先天性白内障相关的βB2晶状体蛋白突变的致病机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
βB2晶状体蛋白是人眼晶状体中重要的结构蛋白,与维持晶状体的透明性与屈光性密切相关,其潜在的生理功能尚不明确。目前国内外针对βB2晶状体蛋白基因突变导致先天性白内障的报道已有不少,但是针对突变具体的致病机制研究仍很缺乏。为了更好地阐明白内障的发生机理,从现有的与βB2晶状体蛋白相关的基因突变中,选取数个有意义的关键位点(位于蛋白N末端的突变A2V,以及四个与色氨酸相关的突变S31W、R145W、W59C、W151C),研究这些突变对pB2晶状体蛋白结构、稳定性、细胞内分布等方面的影响。
     通过PCR从人眼cDNA文库中克隆βB2晶状体蛋白的完整编码序列,构建野生型pB2晶状体蛋白和包含各突变位点的质粒,原核表达质粒采用pET28a,真核表达质粒采用pEGFP-C3和pcDNA3.1-flag;原核表达获取目标蛋白并纯化,采用生物化学和生物物理学研究手段,明确突变前后蛋白结构和理化性质方面的改变;并转染HeLa细胞,使野生型和突变型蛋白分别在细胞中过表达,观察蛋白在细胞内定位以及对细胞凋亡的影响。
     我们发现,A2V突变没有改变pB2晶状体蛋白的二、三级结构,却影响了蛋白的四级构象,破坏了蛋白同源四聚体的形成;降低了蛋白的热稳定性,使蛋白在高温下更容易聚集;不影响对抗化学变性剂和紫外辐射的稳定性,却使蛋白在复性过程更易发生聚集。W59C和W151C突变使βB2的疏水暴露增加,直接导致突变后蛋白的溶解度显著降低;S31W和R145W这两个突变则导致了蛋白热稳定性的明显下降;另外我们证实了色氨酸相关的突变影响了βB2晶状体蛋白对于紫外辐照的稳定性,除R145W外,其余三个突变体的稳定性较野生型下降,R145W却比野生型更能抵抗紫外能量的损伤;将四个突变体在HeLa细胞中过表达后,W59C和W151C在胞内出现了明显的聚集现象,这可能与它们的的溶解度有关,与蛋白水平的结果一致,说明溶解度下降很可能是这两个突变在出生即表现为白内障的原因。
     以上结果表明,βB2晶状体蛋白的N末端的突变会对自身的寡聚化造成影响,位于疏水核心的色氨酸残基突变会显著影响溶解度和稳定性,而结构域表面亲水的氨基酸突变为色氨酸后则会降低蛋白稳定性,促进蛋白聚集。据此认为,βB2晶状体蛋白基因突变导致的先天性白内障,其发病机制是多样的。
βB2-Crystallin is one of major protein constituents of the human lens. Its high solubility and stability are critical for lens clarity and refraction. Many congenital cataract-linked mutations in βB2-crystallin gene (CRYBB2) have been reported. However, researches focused on the pathopoiesis mechanism of these mutations are deficient, thus there is a missing link between the influence of these mutations on the protein structure/function and the onset of cataract.
     In this research, we studied the mechanism underlying several mutations including the A2V mutation at the N-terminus and four tryptophan (Trp) related mutations (S31W, R145W, W59C, W151C). We cloned βB2-crystallin coding sequence from human lens cDNA library, inserted it in the expression plasmid pET28a, and PCR-based site-directed mutagenesis was performed to construct the mutant plasmids. Then the wild type βB2-crystallin and the mutants were overexpressed in E. coli and purified. The effect of mutations on βB2-crystallin structure and stability was investigated via biophysical methods such as circular dichroism, fluorescence and size-exclusion chromatography. The cell level study was conducted by overexpressing the WT and mutated βB2-crystallin gene in HeLa cells with expression plasmid pEGFP-C3or pcDNA3.1-flag to characterize the subcellular localization of target proteins, and analyze the effect of the mutant proteins on cell apoptosis.
     The results showed that the A2V mutation did not affect the secondary and tertiary structures, but retard the tetramerization of βB2-crystallin at high protein concentrations. The mutation also slightly decreased the thermal stability and promoted the thermal aggregation of βB2-crystallin. For the Trp related mutations, The W59C and W151C mutations affected the tertiary structure of βB2-crystallin by increasing the hydrophobic exposure and severely decrease the solubility of the mutants both in vitro and in the cells. The S31W and R145W mutations mainly influenced the stability of βB2-crystallin by promoting thermal aggregation. All four Trp mutations reduced the stability of βB2-crystallin against denaturation induced by chemical denaturants. When exposed under UV radiation, the mutants except R145W were more prone to aggregate than the wild type protein.
引文
[1]Banh A, Bantseev V, Choh V, Moran KL, Sivak JG The lens of the eye as a focusing device and its response to stress. Prog Retin Eye Res.2006 Mar;25(2):189-206.
    [2]Piatigorsky J. Lens differentiation in vertebrates. A review of cellular and molecular features. Differentiation 1981; 19(3):134-53.
    [3]Gong X, Cheng C, Xia CH. Connexins in lens development and cataractogenesis. J Membr Biol 2007;218(1-3):9-12.
    [4]Delaye M, Tardieu A. Short-range order of crystallin proteins accounts for eye lens transparency. Nature,302(5907):415-417,1983.
    [5]Bloemendal H, de Jong W, Jaenicke R, Lubsen N H,Slingsby C, Tardieu A. Ageing and vision:structure, stability and function of lens crystallins. Prog Biophys Mol Biol, 86(3):407-485,2004.
    [6]Uspal N G, Schapiro E S. Cataracts as the initial manifestation of type 1 diabetes mellitus. Pediatr Emerg Care,2011.27(2):132-134.
    [7]Francis P J, Berry V, Bhattacharya S S, Moore A T. The genetics of childhood cataract. J Med Genet,2000.37(7):481-488
    [8]Clark J I. Self-assembly of protein aggregates in ageing disorders:the lens and cataract model. Philos Trans R Soc Lond B Biol Sci,2013.368(1617):20120104.
    [9]Moreau K L, King J A. Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol Med,2012.18(5):273-282.
    [10]Gilbert C, Foster A. Childhood blindness in the context of VISION 2020--the right to sight. Bull World Health Organ.2001;79(3):227-32.
    [11]Rahi JS, Sripathi S, Gilbert CE, Foster A. Childhood blindness in India:causes in 1318 blind school students in nine states. Eye (Lond) 1995; 9:545-50.
    [12]Apple DJ, Ram J, Foster A, Peng Q. Elimination of cataract blindness:a global perspective entering the new millenium. Surv Ophthalmol.2000 Nov;45 Suppl 1:S1-196.
    [13]Reddy MA, Francis PJ, Berry V, Bhattacharya SS, Moore AT. Molecular genetic basis of inherited cataract and associated phenotypes. Surv Ophthalmol 2004; 49(3):300-15.
    [14]Hejtmancik JF. Congenital cataracts and their molecular genetics. Semin Cell Dev Biol. 2008 Apr;19(2):134-49.
    [15]Hansen L, Yao W, Eiberg H, Kjaer KW, Baggesen K, Hejtmancik JF, Rosenberg T. Genetic heterogeneity in microcornea-cataract:five novel mutations in CRYAA, CRYGD, and GJA8. Invest Ophthalmol Vis Sci.2007 Sep;48(9):3937-44.
    [16]Heon E, Priston M, Schorderet D F, Billingsley G D, Girard P O, Lubsen N, Munier F L. The gamma-crystallins and human cataracts:a puzzle made clearer. Am J Hum Genet, 1999.65(5):1261-1267.
    [17]Billingsley G, Santhiya ST, Paterson AD, Ogata K, Wodak S, Hosseini SM, Manisastry SM, Vijayalakshmi P, Gopinath PM, Graw J, Heon E. CRYBA4, a novel human cataract gene, is also involved in microphthalmia. Am J Hum Genet.2006 Oct;79(4):702-9.
    [18]Horwitz J. Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A,1992.89(21):10449-10453.
    [19]Sharma K K, Santhoshkumar P. Lens aging:effects of crystallins. Biochim Biophys Acta, 2009.1790(10):1095-1108.
    [20]Andley UP. Crystallins in the eye:Function and pathology. Prog Retin Eye Res.2007 Jan;26(1):78-98.
    [21]Lou D, Tong J P, Zhang L Y, Chiang S W, Lam D S, Pang C P. A novel mutation in CRYBB2 responsible for inherited coronary cataract. Eye (Lond),23(5):1213-20,2009.
    [22]Berbers GA, Hoekman WA, Bloemendal H, de Jong WW, Kleinschmidt T, Braunitzer G. Homology between the primary structures of the major bovine beta-crystallin chains. Eur J Biochem.1984 Mar 15;139(3):467-79.
    [23]Lubsen N H, Aarts H J, Schoenmakers J G. The evolution of lenticular proteins:the beta-and gamma-crystallin super gene family. Prog Biophys Mol Biol,1988.51(1):47-76.
    [24]Ueda Y, Duncan MK, David LL. Lens proteomics:the accumulation of crystallin modifications in the mouse lens with age. Invest Ophthalmol Vis Sci.2002 Jan;43(1):205-15.
    [25]Lampi K J, Shih M, Ueda Y, Shearer T R, David L L. Lens proteomics:analysis of rat crystallin sequences and two-dimensional electrophoresis map. Invest Ophthalmol Vis Sci, 2002.43(1):216-224.
    [26]Lampi K J, Ma Z, Shih M, Shearer T R, Smith J B, Smith D L, David L L. Sequence analysis of betaA3, betaB3, and betaA4 crystallins completes the identification of the major proteins in young human lens. J Biol Chem,272(4):2268-2275,1997.
    [27]Feng J, Smith D L, Smith J B. Human lens beta-crystallin solubility. J Biol Chem, 275(16):11585-11590,2000.
    [28]Hanson S R, Hasan A, Smith D L, Smith J B. The major in vivo modifications of the human water-insoluble lens crystallins are disulfide bonds, deamidation, methionine oxidation and backbone cleavage. Exp Eye Res,2000.71(2):195-207.
    [29]Zhang Z, David L L, Smith D L, Smith J B. Resistance of human betaB2-crystallin to in vivo modification. Exp Eye Res,73(2):203-211,2001.
    [30]Zhang Z, Smith D L, Smith J B. Human beta-crystallins modified by backbone cleavage, deamidation and oxidation are prone to associate. Exp Eye Res,2003.77(3):259-272.
    [31]Ma Z, Hanson S R, Lampi K J, David L L, Smith D L, Smith J B. Age-related changes in human lens crystallins identified by HPLC and mass spectrometry. Exp Eye Res,1998. 67(1):21-30.
    [32]Santhiya S T, Kumar G S, Sudhakar P, Gupta N, Klopp N, Illig T, Soker T, Groth M, Platzer M, Gopinath P M, Graw J. Molecular analysis of cataract families in India:new mutations in the CRYBB2 and GJA3 genes and rare polymorphisms. Mol Vis, 16:1837-1847,2010.
    [33]Miesbauer L R, Smith J B, Smith D L. Amino acid sequence of human lens beta B2-crystallin. Protein Sci,1993.2(2):290-291.
    [34]Slingsby C, Clout N J. Structure of the crystallins. Eye (Lond),1999.13 (Pt 3b):395-402.
    [35]Fu L, Liang J J. Alteration of protein-protein interactions of congenital cataract crystallin mutants. Invest Ophthalmol Vis Sci,44(3):1155-1159,2003.
    [36]Carver J A, Cooper P G, Truscott R J.1H-NMR spectroscopy of beta B2-crystallin from bovine eye lens. Conformation of the N- and C-terminal extensions. Eur J Biochem,1993. 213(1):313-320.
    [37]Bax B, Lapatto R, Nalini V, Driessen H, Lindley P F, Mahadevan D, Blundell T L, Slingsby C. X-ray analysis of beta B2-crystallin and evolution of oligomeric lens proteins. Nature, 1990.347(6295):776-780.
    [38]Cooper P G, Carver J A, Truscott R J.1H-NMR spectroscopy of bovine lens beta-crystallin. The role of the beta B2-crystallin C-terminal extension in aggregation. Eur J Biochem, 1993.213(1):321-328.
    [39]Sergeev Y V, Hejtmancik J F, Wingfield P T. Energetics of domain-domain interactions and entropy driven association of beta-crystallins. Biochemistry,2004.43(2):415-424.
    [40]Ajaz MS, Ma Z, Smith DL, Smith JB. Size of human lens beta-crystallin aggregates are distinguished by N-terminal truncation of betaB1. J Biol Chem.1997 Apr 25;272(17):11250-5
    [41]Nalini V, Bax B, Driessen H, Moss D S, Lindley P F, Slingsby C. Close packing of an oligomeric eye lens beta-crystallin induces loss of symmetry and ordering of sequence extensions. J Mol Biol,1994.236(4):1250-1258.
    [42]Liu B F, Liang J J. Protein-protein interactions among human lens acidic and basic beta-crystallins. FEBS Lett,581(21):3936-3942,2007.
    [43]Hejtmancik J F, Wingfield P T, Chambers C, Russell P, Chen H C, Sergeev Y V, Hope J N. Association properties of betaB2-and betaA3-crystallin:ability to form dimers. Protein Eng,1997.10(11):1347-1352.
    [44]Fu L, Liang J J. Detection of protein-protein interactions among lens crystallins in a mammalian two-hybrid system assay. J Biol Chem,2002.277(6):4255-4260.
    [45]Pande A, Pande J, Asherie N, Lomakin A, Ogun O, King J, Benedek G B. Crystal cataracts: human genetic cataract caused by protein crystallization. Proc Natl Acad Sci U S A, 98(11):6116-6120,2001.
    [46]Srivastava O P, Srivastava K, Chaves J M. Isolation and characterization of betaA3-crystallin associated proteinase from alpha-crystallin fraction of human lenses. Mol Vis,14:1872-1885,2008.
    [47]Gupta R, Chen J, Srivastava O P. A serine-type protease activity of human lens betaA3-crystallin is responsible for its autodegradation. Mol Vis,2010.16:2242-2252.
    [48]Magabo K S, Horwitz J, Piatigorsky J, Kantorow M. Expression of betaB(2)-crystallin mRNA and protein in retina, brain, and testis. Invest Ophthalmol Vis Sci, 41(10):3056-3060,2000.
    [49]Ganguly K, Favor J, Neuhauser-Klaus A, Sandulache R, Puk O, Beckers J, Horsch M, Schadler S, Vogt W D, Wurst W, Graw J. Novel allele of crybb2 in the mouse and its expression in the brain. Invest Ophthalmol Vis Sci,2008.49(4):1533-1541.
    [50]Duprey K M, Robinson K M, Wang Y, Taube J R, Duncan M K. Subfertility in mice harboring a mutation in betaB2-crystallin. Mol Vis,2007.13:366-373.
    [51]Liedtke T, Schwamborn J C, Schroer U, Thanos S. Elongation of axons during regeneration involves retinal crystallin beta b2 (crybb2). Mol Cell Proteomics,6(5):895-907,2007.
    [52]Fischer D, Hauk T G, Muller A, Thanos S. Crystallins of the beta/gamma-superfamily mimic the effects of lens injury and promote axon regeneration. Mol Cell Neurosci,2008. 37(3):471-479.
    [53]Liu B F, Liang J J. Interaction and biophysical properties of human lens Q155* betaB2-crystallin mutant. Mol Vis,2005.11:321-327.
    [54]Yao K, Li J, Jin C, Wang W, Zhu Y, Shentu X, Wang Q. Characterization of a novel mutation in the CRYBB2 gene associated with autosomal dominant congenital posterior subcapsular cataract in a Chinese family. Mol Vis,2011.17:144-152.
    [55]Wang K J, Wang B B, Zhang F, Zhao Y, Ma X, Zhu S Q. Novel beta-crystallin gene mutations in Chinese families with nuclear cataracts. Arch Ophthalmol,2011. 129(3):337-343.
    [56]Pauli S, Soker T, Klopp N, Illig T, Engel W, Graw J. Mutation analysis in a German family identified a new cataract-causing allele in the CRYBB2 gene. Mol Vis,2007. 13:962-967.
    [57]Hansen L, Mikkelsen A, Nurnberg P, Nurnberg G, Anjum I, Eiberg H, Rosenberg T. Comprehensive mutational screening in a cohort of Danish families with hereditary congenital cataract. Invest Ophthalmol Vis Sci,2009.50(7):3291-3303.
    [58]Santhiya S T, Manisastry S M, Rawlley D, Malathi R, Anishetty S, Gopinath P M, Vijayalakshmi P, Namperumalsamy P, Adamski J, Graw J. Mutation analysis of congenital cataracts in Indian families:identification of SNPS and a new causative allele in CRYBB2 gene. Invest Ophthalmol Vis Sci,2004.45(10):3599-3607.
    [59]Litt M, Carrero-Valenzuela R, Lamorticella D M, Schultz D W, Mitchell T N, Kramer P, Maumenee I H. Autosomal dominant cerulean cataract is associated with a chain termination mutation in the human beta-crystallin gene CRYBB2. Hum Mol Genet,1997. 6(5):665-668.
    [60]Gill D, Klose R, Munier F L, Mcfadden M, Priston M, Billingsley G, Ducrey N, Schorderet D F, Heon E. Genetic heterogeneity of the Coppock-like cataract:a mutation in CRYBB2 on chromosome 22q11.2. Invest Ophthalmol Vis Sci,2000.41(1):159-165.
    [61]Vanita, Sarhadi V, Reis A, Jung M, Singh D, Sperling K, Singh J R, Burger J. A unique form of autosomal dominant cataract explained by gene conversion between beta-crystallin B2 and its pseudogene. J Med Genet,2001.38(6):392-396.
    [62]Yao K, Tang X, Shentu X, Wang K, Rao H, Xia K. Progressive polymorphic congenital cataract caused by a CRYBB2 mutation in a Chinese family. Mol Vis,2005.11:758-763.
    [63]Bateman J B, Von-Bischhoffshaunsen F R, Richter L, Flodman P, Burch D, Spence M A. Gene conversion mutation in crystallin, beta-B2 (CRYBB2) in a Chilean family with autosomal dominant cataract. Ophthalmology,2007.114(3):425-432.
    [64]Li F F, Zhu S Q, Wang S Z, Gao C, Huang S Z, Zhang M, Ma X. Nonsense mutation in the CRYBB2 gene causing autosomal dominant progressive polymorphic congenital coronary cataracts. Mol Vis,2008.14:750-755.
    [65]Devi R R, Yao W, Vijayalakshmi P, Sergeev Y V, Sundaresan P, Hejtmancik J F. Crystallin gene mutations in Indian families with inherited pediatric cataract. Mol Vis,2008. 14:1157-1170.
    [66]Wang L, Lin H, Gu J, Su H, Huang S, Qi Y. Autosomal-dominant cerulean cataract in a chinese family associated with gene conversion mutation in beta-B2-crystallin. Ophthalmic Res,2009.41(3):148-153.
    [67]Mothobi M E, Guo S, Liu Y, Chen Q, Yussuf A S, Zhu X, Fang Z. Mutation analysis of congenital cataract in a Basotho family identified a new missense allele in CRYBB2. Mol Vis,2009.15:1470-1475.
    [68]Weisschuh N, Aisenbrey S, Wissinger B, Riess A. Identification of a novel CRYBB2 missense mutation causing congenital autosomal dominant cataract. Mol Vis,2012. 18:174-180.
    [69]Berbers G A, Brans A M, Hoekman W A, Slingsby C, Bloemendal H, De Jong W W. Aggregation behavior of the bovine beta-crystallin Bp chain studied by limited proteolysis. Biochim Biophys Acta,1983.748(2):213-219.
    [70]Trinkl S, Glockshuber R, Jaenicke R. Dimerization of beta B2-crystallin:the role of the linker peptide and the N- and C-terminal extensions. Protein Sci 1994; 3:1392-400.
    [71]Werten P J, Lindner R A, Carver J A, de Jong W W. Formation of betaA3/betaB2-crystallin mixed complexes:involvement of N- and C-terminal extensions. Biochim Biophys Acta, 1432(2):286-292,1999.
    [72]David, L.L. and T.R. Shearer, Beta-crystallins insolubilized by calpain II in vitro contain cleavage sites similar to beta-crystallins insolubilized during cataract. FEBS Lett,1993. 324(3):p.265-70.
    [73]Kapoor, D., et al., Creation of a new eye lens crystallin (Gambeta) through structure-guided mutagenic grafting of the surface of betaB2 crystallin onto the hydrophobic core of gammaB crystallin. FEBS J,2009.276(12):p.3341-53
    [74]Kosinski-Collins M S, Flaugh S L, King J. Probing folding and fluorescence quenching in human gammaD crystallin Greek key domains using triple tryptophan mutant proteins. Protein Sci,2004.13(8):2223-2235.
    [75]Chen J, Callis P R, King J. Mechanism of the very efficient quenching of tryptophan fluorescence in human gamma D- and gamma S-crystallins:the gamma-crystallin fold may have evolved to protect tryptophan residues from ultraviolet photodamage. Biochemistry, 48(17):3708-3716,2009.
    [76]Chen J, Toptygin D, Brand L, King J. Mechanism of the efficient tryptophan fluorescence quenching in human gammaD-crystallin studied by time-resolved fluorescence. Biochemistry,2008.47(40):10705-10721.
    [77]Fink A L. Compact intermediates states in protein folding. Subcell Biochem,1995.24:p. 27-53.
    [78]Ranjbar, B. and P. Gill, Circular dichroism techniques:biomolecular and nanostructural analyses- a review. Chem Biol Drug Des,2009.74(2):p.101-20.
    [79]Needleman S B, Wunsch C D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol,1970.48(3):443-453.
    [80]Eftink, M.R., The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys J,1994.66(2 Pt 1):p.482-501.
    [81]Jiskoot, W., et al., Application of fluorescence spectrolcopy for determining the structure and function of proteins. Pharm Biotechnol,1995.7:p.1-63.
    [1]Berbers, G.A., et al., Homology between the primary structures of the major bovine beta-crystallin chains. Eur J Biochem,1984.139(3):p.467-79.
    [2]Miesbauer, L.R., J.B. Smith and D.L. Smith, Amino acid sequence of human lens beta B2-crystallin. Protein Sci,1993.2(2):p.290-1.
    [3]Nalini, V., et al., Close packing of an oligomeric eye lens beta-crystallin induces loss of symmetry and ordering of sequence extensions. J Mol Biol,1994.236(4):p.1250-8.
    [4]Ajaz, M.S., et al., Size of human lens beta-crystallin aggregates are distinguished by N-terminal truncation of betaB1. J Biol Chem,1997.272(17):p.11250-5.
    [5]Slingsby, C. and N.J. Clout, Structure of the crystallins. Eye (Lond),1999.13 (Pt 3b):p. 395-402.
    [6]Wieligmann, K., E.M. Mayr and R. Jaenicke, Folding and self-assembly of the domains of betaB2-crystallin from rat eye lens. J Mol Biol,1999.286(4):p.989-94.
    [7]Fu, L. and J.J. Liang, Unfolding of human lens recombinant betaB2- and gammaC-crystallins. J Struct Biol,2002.139(3):p.191-8.
    [8]Bax, B., et al., X-ray analysis of beta B2-crystallin and evolution of oligomeric lens proteins. Nature,1990.347(6295):p.776-80.
    [9]Lapatto, R., et al., High resolution structure of an oligomeric eye lens beta-crystallin. Loops, arches, linkers and interfaces in beta B2 dimer compared to a monomeric gamma-crystallin. J Mol Biol,1991.222(4):p.1067-83.
    [10]Trinkl, S., R. Glockshuber and R. Jaenicke, Dimerization of beta B2-crystallin:the role of the linker peptide and the N- and C-terminal extensions. Protein Sci,1994.3(9):p. 1392-400.
    [11]Mayr, E.M., R. Jaenicke and R. Glockshuber, Domain interactions and connecting peptides in lens crystallins. J Mol Biol,1994.235(1):p.84-8.
    [12]Wright, G., et al., Circμlar permutation of betaB2-crystallin changes the hierarchy of domain assembly. Protein Sci,1998.7(6):p.1280-5.
    [13]Wieligmann, K., et al., Eye lens betaB2-crystallin:circμlar permutation does not influence the oligomerization state but enhances the conformational stability. J Mol Biol,1998. 280(4):p.721-9.
    [14]Clout, N.J., et al., The N-terminal domain of betaB2-crystallin resembles the putative ancestral homodimer. J Mol Biol,2000.304(3):p.253-7.
    [15]Liu, B.F. and J.J. Liang, Domain interaction sites of human lens betaB2-crystallin. J Biol Chem,2006.281(5):p.2624-30.
    [16]Hanson, S.R., et al., The major in vivo modifications of the human water-insoluble lens crystallins are disμlfide bonds, deamidation, methionine oxidation and backbone cleavage. Exp Eye Res,2000.71(2):p.195-207.
    [17]Feng, J., D.L. Smith and J.B. Smith, Human lens beta-crystallin solubility. J Biol Chem, 2000.275(16):p.11585-90.
    [18]Delaye, M. and A. Tardieu, Short-range order of crystallin proteins accounts for eye lens transparency. Nature,1983.302(5907):p.415-7.
    [19]Slingsby, C. and O.A. Bateman, Rapid separation of bovine beta-crystallin subunits beta B1, beta B2, beta B3, beta A3 and beta A4. Exp Eye Res,1990.51(1):p.21-6.
    [20]Fu, L. and J.J. Liang, Detection of protein-protein interactions among lens crystallins in a mammalian two-hybrid system assay. J Biol Chem,2002.277(6):p.4255-60.
    [21]Liu, B.F., K. Anbarasu and J.J. Liang, Confocal fluorescence resonance energy transfer microscopy study of protein-protein interactions of lens crystallins in living cells. Mol Vis, 2007.13:p.854-61.
    [22]Slingsby, C. and O.A. Bateman, Quaternary interactions in eye lens beta-crystallins:basic and acidic subunits of beta-crystallins favor heterologous association. Biochemistry,1990. 29(28):p.6592-9
    [23]Hejtmancik, J.F., et al., Association properties of betaB2- and betaA3-crystallin:ability to form dimers. Protein Eng,1997.10(11):p.1347-52..
    [24]Takata, T., L.G. Woodbury and K.J. Lampi, Deamidation alters interactions of beta-crystallins in hetero-oligomers. Mol Vis,2009.15:p.241-9.
    [25]Marin-Vinader, L., et al., In vivo heteromer formation. Expression of soluble betaA4-crystallin requires coexpression of a heteromeric partner. FEBS J,2006.273(14):p. 3172-82.
    [26]Liu, B.F. and J.J. Liang, Protein-protein interactions among human lens acidic and basic beta-crystallins. FEBS Lett,2007.581(21):p.3936-42.
    [27]Carver, J.A., P.G. Cooper and R.J. Truscott,1H-NMR spectroscopy of beta B2-crystallin from bovine eye lens. Conformation of the N- and C-terminal extensions. Eur J Biochem, 1993.213(1):p.313-20.
    [28]Cooper, P.G., J.A. Carver and R.J. Truscott,1H-NMR spectroscopy of bovine lens beta-crystallin. The role of the beta B2-crystallin C-terminal extension in aggregation. Eur J Biochem,1993.213(1):p.321-8.
    [29]Sergeev, Y.V., et al., Local microdomain structure in the terminal extensions of betaA3-and betaB2-crystallins. Mol Vis,1998.4:p.9.
    [30]Berbers, G.A., et al., Aggregation behavior of the bovine beta-crystallin Bp chain studied by limited proteolysis. Biochim Biophys Acta,1983.748(2):p.213-9.
    [31]Kroone, R.C., et al., The role of the sequence extensions in beta-crystallin assembly. Protein Eng,1994.7(11):p.1395-9.
    [32][32].Norledge, B.V., et al., The X-ray structure of a mutant eye lens beta B2-crystallin with truncated sequence extensions. Protein Sci,1997.6(8):p.1612-20.
    [33]Sergeev, Y.V., J.F. Hejtmancik and P.T. Wingfield, Energetics of domain-domain interactions and entropy driven association of beta-crystallins. Biochemistry,2004.43(2): p.415-24.
    [34]Cooper, P.G., et al., Supramolecu.lar order within the lens:1H NMR spectroscopic evidence for specific crystallin-crystallin interactions. Exp Eye Res,1994.59(5):p. 607-16.
    [35]Werten, P.J., et al., Formation of betaA3/betaB2-crystallin mixed complexes:involvement of N- and C-terminal extensions. Biochim Biophys Acta,1999.1432(2):p.286-92.
    [36]David, L.L. and T.R. Shearer, Beta-crystallins insolubilized by calpain Ⅱ in vitro contain cleavage sites similar to beta-crystallins insolubilized during cataract. FEBS Lett,1993. 324(3):p.265-70.
    [37]Kapoor, D., et al., Creation of a new eye lens crystallin (Gambeta) through structure-guided mutagenic grafting of the surface of betaB2 crystallin onto the hydrophobic core of gammaB crystallin. FEBS J,2009.276(12):p.3341-53.
    [38]Lampi, K.J., et al., Age-related changes in human lens crystallins identified by two-dimensional electrophoresis and mass spectrometry. Exp Eye Res,1998.67(1):p. 31-43.
    [39]Searle, B.C., et al., Identification of protein modifications using MS/MS de novo sequencing and the OpenSea alignment algorithm. J Proteome Res,2005.4(2):p.546-54.
    [40]Zhang, Z., D.L. Smith and J.B. Smith, Human beta-crystallins modified by backbone cleavage, deamidation and oxidation are prone to associate. Exp Eye Res,2003.77(3):p. 259-72.
    [41]Hejtmancik J F, Wingfield P T, Sergeev Y V. Beta-crystallin association. Exp Eye Res, 2004.79(3):377-383.
    [42]Robinson, N.E., et al., Quantitative measurement of deamidation in lens betaB2-crystallin and peptides by direct electrospray injection and fragmentation in a Fourier transform mass spectrometer. Mol Vis,2005.11:p.1211-9.
    [43]Takemoto, L.J., Disμlfide bond formation of cysteine-37 and cysteine-66 of beta B2 crystallin during cataractogenesis of the human lens. Exp Eye Res,1997.64(4):p.609-14.
    [44]Kamei, A., et al., Post-translational modification of betaH-crystallin of bovine lens with aging. Biol Pharm Bμll,2003.26(12):p.1715-20.
    [45]McFall-Ngai, M., et al., Age-dependent changes in the heat-stable crystallin, beta Bp, of the human lens. Curr Eye Res,1986.5(5):p.387-94.
    [46]Takemoto, L., et al., Cleavage from the N-terminal region of beta Bp crystallin during aging of the human lens. Exp Eye Res,1987.45(3):p.385-92.
    [47]Srivastava, O.P. and K. Srivastava, BetaB2-crystallin undergoes extensive truncation during agiAg in human lenses. Biochem Biophys Res Commun,2003.301(1):p.44-9.
    [48]Lampi, K.J., et al., Deamidation in human lens betaB2-crystallin destabilizes the dimer. Biochemistry,2006.45(10):p.3146-53.
    [49]Takata, T., et al., Solvent accessibility of betaB2-crystallin and local structural changes due to deamidation at the dimer interface. Exp Eye Res,2010.91(3):p.336-46.
    [50]Michiel, M., et al., Aggregation of deamidated human betaB2-crystallin and incomplete rescue by alpha-crystallin chaperone. Exp Eye Res,2010.90(6):p.688-98.
    [51]Zhang, Z., et al., Resistance of human betaB2-crystallin to in vivo modification. Exp Eye Res,2001.73(2):p.203-11.
    [52]Sanderson, J., J.M. Marcantonio and G. Duncan, A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification. Invest Ophthalmol Vis Sci,2000.41(8):p.2255-61.
    [53]Teintze, M., M. Inouye and S. Inouye, Characterization of calcium-binding sites in development-specific protein S of Myxococcus xanthus using site-specific mutagenesis. J Biol Chem,1988.263(3):p.1199-203.
    [54]Aravind, P., et al., The betagamma-crystallin superfamily contains a universal motif for binding calcium. Biochemistry,2009.48(51):p.12180-90.
    [55]Sharma, Y. and D. Balasubramanian, Calcium binding properties of beta-crystallins. Ophthalmic Res,1996.28 Suppl 1:p.44-7.
    [56]Rajini, B., et al., Calcium binding properties of gamma-crystallin:calcium ion binds at the Greek key beta gamma-crystallin fold. J Biol Chem,2001.276(42):p.38464-71.
    [57]Jobby, M.K. and Y. Sharma, Calcium-binding to lens betaB2- and betaA3-crystallins suggests that all beta-crystallins are calcium-binding proteins. FEBS J,2007.274(16):p. 4135-47.
    [58]Zhang, J., et al., Targeted knockout of the mouse betaB2-crystallin gene (Crybb2) induces age-related cataract. Invest Ophthalmol Vis Sci,2008.49(12):p.5476-83.
    [59]Head, M.W., K. Sedowofia and R.M. Clayton, Beta B2-crystallin in the mammalian retina. Exp Eye Res,1995.61(4):p.423-8.
    [60]Dirks, R.P., et al., Extralenticμlar expression of the rodent betaB2-crystallin gene. Exp Eye Res,1998.66(2):p.267-9.
    [61]Magabo, K.S., et al., Expression of betaB(2)-crystallin mRNA and protein in retina, brain, and testis. Invest Ophthalmol Vis Sci,2000.41(10):p.3056-60.
    [62]Gangμly, K., et al., Novel allele of crybb2 in the mouse and its expression in the brain. Invest Ophthalmol Vis Sci,2008.49(4):p.1533-41.
    [63]Duprey, K.M., et al., Subfertility in mice harboring a mutation in betaB2-crystallin. Mol Vis,2007.13:p.366-73.
    [64]Liedtke, T., et al., Elongation of axons during regeneration involves retinal crystallin beta b2 (crybb2). Mol Cell Proteomics,2007.6(5):p.895-907.
    [65]Fischer, D., et al., Crystallins of the beta/gamma-superfamily mimic the effects of lens injury and promote axon regeneration. Mol Cell Neurosci,2008.37(3):p.471-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700