平板条叶片撞击金属靶板数值方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空发动机机匣需要要具有很好的包容能力,不能让转子碎片击穿机匣,造成飞机的二次损坏。航空大国在民用和军用航空发动机规范中都有专门条文对包容性做出严格规定,我国自行研制的大飞机涡扇发动机,要取得适航证,就必须通过包容性验证。为了研究航空发动机机匣的包容性问题,本文将航空发动机风扇叶片碎片和机匣包容区简化为平板条叶片和金属靶板,分别研究平板条叶片撞击金属等厚靶板过程及数值评定方法、平板条叶片撞击加筋结构金属靶板数值仿真方法及加强筋结构优化设计方法。
     结合打靶试验,通过建立平板条叶片撞击金属等厚靶板的计算模型,显式求解冲击过程,计算不同弹靶结构下金属靶板的弹道极限和残余速度,获得了与试验非常吻合的结果。由于弹体和塞柱之间多次撞击,靶板在冲击过程中多次回弹,靶板呈现多种破坏方式。靶板未击穿时,其变形挠度满足指数函数形式的经验公式;靶板被击穿时,残余速度和初速度关系满足Recht-Ipson公式。研究发现使用破坏势能法和K.A贝尔金公式用来计算靶板的弹道极限速度在工程上是可行的。
     为研究加强筋结构对包容能力的影响,建立了平板条叶片撞击加筋结构金属靶板的数值仿真模型,并且细化和修正了航空发动机机匣和叶片材料TC4的本构模型参数。仿真结果显示,加筋板的失效形式主要有局部剪切冲塞、整体弹塑性变形、背部花瓣形破坏、沿加强筋撕裂、靶板横向撕裂等。研究结果表明工程上将加强筋简化为等效厚度的计算方法是可行的,且相同质量的加筋板结构比等厚板抗冲击性能好,建议航空发动机机匣包容区域应尽量设计成带加强筋结构以增强包容能力。
     在平板条叶片撞击加筋结构靶板的数值仿真基础上,分析加强筋的布置对残余速度和弹道极限的影响,以期找到结构优化的途径。计算结果表明:叶片撞击区域布置加强筋数目越多,靶板抗冲击性能越好,为减轻重量,布置2~3条加强筋是合理的;而非撞击区域的加强筋影响不大,可以不设置。比较了相同质量情况下加强筋不同高度与厚度时的抗冲击性能,计算结果表明加强筋设置成细高型抗冲击性能更好,同等重量的“T”型加强筋比“|”型加强筋补强效果好。
     本文采用的数值仿真方法适用于不同材料、不同结构的撞击问题及包容性问题,研究成果对撞击问题和包容性问题的研究有一定的指导和借鉴意义。
Aero-engine should have good tolerance ability to protect rotor debris from breaking the casing. Chinese large aircraft turbofan engine must be verified through inclusive to obtain airworthiness certificate. In order to study aero-engine casing inclusive problem, in this paper, fan debris and aero-engine fan casing tolerance zone is simplified as flat metal blade and metal target. Respectively, the process of flat blade impact the metal plate and the numerical evaluation method, the process of blade impact the stiffened plate and the optimal structure for stiffeners were detailed discussed in this paper.
     This paper calculate the ballistic limit and residual velocity by establishing numerical simulation model of different projectile and plate structures, the results obtained great agreement with the experimental datas. During the impact process, the projectle impact the plate several times, and the target presents multiple failure modes. When the plate not penetrated, its deflection can be approximation obtained by empirical formula, when projectile breakdown the target, the relationship between residual velocity and initial velocity meet the Recht-Ipson equation. Potential energy method and K.A.Belkin ballistic formula used in engineer were authenticated by numerical simulation and penetration experiments too.
     Paper also established numerical model to simulate the process of flat blade impact stiffened plate using a modified constitutive model parameters of material TC4. Simulation results show different failure modes of stiffened plates.The simplified method of equivalent thickness calculating is feasible, and the same quality stiffeners can promote the resistance ability of the plate.
     Based on the numerical simulation, this paper analysis the ballistic limit and residual velocity of different stiffened plates in order to find ways to structure optimization.The reults show that:increase the numbers of stiffeners in the impact area can promote resistance ability; the stiffeners in the non-impact region show small enhance. Stiffener set into a fine high-type, can obtain better impact resistance ability. Replace"|" type stiffener by "T" type stiffener, can improve the plate's performance.
引文
[1]陈光.航空发动机结构设计分析[M].北京:航空航天大学出版社,2006,542-545.
    [2]National Transportation Safety Board, Aircraft accident report:uncontained engine failure/fire valuejet airlines flight 597, Douglas DC-9-32, N908VJ, Atlanta, Georgia, June 8,1995[R]. NTSB/AAR-96/03
    [3]The Aviation Herald. Accident:American MD83 at New York on Mar 11th 2009,uncontained engine failure [EB/OL].http://avherald.com/h?article=41650f96.
    [4]Delucia R.A.. Statistics on aircraft gas turbine engine rotor failures that occurred in U.S. commercial aviation during 1978[R]. NASA-CR-136900,1981.
    [5]Society of Automotive Engineers Committee on Engine Containment, Report on aircraft engine containment[R], SAE-AIR-4003.
    [6]FAR33, Airworthiness standards:Aircraft engines[S]. United States:Federal Aviation Administration,1984
    [7]MIL-STD-1783B, Engine structural integrity program[S]. United States:Department of Defense,2002.
    [8]Defense standard 00-971, General specification for aircraft gas turbine engines[S]. United Kingdom: Ministry of Defense,1987.
    [9]CCAR-33,航空发动机适航规定[S].北京:中国民用航空总局,2005.CAR-33, Airworthiness standards: aircraft engines[S], Peking:Civil Aviation Administration of China,2005. (in Chinese)
    [10]国防科学技术工业委员会.GJB3366-航空涡轮发动机包容性要求[s].北京,1998.Commission for Science, Technology and Industry for National Defense. GJB3366-Turbine engine containment requirements[S]. Peking,1998. (in Chinese)
    [11]马晓青.冲击动力学[M].北京:北京理工大学出版社,1992.
    [12]钱伟长.穿甲力学[M].北京:国防工业出版社,1984.
    [13]王礼立,余同希.冲击动力学进展[M].合肥:中国科学技术大学出版社,1992
    [14]蒋志刚,曾首义,周建平.分析金属装甲弹道极限的两阶段模型[J].工程力学,2005,Vol 22.No.4.
    [15]U.S. Department of Justice. Ballistic resistance of personal body armor[R]. NIJ standard-0101.04, Office of Science and Technology, Washington, DC, June 2001
    [16]Advanced Aircraft Materials, Engine Debris Penetration Testing[R],dot_faa_ar-03_37.2005.
    [17]RobinsB. New Principles of gunnery (Mathematical Tracts of the late Benjamin Robins)[M].London:Nourse,1761.
    [18]ACE. Fundamentals of Protective design Office of the Chief of Engineers. Army Corps of Engineers. Report at 1207821,1946.
    [19]Young CW. Depth Prediction for earth-Penetrating Projectiles[J]. ASCE J Soil Mech Found Engng SM3 1969:803-817.
    [20]Gwaltney RC. Missile generation and Protection in light-water-cooled Power reaction Plants[C]. USA Tennessee, Oak Ridge National Laboratory, Report ORNL-USTC-22,1968.
    [21]NDRC. Effects of impact and explosion[C]. Washington DC, National Deffence Research Committee,Vol, Summarry Technical Report of Division 2,1946.
    [22]Kennedy RP. A review of Procedures for the analysis and design of concrete structures to resist missile Impact effects[J]. Nucl Eng Des1976.37:183-203.
    [23]刘修骥.坦克系统设计[M].北京:国防工业出版社.1988年7月第一版
    [24]T.Bφrvik, O.S.Hopperstad, T.Berstad. On the influence of stress triaxiality and strain rate on the behaviour of a structural steel.PartⅡ.Numerical study[J]. European Journalof Mechanics A/Solids,2003,22:15-32.
    [25]T. Brovik,et al. A computational model of viscoplasticity and ductile damage for impact and penetration[J]. Eur.J.Mech.A/Solids.2001.p685-712
    [26]Wen HM. Predicting the Penetration and Perforation of FRP laminates struck normally by Projectiles With different nose shapes[J]. Compos Struct 2000.49(3):321-329.
    [27]Reid SR,Wen HM. Perforation of FRP laminates and sandwich Panels subjected to missile impact Impact Behaviour of Fibre-Reinforced Composite Materials and Structures[M].Reid SR and Zhou G (eds),Woodhead Publishing Limited,Cambridge,2000.
    [28]Corbett G G, Reid S R, Johnson W. Impact loading of plates and shells by free-flying projectiles:a review[J]. International Journal of Impact Engineering,1996,18(2):141-230.
    [29]Goldsmith W. Non-ideal projectile impact on targets[J]. International Journal of Impact Engineering,1999, 22:95-395.
    [30]Knight JR N F, Jaunky N, Lawson R E, et al. Penetration simulation for uncontained engine debris impact on fuselage-like panels using LS-DYNA[J]. Finite Elements in Analysis and Design,2000,36:99-133.
    [31]Ambur D R, Jaunky N, Lawson R E, et al. Numerical simulations for high-energy impact of thin plates[J]. International Journal of Impact Engineering,2001,25:683-702.
    [32]Teng X, Wierzbicki. Gouging and fracture of engine containment structure under fragment impact[J]. Journal of Aerospace Engineering,2008,21(3):174-186.
    [33]Pereira J M, Lerch B A. Effects of heat treatment on the ballistic impact properties of inconel 718 for jet engine fan containment applications[R]. NASA/TM-2001-209660, U.S: National Aeronautic and Space Administration,2001.
    [34]D.A.Shockey, D.C.Erlich, J.W.Simons. Full-scale tests of lightweight fragment barriers on commercial aircraft[R]. DOT/FAA/AR-99/71,1999.
    [35]R.P.Gogolowski, B.R.Morgan. Application of low plasticity burnishing to improve damage tolerance of a TI-6A-4V first stage fan blade[R]. DOT/FAA/AR-04/10,2003.
    [36]R.P.Gogolowski, B.R.Morgan. Ballistic experiments with titanium and aluminum targets[R]. DOT/FAA/AR-01/21,2001.
    [37]《12.7mm重机枪系统设计与实践》编委会.12.7mm重机枪系统设计与实践.第一版.北京:国防工业出版社.1999
    [38]范志强,高德平,覃志贤等.机匣包容性破坏势能法的试验验证[J].燃气涡轮试验与研究,2006,19(2):26-29.
    [39]董翰,李桂芬等.高强度钢中绝热剪切破坏研究[J].北京:钢铁研究学报.1995(6):39-44
    [40]管公顺,庞宝君,哈跃,张伟.铝双层板结构高速撞击防护性能实验[J].哈尔滨工业大学学报,2007,29(3):402-405.
    [41]段卓平.半穿甲弹丸对加筋靶板侵彻的终点弹道的实验和理论研究[J].爆炸与击,2005,25(6):547-552.DUAN Zhuo-ping.The experimental and theoretical research for end-point trajectory of warhead penetrating structural target [J]. Explosion and Shock Waves,2005,25(6): 547-552.(in Chinese)
    [42]段卓平,张中国,李金柱等.半穿甲战斗部对加筋靶板和均质靶板垂直侵彻的实验研究[J].弹箭与制导学报,2005,25(2):148-150.
    [43]CHEN Yong,WANG Y,TANG P et al. Impact characteristics of stiffened plates penetrated by sub-ordnance velocity projectiles [J]. Construct Steel Res.2008,64:634-643.
    [44]梅志远,朱锡.利用MSC/DYTRAN程序仿真分析导弹战斗部立方体破片的侵彻威力[J].海军工程大学学报,2002,14(2):39-41.
    [45]G.G.Corbett, S.R.Reid and W.Johson, Impact loading of plates and shells by gree-flying projectiles:a review[J]. Int.J.Engng, Vol.18,No.2,pp:141-209,1996
    [46]G.L.Taylor, The formation and enlargement of a circular hole in a thin plate sheet[J]. Quart J.Mwch.Appl.Math.1,103-148,1952.
    [47]J.N.Goodier. On the mechanics of indentation and catering in solid targets of strain-hardening metal by impact of hard and soft spheres[J]. Proc.Of the 7th Symp.On Hypervelocity impact, Vol.3 pp:21-219
    [48]赵国志.长杆体斜侵彻的近似计算[C].南京:华东工程学院1980年科学报告会.1980
    [49]李建华,刘杰.WJ9发动机涡轮转子叶片包容性研究[C].中国航空学会(直升机)第三届动力与传动学术讨论会.北京:中国航空学会,2000:76-81.
    [50]范志强,高德平,姜涛,覃志贤,王维.模型机匣的包容性试验和数值模拟[J].南京航空航天大学学报,2006,38(5):551-556.
    [51]余希同,华云龙.结构塑性动力学引论[M].合肥:中国科技大学出版社,1994.
    [52]Gordon R. Johnson, William H. Cook. Fracture characteristics of three metals subjected to various strains, strain rates, temperature and pressures[J]. Engineering Fracture Mechanics,1985,21(1):31-48.
    [53]Galvez F, Cendon D, Enfedaque A., et al., High strain rate and high temperature behaviour of metallic materials for jet engine turbine containment[J]. Journal de Physique Ⅳ,2006,134:269-274.
    [54]Donald R L. Experimental investigations of material models for Ti-6Al-4V titanium and 2024-T3 aluminum[R], DOT/FAA/AR-00/25, U.S:Department of Transportation,200
    [55]Gregory K. Failure Modeling of Titanium 6A1-4V and Aluminum 2024-T3 With the Johnson-Cook Material Model [R], DOT/FAA/AR-03/57, U.S:Department of Transportation,2003.
    [56]O.S.Hopperstad, T.Bφrvik, M.Langseth, K.Labibes, C.Albertini. On the influence of stress triaxiality and strain rate on the behaviour of a structural steel. Part Ⅰ. Experiments[J]. European Journal of Mechanics A/Solids,2003,22:1-13.
    [57]陈刚,陈忠富,陶俊林等.TC4动态力学性能研究[J].实验力学,2005,20(4):605-609.CHEN Gang, CHEN Zhong fu, TAO Jun lin, et al. Study on plastic constitutive relationship parameters of TC4 Titanium[J]. Journal of Experimental Mechanics,2005,20(4):605-609. (in Chinese
    [58]Knight JR N F, Jaunky N, Lawson R E, et al. Penetration simulation for uncontained engine debris impact on fuselage-like panels using LS-DYNA[J]. Finite Elements in Analysis and Design,2000,36:99-133.
    [59]K.S.Carney, J.M.Pereira, D.M.Revilock, P.Matheny. Jet engine fan blade containment using an alternate geometries[J]. International Journal of Impact Engineering,2009,36:720-728.
    [60]J.A.Mathis, S.C.Parduhn, P.Alvarez. Analysis of turbine engine rotor containment and shielding structures[R]. AIAA 93-1718,1993.
    [61]王琳,王富耻,王鲁,才鸿年.空心弹体侵彻金属靶板的数值模拟和实验研究[J].兵器材料科学与工程,2001,24(6):13-17.
    [62]段小明,周玉.动能弹穿甲过程有限元分析[J].兵器材料科学与工程,2002,25(6):20-22,56.
    [63]王海福,刘志雄.钢球侵彻钛合金靶板弹道极限速度[J].北京理工大学学报,2003,23(2):162-164.
    [64]蒋志刚,曾首义.刚性尖头弹侵彻贯穿金属薄靶板耗能分析[J].兵工学报,2004,25(6):777-781.
    [65]纪霞,王利.弹丸侵彻多层靶板数值分析[J].探测与控制学报,2006,28(2):42-45.
    [66]张小坡,石全,王广彦.基于LS-DYNA的圆柱形破片侵彻靶板有限元分析[J].科学技术与工程,2007,7(23):6004-6009.
    [67]杨世全,唐平,谌勇.弹丸对加筋板穿甲的数值模拟研究[J].含能材料,Vol.15,No.6.2007
    [68]杜志鹏,李晓彬,夏利娟等.用数值方法分析板梁结构抗动能穿甲性能[J].振动与冲击,2006,25(3):180-182.
    [69]刘晓明,张世联,吴迪等.加筋板架和均质靶板抗截卵形动能弹穿甲数值模拟研究[J].振动与冲击,2007,26(8):116-121.
    [70]John O. Hallquist. LS-DYNA theory manual. Livermore software Technology Corporation,2006.3.
    [71]范志强.航空发动机机匣包容性理论和试验研究[D].2006.8.
    [72]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strainrates and high temperatures[C].Proceedings of the Seventh International Symposium on Ballistics. Hague, Netherlands,1983:541-547.
    [73]陈刚,陈忠福,陶俊林,牛伟,张青平,黄西成.45钢动态塑性本构参量与验证[J].爆炸与冲击,2005,25(5):451-456.
    [74]陈刚,陈忠福,徐伟芳,陈勇梅,黄西成.45钢的J-C损伤失效参量研究[J].爆炸与冲击,2007,27(2):131-135.
    [75]陈刚,陈忠富,陶俊林.TC4动态力学性能研究[J].实验力学.2005,20(4):605-609.
    [76]陈刚.半穿甲战斗部弹体穿甲效应数值模拟与试验研究[D].中国工程物理研究院.2006.
    [77]汪洋.机匣材料在高应变率下响应的本构模型及失效准则研究[R].中国科学技术大学,2010.
    [78]U.S. Department of Transportation. Failure Modeling of Titanium 6A1-4V and Aluminum 2024-T3 With the Johnson-Cook Material Model[J]. Federal Aviation Administration,2003.
    [79]陈长海,朱锡,侯海量.加筋板架抗动能穿甲的等效防护厚度研究[J].海军工程大学学报.Vol22,No.1,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700