting from projectile impact.Int J Solids Struct 1971;7:863-881.
    [41]Landkof B,Goldsmith W.Petalling of thin,metallic plates during penetration by cylindro-conical projectiles.Int J Solids Struct 1985;21:245-266.
    [42]Wierzbicki,T.Petalling of plates under explosive and impact loading.Int J Impact Eng 1999;22(9):935-954.
    [43]Lee YW,Wierzbicki T.Fracture prediction of thin plates under localized impiusive loading.Part Ⅱ:discing and petalling.Int J Impact Eng 2005;31:1277-1308.
    [44]Atkins AG,Khan MA,Liu,JH.Necking and radial cracking around perforation in thin sheets at normal incidence.Int J Impact Eng 1998;21(7):521-539.
    [45]Woodward RL.The interrelation of failure modes observed in the penetration of metallic targets.Int J Impact Eng 1984;2:121-9.
    [46]Woodward RL.A structural model for thin plate perforation by normal impact of blunt projectile.Int J Impact Eng 1987;6(2):129-140.
    [47]Woodward RL,Cimpoeru SJ.A study of the perforation of aluminium laminate targets.Int J Impact Eng 1998;21:117-31.
    [48]Dikshit SN,Kutumbarao VV,Sundararajan G.The influence of plate hardness on the ballistic penetration of thick steel plates.Int J Impact Eng 1995;16(2):293-320.
    [49]Awerbuch J,Bodner SR.Analysis of the mechanics of perforation of projectiles in metallic plates.Int J Solids Structures,1974,Vol.10:671-684.Awerbuch J,Bodner SR.Experiments on the normal perforation of projectiles in metallic plates.Int J Solids Structures 1974,Vol.10:685-699.
    [50]Liss J,Goldsmith W,Kelly JM.A phenomenological penetration model of plates.Int J Impact Eng 1983;1(4):321-341.
    [51]Ravid M,Bodner SR.Dynamic perforation of viscoplastic plates by rigid projectiles.Int J Impact Eng 1983;21(6):577-91.
    [52]Bodner SR,Ravid M.Review and some applications of 2D analytical models of ballistic penetration.Proceedings Transient loading and response of structures,International Symposium honoring Mr.Arnfinn Jenssen,Trondheim,Norway,25-27 May.
    [53]Wen HM,Jones N.Low-velocity perforation of punch-impact-loaded metal plates.Trans ASME,J Pressure Vessel Technol 1996;118(2):181-187.
    [54]Wen HM.and Jones,N.Experimental investigation of the scaling laws for metal plates struck by large mass.Int J Impact Eng 1993;13(3):485-505.
    [55]Wen HM,Jones N.Experimental investigation into the dynamic plastic response and perforation of a clamped circular plate struck transversely by a mass.Proceedings of the Institution of Mechanical Engineers.J Mech Eng Sci,1994;208(C2):113-37.
    [56]Wen HM,Reddy TY,Reid SR.Deformation and failure of clamped beams under low speed impact loading.Int J Impact Eng 1995;16:435-54.
    [57]Wen HM.Deformation and perforation of clamped work-hardening plates struck transversely by blunt missiles.Nuclear Engineering and Design,1996:51-58.
    [58]Wen HM.A quasi-static procedure for predicting the deformation and failure of structures under intense dynamic loadings.International Conference on Protection of Structures Against Hazards 2002;101-112.
    [59]Wen HM,Rao WF.Deformation and perforation of simply supported circular plates struck normally by flat-faced projectiles.Chinese Journal of High Pressure Physics 2005;19(1):51-58.
    [60]Teng X,Wierzbicki T.Dynamic shear plugging of beams and plates with an advancing crack.Int J Impact Eng 2005;31:667-698.
    [61]Bai Y L,Dodd B,Adiabatic Shear Localization.Oxford:Pergamon,1992,1-7.
    [62]Wright TW.The Mathematics and Physics of Adiabatic Shear Bands.Combridge:Combridge University Press,2002,3-33.
    [63]Meyers MA.Dynamic Behavior of Materials.New York:John Wiley,1994,448-486.
    [64]Rosakis AJ,Ravichandran G.Dynamic failure mechanics.Int J Solids Struct 2000;37:331-348.
    [65]Woodward RL.The penetration of metal targets which fail by adiabatic shear plugging.Int J Mech Sci 1978;20:599-607
    [66]Bai YL,Johnson W.Plugging:physical understanding and energy absorption.Metals Technol 1982;9:182-190.
    [67]Yu Jilin,Wang Lili.A model of plugging based on thermo-viscoplastic shear instability.Proc 1~(st)Int Symp Intense Dynamic Loading.Beijing:Science Press,1986,546-551.
    [68]Batra R C,Kim C H.Analysis of shear banding in twelve materials.Int J Plasticity 1992;8:425-452.
    [69]Li QM,Jones N.Shear and adiabatic shear failures in an impulsively loaded fully clamped beams.Int J Impact Eng 1999;22:589-607.
    [70]Li QM,Jones N.Formation of a shear localization in structural elements under transverse dynamic dynamic loads.Int J Solid Struct 2000;45:6683-6704.
    [71]Li QM,Jones N.Response and failure of a double-shear beam subjected to mass impact.Int J Solid Struct 2002;39:1919-1947.
    [72]Chen XW,Li QM.Shear plugging and perforation of ductile circular plates struck by a blunt projectile.Int J Impact Eng 2003;28(5):513-536.
    [73]Chen XW,Li QM,Fan SC.Initiantion of adiabatic shear failure in a clamped circular plate struck by a blunt projectile.Int J Impact Eng 2005;31:877-893.
    [74]Bishop RF,Hill R,Mott NF.The theory of indentation and hardness.Proceedings of the Physical Society 1945;57:147-159.
    [75]Hill R.The mathematical Theory of Plasticity,Oxford University Press,London,1950.
    [76]Forrestal MJ,Luk VK.Dynamic spherical cavity-expansion in a compressible elastic-plastic solid.J Appl Phys 1988;55:275-279.
    [77]Forrestal MJ,Okajima K,Luk VK.Penetration of 606I-T651 alumnium targets with rigid long rods.ASME J Appl Mech 1988;55(4):755-760.
    [78]Luk VK,Forrestal MJ,Amos DE.Dynamic spherical cavity expansion of strain-hardening materials ASME J Appl Mech 1991;58:1-6.
    [79]Forrestal MJ,Brar NS,Luk VK.Penetration of strain-hardening targets with rigid spherical-nose rods.J Appl Mech 1991;58:7-10.
    [80]Forrestal MJ,Luk VK,Rosenberg Z,Brar NS.Penetration of 7075-T651 aluminum targets with ogival-nose rods.Int J Solid Struct 1992;29:1729-1736.
    [81]Forrestal MJ,Tzou DY,Askari E,Longcope DB.Penetration into ductile metal targets with rigid spherical-nose rods.Int J Impact Eng 1995;16:699-710.
    [82]Warren TL,Forrestal MJ.Effects of strain hardening and strain-rate sensitivity on the penetration of aluminum targets with spherical-nosed rods.Int J Solids Struct;1998;35:3737-3753.
    [83]Forrestal MJ,Rosenberg Z,Luk VK,Bless SJ.Perforation of aluminium plates with conical-nosed rods.J Appl Mech Trans ASME 1987;54:230-232.
    [84]Forrestal MJ,Luk V K,Brar N S.Penetration of aluminum armor plates with conicai-nose projectiles.Mech Mater 1990;10:97-105.
    [85]Littlefield DL,Anderson CE,Partom Y,Bless SJ.penetration of steel targets finite in radial extent,”Int J Impact Eng 1997;19(1):49-62.
    [86]Partom Y.Static cavity expansion model for partially confined targets.Institute for Adv Technology,Report IAT.R-0092,The Univ of Texas at Austin,1996.
    [87]Teland JA,Sj(?)l H.Boundary effects in penetration Into concrete.FFI/RAPPORT-2000/05414,Norwegian Defence Res.Establishment,2000.
    [88]Warren TL,Hanchak SJ,Poormon KL.Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles:experiments and simulations.Int J Impact Eng 2004;30:1307-331.
    [89]Warren TL.The effect of strain rate on the dynamic expansion of cylindrical cavity.J Appl Mech,ASME 1999;66(3):818-821.
    [90]Zhou H,Wen H M.Penetration of bilinear strain-hardening targets subjected to impact by ogival-nosed projectiles.Proceeding of 2003 International Autum Seminar on International Autumn Seminar on Propellants,Explosives and Pyrotecnics,In:Theory And Practicing Of Energetic Materials(Vol.5),Science Press,Beijing/New York,2003,933-942.
    [91]周辉,文鹤鸣。动态柱形空穴膨胀模型及其在侵彻问题中的应用。高压物理学报,2006;1:67-78。
    [92]周辉。弹塑性材料中的空穴膨胀理论及其在侵彻力学中的应用[硕士论文]。合肥:中国科学技术大学,2004。
    [93]Hirt CW,Amsden AA,Cook JL.An arbitrary Lagrangian-Eulerian computing method for flow speeds.J Comput Phys.1974;14:227,253.
    [94]Bjork RL.Paper No.P-1661,Rand Corp.Santa Monica,California;Proc.10~(th) International Astronomy Congress,London(1959).
    [95]Wilkins ML,In Methods in Computational Physics,1964,Vol.3:211-263,Academic press,New York.
    [96]Hageman LJ,Lee EP,Report BRLCR 305 USA.Ballistics Research Laboratories,Aberdeen Proving Ground,Maryland,1976.
    [97]Charles E,Anderson JR,Bodner SR.Ballistic impact:the status of analytical and numerical modeling.Int J Impact Eng 1988;7(1):9-35
    [98]Chen EP,Numerical simulation of shear induced plugging in HY100 steel plates.Int.J.Damage Mech.1992,1,132-143.Bammann D J,Chiesa ML,Horstemeyer MF,Weingarten LI.Failure in ductile materials using finite element simulations.In:Jones N,Wierzbicki T,Structural Crashworthiness and Failure.Elsevier,Amsterdam.1-54.
    [99]Johnson GR,Cook WH.A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures.Proceedings of the seventh international symposium on ballistics,Hague,1983,p.541.
    [100]Johnson GR,Cook WH.Fracture characteristics of three metals subjected to various strains,strain rates,temperatures and pressures.Eng Fract Mech 1985;21(1):31-48.
    [101]Liang RQ,Khan AS.A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures.Int J Plasticity 1999;15:963-980.
    [102]Wierzbicki T,Bao YB,Lee YW,Bai YL.Calibration and evaluation of seven fracture models.Int J Mech Sciences 2005;47:719-743.
    [103]Teng X,Wierzbicki T.Evaluation of six fracture models in high velocity perforation.Eng Fracture Mech 2006;73:1653-1678.
    [104]B(?)rvik T,Langseth M,Hopperstad OS,Malo K.A.Ballistic penetration of steel plates.Int J Impact Eng 1999;22:855-886.
    [105]B(?)rvik T,Langseth M.Quasi-static penetration of steel plates.Proceeding from Integrity,Reliability,Failure:An International Conference,University of Porto,Portugal,19-22 July,1999b.
    [106]Barvik T,Hopperstad OS,Berstad T,Langseth M.A computational model of viscoplasticity and ductile damage for impact and penetration.Eur J Mech—A/Solids 2001;20:685-712.
    [107]Barvik T,Hopperstad O.S,Berstad T,Langseth M.Numerical simulation of plugging failure in ballistic penetration [J].Int J Solids and structures 2001;38:6241-6264.
    [108]Barvik T,Leinum JR,Solberg JK,Hopperstad OS,Langeth M.Observations on shear plug formation in Weldox 460 E steel plates impacted by blunt-nosed projectiles.Int J Impact Eng,2001;25:553-572.
    [109]Barvik T,Langseth M,Hopperstad OS,Malo KA.Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat,hemispherical and conical noses,Part I:experimental study.Int J Impact Eng 2002;27:19-35.
    [110]Barvik T,Hopperstad OS,Berstad T,Langseth M.Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat,hemispherical and conical noses.Part Ⅱ:numerical simulations.Int J Impact Eng 2002;27(1):37-64.
    [111]Barvik T,Hopperstad OS,Berstad T.On the influence of stress triaxiality and strain rate on the behaviour of a structural steel.Part Ⅱ:Numerical study.Eur J Mech A/Solids 2003;22:15-32.
    [112]Barvik T,Hopperstad OS,Langseth M,Malo KA.Effect of target thickness in blunt projectile penetration of Weldox 460 E steel plates.Int J Impact Eng 2003;28:413-464.
    [113]Clausen AH,Barvik T,Hopperstad OS,Benallal A.Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate,temperature and triaxiality.Mater Sci Eng 2004;364:260-272.
    [114]Dey S,Hopperstad OS,Barvik T,Clausen A.A constitutive relation and failure criterion for three structural steels at high strain rates.Proceedings of the Seventh International Symposium on Structures under Shock and Impact,Montreal,2002.p.427-36.
    [115]Dey S,Barvik T,Hopperstad OS,Leinum JR,Langseth M.The effect of target strength on the perforation of steel plates using three different projectile nose shapes.Int J Impact Eng 2004;30(8-9):1005-1038.
    [116]Dey S,Barvik T,Hopperstad OS,Langseth M.Influence of the constitutive relation in numerical simulations of the perforation of steel plates.In:Sanchez-Galvez V,Brebbia CA,Motta AA,Anderson CE,editors.Proceedings of the second international conference on computational ballistics.Cordoba:WIT Press;2005.p.181.
    [117]Dey S,Barvik T,Hopperstad OS,Langseth M.On the influlence of constitutive relation in projectile impact of steel plates.Int J Impact Eng 2007;34:464-486..
    [118]Barvik T,Forrestal MJ,Hopperstad OS,Warren TL,Langseth M.Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles-Calculations.Int J Impact Eng 2009;36:426-437.
    [119]Roessig K M,Mason J J.Adiabatic shear localization in the dynamic punch test,part Ⅰ:experimental investigation.Int J Plasticity 1999;15:241-262.
    [120]Roessig K M,Mason J J.Adiabatic shear localization in the dynamic punch test,part Ⅱ:numerical simulation.Int J Plasticity 1999;15:263-283.
    [121]Gupta NK,Iqbal MA,Sekhon GS.Experimental and numerical studies on the behavior of thin aluminum plates subjected to impact by blunt-and hemispherical-nosed projectiles.Int J Impact Eng 2006;32:1924-1944.
    [122]Gupta NK,Iqbal MA,Sekhon GS.Effect of projectile nose shape,impact velocity and target thickness on deformation behavior of aluminum plates.Int J Solids Struct 2007;44:3411-3439.
    [123]Rusinek A,Rodriguez-Martinez,JA,Zaera,R,et al.Experimental and numerical study on the perforation process of mild steel sheets subjected to perpendicular impact by hemispherical projectiles.Int J Impact Eng 2009;36(4):565-587.
    [124]Arias A,Rodriguez-Martinez JA,Rusinek A.Numerical simulations of impact behaviour of thin steel plates subjected to cylindrical,conical and hemispherical non-deformable projectiles.Eng Fracture Mech 2008;75(6):1635-1656.
    [125]朱林法。金属材料冲击损伤和破坏行为的数值模拟研究,硕士学位论文,中国科学技术大学,2003。
    [126]曹结东。含损伤热粘塑性本构数值算法和铝锂合金动态响应研究,博士学位论文,中国科学技术大学,2006。
    [127]Bernard RS,Creighton D.Projectile penetration in soil and rock:analysis for non-normal impact,US Army Waterways Experiment Station,Vicksburg,Technical Report SL-79-15AD-A 081044,1979.
    [128]Shen WQ,Jones N.A comment on the low speed impact of a clamped beam by a heavy stiker.Mech Struct Machinery 1991;19(4):527-549.
    [129]Jones N.Quasi-static analysis of structural impact damage.J Construct Steel Research 1995;33:151-177.
    [130]何涛。动能弹在不同材料靶体中的侵彻行为研究,博士学位论文,中国科学技术大学,2007。
    [131]Symonds PS.Survey of methods of analysis for plastic deformation of structures under dynamic loading.Brown University.Division of Engineering Report BU/NSRDC/1-67,1967.
    [132]Jones N.Structural Impact.Cambridge University Press.U.K.1989.
    [133]Perrone N.Bhadra P.A simplified method to account for plastic rate sensitivity with large deformations.ASME J Appl Mechanics 1979;46:811-816.
    [134]Perrone N.Bhadra P.Simplified large deflection mode solution for implusively loaded,viscoplastic,circular membranes.ASME J Appl Mechanics 1984;51:505-509.
    [135]Radin J,Goldsmith W.Normal projectile penetration and perforation of layered targets.Int J Impact Eng 1988;7(2):229-259.
    [136]Virostek SP,Dual J,Goldsmith W.Direct force measurement in normal and oblique impact of plates by projectiles.Int J Impact Eng 1987;6(4):247-269.
    [137]Liss J,Goldsmith W,Hauser FE.Constraint to side flow in plates.J Appl Mech 1983;50:694-698.
    [138]Goldsmith W,Finnegan S A.Normal and oblique impact of cylindro-conical and cylindrical projectiles on metallic plates.Int J Impact Eng 1986;4(2):83-105.
    [139]宋殿义,蒋志刚,曾首义。刚性尖头弹垂直撞击金属靶板耗能分析。弹道学报,2005;17(2):28-32。
    [140]He T,Wen HM,Qin Y.Penetration and perforation of FRP laminates struck transversely by conical-nosed projectiles.Composite Structures 2007;81:243-252.
    [141]He T,Wen HM,Qin Y.Finite element analysis to predict penetration and perforation of thick FRP laminates struck by projectile.Int J Impact Eng 2008;35:27-36.
    [142]Borvik T,Clausen AH,Hopperstad O,Langseth,M.Perforation ofAA5083-H116 aluminium plates with conical-nose steel projectiles—experimental study.Int J Impact Eng 2004;30(4):367-384.
    [143]Rosenberg Z,Forrestal MJ.Perforation of aluminium plates with conical-nosed rods -additional data and discussion.J Appl Mech Trans ASME 1988;55:236-238.
    [144]肖玲,宋卫东。在圆锥头弹体正冲击下薄壁金属圆板破裂模式的实验研究。实验力学,2002;17(1):96-100.
    [145]Langseth M,Larsen PK.Dropped objects' plugging capacity of steel plates:an experimental investigation.Int J Impact Eng 1990;9(3):289-316.
    [146]Chen XW,Li QM.Perforation of a thick plate by rigid projectiles.Int J Impact Eng 2003;28:743-759.
    [147]Aluminum Standards and Data 2000.The Aluminum Association,Inc.In America.
    [148]Kobayashi H,Dodd B.Formation of adiabatic shear bands in steel and titanium twisted at dynamic rates.J Jpn Soc Plasticity 1988;29:1152-1158.
    [149]Kobayashi H,Dodd B.A numerical analysis of the formation of adiabatic shear bands including void nucleation and growth.Int J Impact Eng 1989;9:1-13.
    [150]Dieter G E.Mechanical Metallurgy.London:McGraw-Hill,1988.
    [151]Liu DQ,Stronge WJ.Perforation of rigid-plastic plate by blunt missile.Int J Impact Eng 1995;16:739-758.
    [152]潘建华,文鹤鸣.平头弹丸正撞击下延性金属靶板的破坏模式.高压物理学报,2007,21(2):157-164.
    [153]Chichili DR,Ramesh KT,Hemker KJ.The high-strain-rate response of alpha-titanium:experiments,deformation mechanisms and modeling.Acta mater 1998;46(3):1025-1043.
    [154]Zukas JA.Impact Dynamics.John Wiley,New York,1982.p.155.
    [155]Corran RSJ,Shadbolt P J,Ruiz C.Impact loading of plates—an experimental investigation.Int J Impact Eng,1983,1(1):3-22.
    [156]Johnson W,Ghosh SK,Reid S.Piercing and hole-flanging of sheet metals:a survey.Aluminium 1980;56:142-6.
    [157]lpson TW,Recht RF.Ballistic perforation by fragments of arbitrary shape,NWC TP 5927,Denver Research Institute,Naval Weapons Center,China Lake,CA,USA,1977.
    [158]Wingrove AL.The influence,of projectile geometry on adiabatic shear and target failure.Metall Trans A 1973;4:1829-33.
    [159]Othe S,Yoshizawa H,Chiba N,Shida S.Impact strength of steel plates struck by projectiles.Bulletin JSME 1982;25(205):1226-31.
    [160]Wilkins ML.Mechanics of penetration and perforation,Int J Eng Sci 1978;16:793-807.
    [161]Osborn CJ,Woodward RL.The effect of penetrator geometry on the deformation of ductile metal targets.Strength of Metals and Alloys 1982;1:467-472.
    [162]穆建春。金属薄板在圆锥头弹体正冲击下的破裂模式。爆炸与冲击,2005.25(1):74-79。
    [163]Sangoy L,Meunier Y,Pont G.Steels for ballistic protection.Israel J Technology 24,1988,319-326.
    [164]Goldsmith W.Initiation of perforation in thin plates by projectiles.In:Metal Forming and Impact Mechanics,Pergamon Press,1985.
    [165]时党勇,李裕春,张胜民。基于ANSYS/LS-DYNA 8.1进行显式动力分析,清华大学出版社,北京,2005。
    [166]Zerilli FJ,Armstrong RW.Dislocation-mechanics-based constitutive relations for material dynamics calculations.J Appl Phys 1987;61(5):1816-25.
    [167]Zerilli FJ,Armstrong RW.Description of tantalum deformation behavior by dislocation mechanics based constitutive relations.J Appl Phys 1990;68(4):1580-91.
    [168]Zerilli FJ,Armstrong RW.Dislocation mechanics based analysis of material dynamics behavior:enhanced ductility,deformation twinning,shock deformation,shear instability,dynamic recovery.J Phys Ⅳ Colloq.C3 Suppl J Phys Ⅲ 1997;7:637-42.
    [169]Lemaitre J.A Course on Damage Mechanics.Berlin:Springer.
    [170]Voyiadjis GZ,Palazotto AN,Gao XL.Modelling of metallic materials at high strain rates with continuum damage mechanics.Appl Mech Rew 2002;55(5):481-493.
    [171]李永池,谭福利,姚磊,胡秀章。含损伤材料的热枯塑性本构关系及其应用。爆炸与冲击2004;24(4):289-298.
    [172]庄出等。基于ABAQUS的有限元分析和应用。清华大学出版社,北京,2009。
    [173]王礼立。应力波基础。国防工业出版社。北京,2005。
    [174]唐志平。冲击相变。科学出版社。北京,2008。
    [175]Dassault Syst(?)mes.ABAQUS Analysis User's Manual.Providence.2005.
    [176]Bammann,D.J.,Chiesa,M.L.,Horstemeyer,M.E,Weingarten,L.I.,1993.Failure in ductile materials using finite element simulations,in:Jones,N.,Wierzbicki,T.(Eds.),Structural Crashworthiness and Failure.Elsevier Applied Science,pp.1-54.
    [177]Jones,N.Dynamic inelastic failure of structures.Trans Japan Soc Mech Eng 1997;12:21-31.
    [178]Piekutowski AJ,Forestal MJ,Poormon KL,Warren TL.Penetration of 6061-T6511aluminium targets by ogive-nose steel projectiles with striking velocities between 0.5 and 3.0km/s.Int J Impact Eng 1999;23:723-34.
    [179]Hibbitt HD,Karlsson BI,Sorensen P.Abaqus User's manual,ABAQUS/EXPLICIT 6.5,2005.
    [180]Zukas JA,Scheffier DR.Practical aspects of numerical simulations of dynamic events:effects of meshing.Int J Impact Eng 2000;24:925-945.
    [181]潘建华。平头弹丸正撞击下金属靶板破坏模式的理论和数值研究,硕士学位论文,中国科学技术大学,2007。
    [182]B(?)rvik T,Dey S,Clausen AH.Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles,Int J Impact Eng 2009;36:948-964.
    [183]Teng X,Dey S,B(?)rvik T,Wierzbicki.Protection perforation of double-layered metal shiels against projectile impact.J Mech Mater Struct 2007;2:1309-1329.
    [184]Alsos H,Amdahl J,Hopperstad OS.On the resistance to penetration of stiffened plates,Part Ⅱ:Numerical analysis.Int J Impact Eng 2009;36:875-887
    [185]Alsos H,Amdahl J.On the resistance to penetration of stiffened plates,Part Ⅰ:Experiments.Int J Impact Eng 2009;36:799-807

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700