艾滋病的靶向基因治疗
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
免疫缺陷病毒HIV/SIV胞膜蛋白Env gp120/gp41的受体或抗体分子与毒素蛋白相融合而形成的靶向性毒素,能够选择性杀伤被HIV/SIV感染后于表面表达Env gp120的细胞。但是,毒素蛋白作为异源分子,具有很强的免疫原性。CD4和绿脓杆菌毒素PE40的融合蛋白在临床试验中产生了剂量限制性的肝细胞毒性,并引起抗体的产生,从而在再次使用时会被抗体中和而失效。为避免毒素的免疫原性而对毒素进行的各种修饰均未达到理想的效果。本研究采用一种新的技术路线,利用CD4分子胞外V1V2区、化学趋化因子受体CXCR4和CCR5作为结合HIV/S1Vgp120的靶向性分子,将其与人的组蛋白H1相融合,通过H1与DNA的结合作用,在CD4、CXCR4和CCR5的引导下将毒素基因表达型质粒靶向性导入被HIV/SIV感染的细胞,以期通过毒素基因在靶细胞内部的表达并合成出毒素蛋白而发挥杀伤被HIV/SIV感染的细胞的目的。该方法在理论上能够完全避免毒素的免疫原性,减小毒素对正常细胞的毒副作用。
     本实验利用PCR技术以携带PE40(PEⅡ和Ⅲ结构域)基因的质粒为模板扩增出PE结构域Ⅲ(PE domainⅢ)的编码序列,同时将PEⅢC端的REDLK残基突变为KDEL,得到强效突变毒素PEⅢ_(mut)的基因片段。将该突变基因插入真核细胞表达载体pcDNA3.1(-)mychisA中,构建了毒素基因的真核表达重组质粒pA-PEⅢ_(mut)。为了更好地将毒素基因限制在HIV感染的细胞中表达,另将毒素基因置于HIV 5′LTR下游构建了真核细胞表达质粒pYL-PEⅢ_(mut),以使毒素基因的表达受HIV TAR/Tat的调控,当细胞内有病毒Tat蛋白存在时毒素基因才能表达。该带有毒素基因的表达型重组质粒即使被误导入正常细胞,因该细胞未受HIV的感染而无Tat蛋白的存在,毒素基因不能表达,细胞将不会被杀伤。
     利用RT-PCR方法,从正常中国人外周血淋巴细胞cDNA中获得CD4V1V2、CXCR4和CCR5的完整编码序列,进一步通过PCR扩增分别去掉CXCR4和CCR5羧基端胞内区的34和52个氨基酸,同时在C端引入长为9个氨基酸残基的流感病毒血凝素HA标签以便于蛋白检测。利用PCR技术从正常中国人外周血淋巴细胞基因组DNA中获得组蛋白H1C端86个氨基酸的编码序列,该序列中含有35个赖氨酸。利用P.pastoris酵母表达载体pPIC9、pHIL-S1及pPIC9K构建了表达靶向蛋白CD4V1V2、CD4V1V2-H1_(86)、CXCR4、CXCR4-H1_(86)、CCR5及CCR5-H1_(86)的一系列表达型重组质粒。各表达质粒线性化后通过电转或原生质体法分别转化入酵母株GS115、KM71和SMD1168中。经小规模诱导培养,从pPIC9重组体的KM71转化株中筛选出高表达CD4V1V2、CD4V1V2-H186的菌株。CD4V1V2和CD4V1V2-H186的表达量分别达1.4g/L和428mg/L,其中CD4V1V2在培养上清总蛋白中的含量大于90%,而CD4V1V2-H1_(86)在培养上清总蛋白中的含量为7.5%左右。由SMD1168表达的CD4V1V2-H1_(86)约为370mg/L,占培养上清的6%。从pPIC9和pHIL-S1重组质粒的KM71和GS115酵母转化子中未筛选出高表达CXCR4和CCR5各相关融合蛋白的酵母菌株。进一步利用G418的生长抑制作用,对生长于含1.25mg/ml和1.75mg/ml G418的培养基上的KM71/pPIC9K-C4H和KM71/pPIC9K-C5H转化子进行筛选,得到CXCR4-H1_(86)和CCR5-H1_(86)的高表达株。分泌至上清的CXCR4-H1_(86)-HA和CCR5-H1_(86)-HA分别占培养上清总蛋白的29%和15.5%左右,相应含量为454mg/L和167mg/L。
     选择CD4V1V2-H1_(86)和CCR5-H1_(86)-HA的高表达菌株进行摇瓶大规模培养诱导,从SDS-PAGE凝胶中回收目的蛋白,所得靶向蛋白CD4V1V2-H1_(86)和CCR5-H1_(86)-HA的纯度较高。进一步通过酸性丙酮的沉淀除去蛋白质中的SDS。利用CD4V1V2-H1_(86)和CCR5-H1_(86)-HA作为靶向蛋白,pA-PEⅢ_(mut)作为毒素基因表达型重组质粒进行细胞试验。根据蛋白质与DNA的电荷摩尔数比为1:0.9制备转染用复合物,同时按1μl/1μgDNA的量加入脂质体Lipofectin。分别以1μg、2μg和3μg质粒DNA的剂量转染被SIV感染的人T细胞系Hut-78细胞,同时用未受感染的Hut-78正常细胞作为对照。结果显示,靶向蛋白及单独使用的毒素基因表达质粒本身对正常细胞及被SIV感染的细胞均无毒副作用,靶向蛋白能介导毒素基因选择性进入被SIV感染的细胞。细胞试验所得的数据表明,CD4V1V2-H1_(86)介导的毒素基因在3μg的DAN剂量条件下发挥作用,对被SIV感染的Hut-78(Hut-78/SIV)细胞的杀伤率约为37%;而CCR5-H1_(86)-HA和CD4V1V2-H1_(86)与CCR5-H1_(86)-HA共同介导的毒素基因在1μg的质粒DNA剂量条件下即发挥细胞毒作用。CCR5-H1_(86)-HA单独介导时,在1μg、2μg和3μg质粒DNA的剂量条件下,被杀伤的Hut-78/SIV细胞介于50~60%之间;CCR5-H1_(86)-HA与CD4V1V2-H_(86)共同介导时,在1μg、2μg和3μg的质粒DNA剂量条件下,被杀伤的Hut-78/SIV细胞分别约为66%、62%和94%。
     细胞试验表明,本研究所设计的靶向蛋白能有效地介导毒素基因表达质粒靶向性转入被SIV感染的细胞中,所构建的毒素基因表达质粒pA-PEⅢ_(mut)能表达毒素蛋白PEⅢ_(mut)。该毒素突变型能强烈杀伤靶细胞。由此推测,利用靶向蛋白CXCR4-H1_(86)-HA和HIV LTR调控的毒素基因表达质粒pYL-PEⅢ,同样能有效地选择性杀伤被HIV感染的细胞。
     本研究为毒素药物的应用提供了一个新的途径。该技术路线不仅适用于艾滋病的治疗,还可通过靶向蛋白的更换,用于癌症或其它病毒感染疾病或自身免疫疾病等的治疗,由此开辟一条对上述诸疾病可能有良好治疗效果的新途径。
Targeted toxins usually are hybrid toxins containing protein toxins linked to binding doamins such as antibodies or protein ligands and can specially kill cells expressing the corresponding surface antigens or receptors. During the past decade, several types of anti-HIV hybrid toxins are constructed by substituting the normal cell binding region of the native toxin with extracellular regions of CD4 or Fab regions of anti-Env antibodies. Most cytotoxic domains have been derived from natural protein toxins such as Pseudomonas aeruginosa exotoxin A(PE), ricin and diphtheria toxin. In vitro data suggested that Env-targeted toxins displayed selective toxicity toward HIV-infected cells. However, the high hopes for the therapeutic potential of Env-targeted toxins such as CD4-PE40 were dashed in Phase I trials with individuals infected by HIV. The toxin leaded to dose-limiting hepatoxicity and immunogenicity. Up to now, such kind of targeting fusion protein can not be used to clinical treatment for interrelated diseases. In this case, it's necessary to search a safe and effective application of cytotoxins for clinical treatment.It's known that CD4 and one of chemokine coreceptors, CCR5 or CXCR4, constitute receptor complex which is bound by HIV/SIV Env gp120. While CXCR4 is used by T cell line-tropic HIV-1 strains, CCR5 is used by macrophage-tropic isolates and SIV strains. CCR5 and CXCR4 belong to the family of seven-transmembrane GTP-binding protein-coupled receptors. Studies have demonstrated that multiple elements distributed throughout the extracellular segments of coreceptor appeared to contribute to the HIV entry. However, the extracellular domain V1V2 of CD4 can bind gp120 effectively.Based on the knowledge, a novel alternative Env-targeting therapeutic strategy was developed. CD4 extrocellular region V1V2, chemokine receptors CCR5 and CXCR4 were used here as targeting agents to direct a gene encoding cytotoxic molecule into HIV/SIV-infected cells, which display HIV Env gpl20 on their surface. It's expected that the toxin be expressed in host cells and then kill these cells.PE domain III with responsibility for ADP-ribosylation is used here as the toxin. Encoding sequence for toxin PE domainIII was generated by PCR amplification from plasmid containing gene for PE40 (PE domainll and PE domainIII). To enhance the toxicity of PEIII, 5 amino acid residues of REDLK in C terminus of PEIII was replaced with 4 residues of KDEL during PCR and thus gene called PEIII_(mut) was engineered. Two mammalian expression plasmids containing PEIII_(mut) gene(pA-PEIII_(mut) and pLY-PEIII_(mut)) were engineered, in which PEⅢ_(mut) were regulated by CMV promoter and HIV LTR respectively.
     Encoding sequences for CD4V1V2, CXCR4 and CCR5 were obtained by RT-PCR from Chinese lymphocyte cDNAs and inserted into plasmid pBSKS. Introcellular parts of CCR5 and CXCR4 were further removed and hemagglutinin tag (HA tag) was added to the C terminus of truncated chemokine receptors via PCR amplificaton. Human histone H1 was adopted to conjoin DNA and targeting agents. To minimize the size of H1, only the 86 amino acid region of its C terminus containing 35 lysine residues was chosen. Corresponding encoding sequence was obtained from Chinese peripheral blood genome DNA via PCR amplification. The fusion genes for targeting protein composed of chemokine receptor and H1_(86) were then engineered.
     Series of expression vectors containing genes for targeting proteins were constructed based on methylotrophic yeast vector pPIC9, pHIL-S1 and pPIC9K. These vectors were respectively linearized at SalI, SacI or BgⅢsites and then transferred into Pichia pastoris strains of GS115, KM71 and SMD1168 via spheroplast transformation or electroporation. Upon induction with 1%methanol, the genes of CD4V1V2 and CD4V1V2-H1_(86) cloned in pPIC9 vectors were overexpressed in KM71 strain. CD4V1V2 and CD4V1V2-H1_(86) were secreted into the culture medium by means of theα- mating factor signal sequence and the yields were 1.4g/L and 428mg/L respectively, in which CD4V1V2 and CD4V1V2-H1_(86) accounted for about 90%and 7.5%of total proteins in culture supernatant respectively. As for SMD1168 strain, expression level of CD4V1V2-H1_(86) is about 6%of total proteins in supernatant, which is corresponding to 370 mg/L. However, none of pPIC9 or pHIL-S1 based recombinants showed high expression of chemokine receptor-related protein. Using G418 growth inhibition screen, high expression of CXCR4-H1_(86) and CCR5-H1_(86) were obtained from KM71 strains transformed with pPIC9K-based recombinants. The yields of CXCR4-H1_(86)-HA and CCR5-H1_(86)-HA secreted in to culture media were about 457mg/L and 167mg/L respectively, in which CXCR4-H1_(86)-HA and CCR5-H1_(86)-HA reached 29.3%and 15.2%of total supernatant proteins.
     To assay the selective cytotoxicity of complex composed of targeting proteins and toxin gene expression plasmid, SIV infected/uninfected human T-cell line Hut-78 cells were used. Targeting proteins of CD4V1V2- H1+(86)and CCR5-H1_(86) were purified from SDS-PAGE gel and the SDS in which was removed by acid acetone. And then, transfection complexes were made according to the charge ratios of CD4V1V2-H1_(86), CCR5-H1_(86) and recombinant pA-PEⅢ_(mut)(1: 0.9). A small quantity of Lipofectin (1μg lipofectin perμg DNA) was added in transfection mixture to enhance the efficiency of targeting protein-mediated transfection. The assay In vitro showed that CD4V1V2-H1_(86), CCR5-H1_(86), pA-PEⅢ_(mut) and pcDNA3.1(-)- MycHisA have no toxicity to SIV-infected/uninfected Hut-78 cells when they are used alone in transfection. The complex composed of the plasmid carrying toxin gene PEⅢ_(mut) and targeting proteins CD4V1V2-H186 or/and CCR-H186 can not enter into uninfected Hut-78 cells and thus have no toxicity to normal cells; while the complex can specifically kill Hut-78 cells infected with SIV. About 31.7%SIV-infected cells were killed when 3μg pAEⅢ_(mut) was delivered by corresponding quantity of CD4V1V2-H1_(86). 50%~60%cytotoxicity was observed when toxin gene was transferred with CCR5-H1_(86)-HA. Higher killing effect was achieved when CCR5-H1_(86)-HA and CD4V1V2-H1_(86) were used together to deliver toxin gene to SIV- infected cells. About 94%SIV-infected cells were killed when 1.54×10~5cells (containing 48.7%SIV-infected cells) were transfected with 3μg pAEⅢ_(mut) and corresponding quantity of protein CD4V1V2-H1_(86) and CCR5-H1_(86). It's expected that CXCR4-H1_(86) and pYL-PEⅢ_(mut) can also effectively target HIV-infected cells and have selective killing function on these cells.
     In vitro results indicated that targeting protein, consisting of a HIV/SIV Env targeting ligand and a DNA-bingding moiety, can effectively mediate selective transfection of toxin gene. The approach developed here has great potential for HIV therapy due to safety and non-immunogenicity. It could be extended for the efficient therapy of cancer, other viral infections and autoimmunodiseases, as long as the targeting protein is changed by interrelated others.
引文
1. Finzi,D. & Silicianom R. F. Cell 1998, 93: 665~671
    2. Ho, D. D. Science 1998, 280: 1866~1867
    3. Cohenm O. J. & Fauci, A. S. J Am Med Assoc 1998, 280: 87-88
    4. Volberding, P. A. & Deeks, S. G. JAMA 1998, 279(17): 1343~1344
    5. Grossman, Z., Feinberg, M, Kuznetsov, V., et al. Immunology Today 1998,19(11 ): 5; 28~533
    6. Bridges. S. H., & Sarver. N. The Lancer 1995, 345: 427~432
    7. Yu M, Poeschla E, Wong-Staal F. Gene Therapy 1994, 1: 13~26
    8. Berger., E. A., Moss B.and Pastan I. Proc Natl Acad Sci USA 1998, 95: 11511~11513
    9. Brady HJ, Miles CG., Pennington DJ., Dzierzak EA. Proc Natl Acad Sci USA 1994, 91: 365~369
    10. Caruso M. & Klatzmann D. Proc Natl Acad Sci USA 1992, 89: 182~186
    11. Harrison, G. S., Long C. J. Curiel T. J., et al. Hum Gen Ther 1992, 3: 461~469
    12. Hwang J., FitzGerald D. J. P., Adhya S.. et al. Cell 1987, 48: 129~136
    13. Reiter Y., Pai L. H., Brinkman U., et al. Cancer Res 1994, 54: 2714~2718
    14. Pastan I. Biochim Biophy Acta 1997, 1333: C1~C6
    15. Thrush GR., Lark LR., Clinchy BC & Vitetta ES. Annu Rev Immunol 1996, 14: 49~71
    16. Chaudhary VK., Queen C., Junghans R. P., et al. Nature (London) 1988, 325: 369~372
    17. Final Program & Dral Abstracts Ⅷ international conference on AIDS/Ⅲ STD word congress, Amsterdam, The Netherlands, July 1992
    18. Pai LH., et al. J Clin Oncol 1991, 9: 2095
    19.聂凌虎博士论文,1997
    20.张萌博士论文,1993
    21. John A, Jaeger and Ignaero T, Jr. Biochem 1993: 32: 12522~12530
    22. Cariel TJ, Cook DR, Wang Y., et al. Hum Gene Ther 1993, 4: 741~747
    23. Dropulic B & Jeang K-T. Hum Gene Ther 1994, 5: 927~939
    24. Dragic, T., et al. J. Virol. 1992; 66: 4794~4802
    25. Feng, Y., Broder CC., Kennedy, PE & Berger E. A.. Science 1996; 272, 872
    26. Cairns JS & D'Souza MP. Nature Medicine 1998, 4: 563~568
    27. Chan DC., Fass, D., Berger JM., and Kim, P. S. Cell 1997, 89: 263~273
    28. Weissenhom W., Dessen A., Harrison S. C., et al. Nature 1997, 387: 426~430
    29. Nolan GP. Cell 821~824
    30. Mebatsion T., Finke S., Weiland, F., and Conzelmann, K-K. Cell 1997, 90: 841~847
    31. Schnell, M. J., Johnson,JE., Buonocore, L. and Rose, JK. Cell; 90: 849~857
    32. Cregg JM. vedvick T. S. & Raschke WC. Bio/Technology 1993, 11: 905~910
    33.何诚,朱运松。甲醇营养型酵母表达系统的研究进展。生物工程进展 1998,18:7~11
    34.李晶,赵晓祥,沙长青等。生物工程进展 1999,19:17~20
    35. Dayle A, Hager et al. Anal Biochemistry. 1980, 109: 76-86
    36.王琳芳,潘华珍。分子生物学基本技术。北京生理科学会出版。1991,P2~3.
    37.Marshak DR,Kadonaga JT,Burgess RR,Knuth MW, Brennan WA Jr & Lin S-H.Strategies for protein purification and characterization.A laboratory course manual.Cold Spring Harbor Laboratory press.朱厚础等译.蛋白质纯化与鉴定实验指南.科学出版社.1999年p261.
    38. Hart, SL., Arancibia-Carcamo CV., Wolfert, MA, et al. Lipid-Mediated enhancement of transfection by a nonviral integrin-targeting vector. Hum Gene Therapy. 1998, 9: 575~585.
    39. Erbacher P, Bousser M-T, Raimond J., et al. Gene transfer by DNA/glycosyalted polylysine complexes into human blood monocyte-derived macrophages. Hum Gene Ther 1996, 7: 721~729.
    40. Erabcher P, Roche AC, Monsigny M, Midoux P. The reduction of the positive charges of polylysine by partial gluconoylation increases the transfection dfficiency of polylysine/DNA complexes. Biochimica Biophysica Acta 1997, 1324: 27~36
    41. Xu B, Wiehle S, Roth JA and Cristiano RJ. The contribution of poly-L-lysine, epidermal growth factor and treptavidia to EGF/PLL/DNA polyplex formation. Gene Therapy 1998, 5: 1235~1243
    42.吴小闲,何伏秋,涂新明等。应用SRV-1和SIV靶病毒建立模拟人免疫缺陷病毒药物筛选方法的研究。中华实验和临床病毒学杂志。1993,7(3):230~234
    43. Hussey RE., et al. Nature. 1988, 331: 78
    44. Scoret CA, Clare JJ, McCombie WR., et al. Bio/Technology. 1994, 12: 181~184
    45. Pastan I., et al. Aunu Rev. Biochem. 1992, 61: 331
    46. Lorberboum-Galski, H., FitzGerald D., Chaudhary V., et al. Proc Natn Acad Sci USA 1988, 85: 1922~1926
    47. Chaudhary VK., Mizukami T., Fuerst TR., et al. Nature 1988, 335: 369~372
    48. Tsubota H., Winkeler G., Meade HM., et al. J Clin Invest 1990, 86: 1684~1689
    49. Zverev V., Malushova V., Sidorov A., et al., Int ConfAIDS 1990, 6: 183
    50. Aullo P., Algami J., PopoffMR., et al. EMBO J 1992, 11: 575~583
    51. Till MA., Ghetic V., Gregory T., et al. Science 1988, 242: 1166~1168
    52. Berger EA., Clouse KA., Chaudhary VK., et al. Proc Natl Acad Sci USA 1989, 86: 9539~9543
    53. Ashom E, Englund G., Martin MA., et al. J Infect Dis 1991, 163,703~709
    54. Ashorn P., Moss B., Weinstein JN., et al. J acq Immun Defic Syndrome 1992, 5: 70~77
    55. Ashorn P., Moss B., Weinstein JN., Proc Natl Acad Sci USA 1990, 87: 8889~8893
    56. Kennedy PE., Moss B and Berger EA., et al. Virology 1993, 192: 375~379
    57. Wu GY and Wu CH. J Biol Chem 1987, 262: 4429~4432
    58. Wagner E, Zenke M, Cotton M., et al. Proc Natl Acad Sci USA 1990, 87: 3410~3414
    59. Ferkoi T, Perales JC, Mularo F, Hanson RW. Proc Natl Acad Sci USA 1996, 93: 101~105
    60. Endres MJ, Jaffer S, Haggarty B., et al Science 1997, 278: 1462~1464
    61. Atchison RE.,Gosling J., Monteclaro FS., et al. Science 1996, 274,1924~1926
    62. Lapham CK., Ouyang J., Chandrasekhar B., et al. Science 1996, 274: 602~605
    63. Rucker J., Samson M., Doranz BJ., et al. Cell 1996,87:437~446
    64. Atchison RE.,Gosling J., Monteclaro FS., et al. Science 1996, 274,1924~1926
    65. Luo D., Mah N., Drantz M., et al. Biotechnology techniques 1997, 11: 759~ 761
    66. Reverter D., Ventura S., Villegas V., et al. J Biological Chemistry 1998,273:3535~3541
    67. Siegel RS., Buckholz RC, Thill GP and Wondrack LM. 1990, Production of epidermal growth factor in methylotrophic yeast cells. International Patent Application Publication No WO 90/10697
    68. Richard F , Robert P , Remy JJ., et al. Biochem Biophys Res Commun 1998,245:847~852
    69. Brake AJ Merrymeather JP ., Coit DG., et al. Proc Natl Acad Sci USA 1984,84:4642~4646
    70. Wagner SL., Sigel RS., Vedvick TS., et al. Biochem Biophys Res Commun 1992, 196:1139-1145
    71. Vozza LA., Wittwer L., Higgins DR., et al. Bio/Technology 1996: 14: 77~ 91
    72. Scorer C, Clare JJ., McCombie WR., et al. Bio/Technology 1994,12:181~184
    73. Curiel DT., Agarwal S., Wagner E & Cotton M. Proc Natl Acad Sci USA 1992, 88: 8850 ~8854
    74. Wagner E., Plank C, Zatloukal K., et al. 1992, 89: 7934~7938
    75. Chowdhury NR., Wu CH., Wu Gy., et al. J Biol Chem 1993,268: 11265~11271
    76. Farhood H, Serbina N and Huang L. Biochim Biophys Acta 1995,1235: 289 ~295
    77. Xu Y and Szoka FC JR. Biochenistry 1996,35: 5616~5623
    78. Goldfarb DS, Gariepy J Schooluik G and Kornberg RD.,Nature 1986, 322:641~ 644
    1. Maddon. EJ., et al. The T4 gene encodes the AIDs virus receptor and is expressed in the immune system and the brain. Cell 1986. 47: 333-385
    2. Dragic, T.,, L. Picard, and M. Alizon. Proteinase-resistant factors in human erythrocyte membranes mediate CD4-dependent fusion with cells expressing human immunodeficiency virus type 1 envelope glycoproteins. J. Virol. 1995; 69: 1013-1018
    3. Dragic, T., et al. Complementation of murine cells for human immunodeficiency virus Envelope/CD4-mediated fusion in human murine heterokaryons. J. Virol. 1992; 66: 4794-4802
    4. Feng, Y. et al. Science 1996; 272, 872
    5. Fantini, J. et al. Infection of colonic epithelial cell lines by type 1 human immunodeficiency virus is associated with cell surface expression of galactosylceramide, a potential alternative gp120 reccptor. Proc. Natl. Acad. Sci. USA. 1993; 90: 2700-2704
    6. Barouse, J. M., et al. CD4-independent infection of human neural cells by human immunodeficiency virus type 1. J. Virol. 1998; 63: 2527-2533
    7.刘祝公。趋化因子及其受体与HIV感染。国外医学免疫分册1998:21(3):136-140
    8. Murphy, P. M. Cytokine Growth Factor Rev. 1996; 7: 47-64
    9. Cairns, J. S. & D'Souza, M. P. Chemokines and HIV-1 second receptors: The therapeutic connection. Nature Medicine. 1998; 4(5): 563-568
    10. Holmes, W. E., et al. Structure and function expression of a human interleukin-8-receptor. Science 1991. 253: 1278-1280
    11. Murphy, P. M. and H. L., Tiffany. Cloning of complementary DNA encoding a functional interleukin8 receptor. Science 1991; 253: 1280-1283
    12. B lenl cc. et al. Nature.. 1996; 382: 829
    13. Oberlin E. et al. Nature. 1996; 382: 833
    14. Federsppiel, B., et al. Molecular cloning of the cDNA and chromosomal localization of the gene for a putative seven-transmembrane segment (7-TMS) receptor isolated from human spleen. Genomics. 1993; 16: 707-712
    15. Herzog, H., et al. Molecular cloning, characterization, and localization of the human homolog to the reported Bovine NPY Y3 receptor: lack of NPY binding and activation. DNA Cell Biol. 1993; 12: 465-471
    16. Loetscher, M., et al. Cloning of a human seven-transmembrane domain receptor, ESTR, that is highly expressed in leukocytes. J. Biol. Chem. 1994; 269:: 232-237
    17. Sattentau, Q. J., and J. P. Moore. Conformational changes in the human immunodeficiency virus envelope glycoproteins by soluble CD4 binding. J. Exp. Med. 1991; 174: 407-415
    18. Murphy, P. R. The molecular biology of leukocyte chemoattractant receptors. Annu. Rev. Immunol. 1994; 12: 593-633
    19. Strader, C. D., et al. Structure and functoion of G protein-coupled receptors. Annu. Rev. Biochem. 1994; 63: 101-132
    20. Alkhatib. G. et al. Science. 1996; 272: 1965
    21. Doranz. B. J. Cell. 1996; 85: 1149
    22. Cheek, H. et al. 1996: 85: 1135
    23. Dragic, T. et al. Nature. 1996; 381: 667
    24. Deng. H. et al. Nature. 1996: 381: 661
    25. Atchison, R. E. et al. Multiple extracellular elements of CCR5 and HIV-1 entry: dissociation from response to chemokines. Science. 1996; 274: 1924-1926
    26. Chan, D. C. et al. Cell. 1997; 89: 263-273
    27. Weissenhorn, W. et al. Nature. 1997; 387: 426-430
    28. Connor, R. I. Increased viral burned and cytopathicity correlate temporally with CD4+ T-lymphocyte decline and clinical progression in human immunodeficiency virus type 1-infected individuals. J.Virol. 1993;67:1792-1797
    29.Roos,M.T.et al. Viral phenotype and immunereponse in primary human immunodeficiency virus typy 1 infection. J lufect Dis. 1992;165:427-432
    30.Zhu T. Genotypic and phenotypic characterization of HIV-1 patients with primary uinfection. Science. 1993;261:1179-1181
    31.B,CC.et al. PNAS. 1997;94:1925
    
    32.SchaIl,T. Biology of the RANTES/sis cytokine family. Cytokine. 1991 ;3:165-183
    33.Nelson, P. et al. Genomic organozation and transcriptional regulation of the RANTES chemokine gene. J. Immunol. 1993;151:2601-2612
    34.Rathanasqami, P.,et al. Expression of the cytokine TANTES in human rheumatoid synovial fibroblasts. Differential regulation of RANTES and interleukin-8 genes by inflammatory cytokine. J. Biol. Chem. 1993;268:5834-5839
    35.Schall,T.,Bacon,K. Chemokines, leukocyte trafficking, and inflammation. Curr Opin Immunol 1994;6:865-873
    36.Tersmettle, M. et al.Association between biological properties of human immunodeficiency virus variants and risk for AIDs and AIDs mortality. Lancet. 1989;1:983-985\
    37.Bhattacharyya D.et al.Positioning og positively charged residues in the V3 loop correlates with HIV type 1 syncytium-inducing phenotype. AIDS Res Hum Tetrovirus 1996;12:83-90
    38.Cocchi, F.et al. The V3 loop domain of HIV-1 envelope glycoprotein gp120 id critical for chemokine-mediate blockade of infection. Nat Med 1996;2: 1244-1247
    39.Collman R.et al. An infectious molecular clone of an unusual macrophage-tropic and highly cytopathic strain of human immunodeficiency virus type 1. J. Virol. 1992;67:772-777
    40.Rucher J.et al. Utilization of chemokine receptors,orphan receptors and herpesvirus encoded receptors by diverse human and simian immunodeficiency viruses. J.Vorol. 1997;71:8999-9007
    41. Kozak,S.L.et al. CD4,CXCR4, and CCR-5 dependencies for infections by primary patient and laboratory-adaOted isolates of human immunodeficiency virus type 1. J. Virol. 1997;91:873-882
    42.Endres, M.J.et al. CD4-independent infection by HIV-2 is mediated by fusin/CXCR4. Cell. 1996;87:745-756
    43.Reeves J.D. et al. CD4-independent infection by HIV-1(ROD/B): use of the 7-transmembrame receptors CXCR-4,CCR-3 and V28 for entry, Virology. 1997;231:130-0-134
    44.Liu,R.et al. Cell.l996;86:367-377
    45.Dean, M. et al. Science 1996;273:1856-1862
    46.Winkler,C. et al.Science. 1998;279:389-393
    47.Mebation,T.,et al. A CXR4/CD4 pseudotype rhabdovirus that selectively infects HIV-1 envelope protein-expressing cells. Cell. 1997;90:841-847
    
    48.Schnell, M.J.,et al. Construction of a novel virus that targets HI V-1-infected cells and controls HIV- 1 infection. Cell;90:849-857
    1. Wolff JA, Lederberg J. Hum Gene Ther 1994; 5: 469-480
    2. 80. Anderson WE Nature 1998; 392(supp): 25-29
    3. Naldini L, Blomer U, et al. Science 1996; Z72: 263-267
    4. Naldini L, Blomer U, et al. Proc Natl Acad Sci USA 1996; 93: 11382-11388
    5. Poeschla Em Corbeau P, Wong-Stall F: Proc Natl Acad Sci USA 1996; 113945-11399
    6. Srinivasakumar N, et al. J Virol 1997; 71: 5841-5848
    7. Mocarski ES, et al. Proc Natl Acad Sci USA 1996; 93: 11321-11326
    8. Robertson Es, Ooka Tm Kieff ED. Proc Natl Acad Sci USA 1996; 93: 11334-11340
    9. Moss B: Proc Natl Acad Sci USA 1996; 93: 11341-11348
    10. Paoletti E. Proc Natl Acad Sci USA 1996; 93: 11349-11353
    11. Palese Eet al. Proc Natl Acad Sci USA 1996; 93: 11354-11358
    12. Frolov I. Pro. c Natl Acad Sci USA 1996; 93: 11371-11377
    13. Duboise SM,. et al. Proc Natl Acad Sci USA 1996; 93: 11389-11394
    14. Bolmerm U., et al. Hum Mol Genet 1996; 5: 1397-1404
    15. Bolmer U., et al. J Virol 1997; 71: 6641-6649
    16. Robbins PD, Tahara H and Ghivizzani SC. TIBTEH J 1998; 16: 35-40
    17. Robbins. PD. et al. Ann. New York Acad Sci 1994; 716: 72-89
    18. Dranoff. G. et al. Proc Natl Acad Sci USA 1993; 90: 3539-3543
    19. Zitvogel, L. et al. Hum Gene Ther 1994; 5: 1493-1506
    20. Adam, MA., J Virol 1991; 65: 4985-4990
    21. Burns JC., et al. Proc Natl Acad Sci USA 1993; 90: 8033-8037
    22.Yee J-K., Proc Natl Acad Sci USA 1994;91:9564-9568
    23.Cosset FL.,et al. J Virol 1995;69:7430-7436
    24.Takeuchi Y. Cisset FL.et al.J Virol 1994;68:8001-8007
    25.Donahue RE.,et al.J Exp Med 1992;176:1125-1135
    26.Soneoka Y.,et al. Nucleic Acids Res 1995;23:628-633
    27.Moolten FL and Couples A. Hum Gene Ther 1992;3:479-486
    28.Stratford-Perrricaudet LD.,et al.Hum Gene Ther 1990;1:241-256
    29.Zabner J.,et al. Cell 1993;75:207-216
    30.Rogulski.,et al. Hum Gene Ther 1997; 8:73-85
    31.Blackburn RV.,et al. Cancer Research 1998; 58:1358-1362
    32.Yang Y.,et al. Proc Natl Acad Sci USA 1994;9:4407-4411
    33.Yang Y, Ertl HC and Wilson JM. Immunity 1994; 1:433-442
    34. Yang Y, Li Q, Ertl HC and Wilson JM. J Virol 1995;69:2004-2015
    35.Eremer EJ, Perricaudet M. Br Med bull 19951;51:31-44
    36.Yang Y and Wilson JM. J Immunol 1995;155:2564-3670
    37.Yang Y, Su Q and Wilson JM. J Virol. 1996;70:7209-7212
    38.Parks RJ.,et al. Proc Natl Acad Sci USA 1996;93:13565-13570
    39.Parks RJ and Graham FL. 1997;71:3293-3298
    40.Kremer EJ and Oerricauder M. Br Med bull 1995;51:31-44
    41.Kotin RM.,et al. Proc Natl Acad Sci USA 1990;87:2211-2215
    42.Zhou SZ.,et al. J Exp Med 1994; 179:1867-1875
    43.Kaplitt MG.,et al. Nat Genet 1994;8:148-154
    44.Ali RR.,et al. Hum Mol Genet 1996;5:591-594
    45.Miller AD. Nat Med 1997;3:278-279
    46.Koeberl DD.,et al. Proc Natl Acad Sci USA 1997; 94:1426-1431
    47.Xiao X, Li J and Samulski RJ. J Virol 1996;70:8098-8108
    48.Starr PA.,et al. Gene Ther 1996;3:615-623
    49.Neve RL and Geller AI Clin Neurosci 1995;3:262-267
    50.Geller AI.,et al. Adv Neurol 1997;72:143-148
    51.Geller AL, et al. Exp Neurol 1997;144:98-102
    52.Lachman RH and Efstathiou S. J Virol 1997;71:3197-3207
    53.Brown OA.,et al.Gene Ther 1997;4:331-338
    54.Fink DJ., Annu Rev Neruosci 1997; 19:265-287
    55.Dilloo D.,et al. Blood I997;89:119-127
    56.Andreansky SS.,et al. Proc Natl Acad Sci USA 1996;93:11313-11318
    57.HamoudaT.,et al.J Virol 1997;71:5521-5527
    58.Romano G.,et al. In vivo 1998;12:59-68
    59.Randazzo BP.,et al. J Invest Dermatol 1997; 108:933-937
    60.Roizman B. Proc Natl Acad Sci USA 1996;93:11307-11312
    61.Ledey FD. Hum Gene Ther 1995;6:1129-1144
    62.Davis HL.,et al. Hum Gene Ther 1993;4:733-740
    63.Wolff JA.,et al. Biotechnology 1991 ;11:474-485
    64.Vahlsing.,et al. J Immunol Methods 1994; 175:11-22
    65.Felgner JH., J Biol Chem 1994;269:2550-2561
    66.Canonio AE., et al. Cell Mol Biol 1994;10:24-29
    67.Brigham KL.,et al. Am J Respir Cell Mol Biol 1993;8:209-213
    68.Palutz GE.,et al. Proc Natl Acad Sci USA 1993;90:4645-4649
    69.Conary JT.,et al. J Clin Invest 1994;93:1834-1840
    70a.Hersh EM & Stopeck AT. Clin Cancer Res 1997;3(12pt2):2623-2629
    70b.Nabel GJ.,et al. Proc Natl Acad Sci USA 1993;90:11307-11311
    71.Philip R.,et al. Mol Cell.Biol. 1994;14:2411-2418
    72.Nabel EG, Plautz G and Nabel GJ. Proc Natl Acad Sci USA 1992;89:5157- 5161
    73.Pope IM, Poston GJ and Kinsella AR. European J Cancer 1997;33(7):1005-1016
    74. Weiss RA. Cellular receptors and viral glycoproteins involved in retrovirus entry. In The Retroviridae(Levy JA,ed) pp 1-108,Plenum,New York
    
    75.Poznansky M.,et al. J Virol 1991;65:532-536
    76.Miller AD. Curr Top Microbiol Immunol 1992;158:l-24
    77.Takeuchi.,et al. Virology 1992; 186:792-794
    78.Vile RG.,et al. Virology 1991; 180:420-424
    79.Zhu Z,Chen SSL and Huang AS. J AIDS 1990;3:215-219
    80.Calafat J.,et al. J Gen Virol 1983;64:1241-1253
    81.Young JAT.,et al. Science 1990;250:1412-1423
    82.Endres MJ., et al. Science 1997; 278: 1462-1464
    83.Miller N and Vile R. FASEB J 1995;9:190-199
    84.Ott D and Tein A. J Virol 1992;66:4632-4638
    85.Valsesia-\Vittman S.,et al. J Virol 1994;68:4609-4619
    86.Dong J, Roth MG and Hunter E. J Virol 1992;66:7374-7382
    87.Brown KE, Anderson SM and Young NS. Sceince 1993;262:114-117
    88.Russell AJ, Hawkins RE and Winter G. NAR 1993;21:1080-1085
    89.Etienne-Julan M.,et al. J Gen Virol 1992;73:3251-3255
    90.Neda H, Wu GH and Wu GY. J Biol Chem 1991;266:14143-14146
    91.Battini JL., J Virol 1992;66:1468-1475
    92.Wickham TJ., Cell 1993;73:309-319
    
    93.Stratford-Perricaudet LD.,et al. J Clin Invest 1992;90:6226-6230
    94.Wu GY.,et al. J Biol Chem 1994;269:11542-11546
    95.Moullier,P.,et al. Kidney Int 1994;45:1220-1225
    96.Allen TM. TIPS 1994; 15:215-220
    97.Mizuno M.,et al. Cancer Res 1990;50:7826-7829
    98.Stavridis JC.,et al. Exp Cell Res 1986; 164:568-572
    99.Walther FJ.,et al. Am J Physiol 1993;265:L330-L339
    100.Kao GY,Chang LJ and Allen TM. Cancer Gene Therapy 1996;3(4):250-256
    101.Michael SI and Curiel DT. Gene Ther 1994; 1:223-232
    102.Ferkol, T.,et al. FASEB J 1993;7:1081-1091
    103.Rosenkranz AA.,et al. Exp Cell Res 1992;199:323-329
    104.Chen J.,et al. FEBS Lett 1994;338:167-169
    105.Batra RK.,et al. Gene Ther 1994; 1:255-260
    106.Haensler J and Szoka FC Jr. Bioconjug Chem 1993;4:85-93
    107.Wagner E.,et al. Proc Natl Acad Sci USA 1991;2:226-231
    108.Michael SI.,et al. J Biol Chem 1993;268:6866-6869
    109.Lozier JN.,et al. Hum Gene Ther 1994;5:313-322
    110.Wagner E.,et al. Proc Natl Acad Sci USA 1990;87:3410-3413
    111 .Trubetskoy VS., et al. Biochim Biophys Acta 1992; 1131:311-313
    112.Hart SL.,et al. Hum Gene Ther 1998; 9: 575-585
    113.Cox GA.,et al. Nature 1993;364:725-729
    114.Maxwell IH, Glode LM and Maxwell F. Cancer Res 1991;51:4299-4304
    115.Jahroudi N and Lynch DC. Mol Cell Biol 1994; 14:999-1008
    116.Hatzoglou M.,et al. J Biol Chem 1990;265:17285-17293
    117.Vile RG, Miller N., Chernajovsky U and Hart IR. Gene Ther 1994;l:l-10
    118.Brady HJM.,et al. Proc Natl Acad Sci USA 1994;91:365-369
    119.Miyao Y.,et al. J Neurosci Res 1993;36:472-479
    120.Vile RG and Hart IR. Cancer Res 1993;53:3860-3864
    121.Harris JD.,etal. Gene Ther 1994;1:170-175
    122.Dupont F.,et al. J Virol 1994;68:1397-1406
    123.Shelling AN and Smith MG. Gene Ther 1994;1:165-169
    124.Chakraborty AK.,et al. FASEB J 1993;7:971-977
    125.Voytas DF and Boeke JD. Trends Genet 1993;9:424-427

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700