TiO_2膜光催化降解水中有机污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为新的环境净化材料,TiO_2光催化剂可广泛用于废水处理、空气净化、杀菌、除臭、表面自清洁等方面。为了更快地将这种处理技术用于大规模生产当中,本文以焦化废水中的邻甲酚作为目标污染物,试图从催化剂薄膜的制备、反应器的设计、反应条件的影响等各方面来深入研究TiO_2膜催化剂的催化降解作用以便促进提高其实际应用中的经济技术可行性。
     溶胶-凝胶法在紫外灯管表面制备TiO_2薄膜催化剂稳定性较高,可重复利用,经过30批次的反应后,催化降解效率仍在85%以上。不仅克服了悬浮相光催化剂的缺点,而且便于改进和放大后应用于工业废水处理。采用P25溶胶来制备TiO_2薄膜催化剂具有经济与技术的双重可行性。
     设计了一种新型光催化反应器。对新型光催化反应器模型进行严格控制污染物邻甲酚的光催化降解,效果良好,为酚类废水的处理提供了一种工艺简单、成本低、不会造成二次污染的方法。
     选用紫外灯管为载体的UR光催化反应器对紫外光的利用率提高了,对邻甲酚的光催化降解效率很高,反应的过程符合一级动力学规律,研究了反应速率与邻甲酚的初始浓度、光强度和反应温度等反应条件的关系。利用该反应器对具有芳醚结构的农药克百威和残杀威进行光催化降解,表现了良好的降解效率,60min内可降解80%以上。
     考察了介质水中常见金属离子Fe~(2+)、Fe~(3+)、Cu~(2+)、Mn~(2+)及酸碱度pH值对紫外灯管负载TiO_2膜催化剂性能的影响。结果表明,适量的Fe~(2+)对反应有促进作用,Fe~(3+)、Cu~(2+)对反应影响很小,Mn~(2+)对反应有抑制作用。溶液的pH值在5.5左右降解效率最高,偏低或偏高的pH值对光催化降解均产生不利的影响。
As a new environmental matrial, TiO2 photocatalyst has the attractive applications to waste water treating, air purifying, bactericide,deodorization and surface, self-cleaning. In order to increase the practical application of this waster water treating technology, in this text, we tried to improvement the feasible on economy and technology from preparation of photocatalysists, design of reactor and the influence of different reaction conditions etc.
    A P25 TiO2 film supported on UV light surface was prepared using sol-gel method at 200℃ calcinations temperature, and the photocatalyst has shown a good stability and performance for the photodegradation of orthocresol solution irradiated with UV light of 254nm, when reaction for 30min, the photodegradation still more then 85%. which not only avoid the filtration and resuspension of the photocatalysts, also has advantage for the design of photocatalytic reactor. the efficiencies of photocatalytic degradation of orthocresol increased than the reactor with glass tube as support.
    A novel high-efficiencies photocatalytic reactor with the P25 TiO2 film supported on UV light surface was designed. This reactor has shown a good performance with the photodegradation of orthocresol solution. It offered us a method to degradation of aromaticity , this method technics is simple, cost is low and can be avoid the repollution.
    The novel photocatalytic reactor with the P25 TiO2 film
    
    
    supported on UV light surface(UR) have increased the utilance because Light energy transmitted to TiO2 particals without any refraction on the UV light tube. The kinetic study led to one -order reactions,and the efficicency was influenced by prel--iminary concentration, intensity of light and the temperature of reaction as so on. This reactor has shown a good performance with the photodegradation of aether configuration pesticide such as carbofuran and propoxur,the photodegradation rate of 60min achieved 80%.
    The influence of common cations (Fe2+, Fe3+, Cu2+, Mn2+) and the pH in water was studied. It is shown that add Fe2+ aptly can accelerate the reaction, Fe3+, Cu2+ have little influence to reaction, but Mn2+ can restrain the rate of reaction. The aptitude pH of solution is 5. 5, on the low side or on the high side will restrain the photocatalystic reaction.
引文
[1] 桥本和仁,藤岛昭等.Light-induced amphiphiliC surface[J].Nature,1997,388:431.
    [2] 余家国等。多孔TiO_2光催化膜的制备[J].无机材料学报,2000,15(2):20
    [3] 信觉俗等。间断充氧提高TiO_2膜沉积速率的研究[J].表面技术,1999,29(2):6
    [4] 刘敬肖等.离子束合成TiO_2薄膜对医用NiTi合金表面的改性[J].材料研究学报,2001,15(4):445
    [5] 曹亚安等.Sn~(4+)掺杂对TiO_2纳米颗粒膜光催化降解苯酚活性的影响[J].高等学校化学学报,2001,22(11):1910
    [6] 孙一军等.用MOCVD方法制备TiO_2薄膜:工艺及进展[J].硅酸盐通报,1997,2:3
    [7] D. Matthews, et al. Electrophoretically deposited titanium dioxide thin films for photovoltaic cells[J]. Aust. J. Chem., 1994,47:1869
    [8] C. Kavan, et al. Preparation of TiO_2(anatase) films on electrodes by anodic oxidative hydrolysis of TiCl_3[J].Electroanal. Chem., 1993,346:291
    [9] C. Natarajan and G. Nogami, Cathodic electrodeposition of nanocrystalline titanium dioxide thin films[J]. Soc. Electrochem., 1995,143(5):1547
    [10] 黄怀国等.TiO_2-聚苯胺复合膜的光电化学[J].电化学,2001,7(1):102
    [11] M. Shirkhanzadeh. Fabrication and characterization of alkoxy-derived nanophase TiO2 coatings[J]. Mater. Med., 1995, 6:206
    [12] Harada Keoji, Hisanaga Teruaki, et al. Photodegradation of dye pollution on TiO_2nanoparticales [J]. Water Res, 1990,24(11):
    
    1415-1417
    [13] Li Z X, Zhang M. Decolorization and biodegradability of dyeing wastewater treated by a TiO_2-sensitezed photo-oxidation process[J]. War. Sci. Tech., 1996, 34(9):49-55
    [14] Thornton M H et al. Investigation of TiO_2-based photocatalysts for inactivation of E. Coli in water[J]. (In):Hazardous and Industrial Waters-Proceeding of the Mid-Atlantic Industrial Waste Conference, 1997, Jul.,13-16
    [15] Navio A J et al. Photoconductive and photocatalytic properties of ZrTiO_4. Comparison with the parent oxides TiO_2 and ZrO_2[J]. Photochem. Photobiol. A: Chem, 1997,108:179-185
    [16] Lea J et al. The photo-oxidative degradation of sodium dodecyl sulphate in aerated aqueous TiO_2 suspension[J]. Photochem. Photobiol. A: Chem., 1998,118:111-122
    [17] Ohno T et al. Relay of positive holes from photoirradiated Pt-loaded TiO_2 particles in an aqueous phase to t-butylhydroquinone in an oil phase[J]. Photochem. Photobiol. A: Chem., 1998,117:143-147
    [18] Sczechowski G J et al. A taylor vortex reactor for heterogeneous photocatalysis[J]. Noble Chemical Engineering Science, 1995, 50(20):3136-3173
    [19] Ray K A et al. Novel swirl-flow reactor for kinetic studies of semiconductor phtocatalysis[J]. Environmental and Energy Engineering, 1997, 43(10):2571-2578
    [20] Goslich R et al. Solar water treatment: principles and reactor[J]. Water Science and Technology, 1997, 35(4):137-148
    [21] Puma L G et al. Comparison of the effectiveness of photonbased oxidation processes in a pilot falling film photoreactor[J]. Enciron.
    
    Sci. Technol., 1999, 33: 3210-3216
    [22] Chester G et al. A jacketed annular membrane photocatalytic reactor for wastewater treatment: degradation of formic acid and atrazine[J]. Photochem. Photobiol. A: Chem., 1993, 71:291-297
    [23] Angelidis T M N et al. Kinetic study of the photocatalytic recovery of Pt from aqueous solution by TiO_2, in a closed loop reactor[J]. Applied Catalysis B: Environmental, 1998,16:347-357
    [24] Kobayakawa K et al. Continuous-flow photoreactor packed with titanium dioxide immobilized on large silica gel beads to decompose oxalic acid in excess water[J].Photochem. Photobiol. A: Chem., 1998,118:65-69
    [25] Burns A R et al. Effect of inorganic ions in heterogeneous photocatalysis of TCE [J]. Environmental Engineering, 1999, Jan., 77-85
    [26] Vidal A et al. Mogyorodi. Photocatalytic degradation of thiocarbamate herbicide active ingredients in water[J]. Applied Catalysis B: Environmental, 1999,21:259-267
    [27] Crittenden C J et al. Solar detoxification of fuel-contaminated groundwater using fixed-bed photocatalysts[J]. Water Environment Research, 1996, 68(3):270-278
    [28] Zhang Y et al. Fixed-bed photocatalysts for solar decontamination of water[J]. Environ. Sci. Technol., 1994,28(3): 435-442
    [29] Herrmann J-M et al. TiO_2-based solar photocatalytic detoxification of water containing organic pollutants. Case studies of 2,4-dichlorophenoxyaceticacid(2,4-D) and of benzofuran[J]. Applied Catalysis B: Environmental, 1998, 17:15-23
    [30] Wyness P et al. Performance of nonconcentrating solar photocatalytic
    
    oxidation reactors, Part Ⅰ: Flat-plate configuration[J].Solar Energy Engineering, 1994, 116:2-7
    [31] Sunada K et al. Bactericidal and detoxification effects of TiO_2 thin film photocatalysts[J]. Environ. Sci. Technol., 1998, 32(5): 726-728
    [32] Matthews W R.. Photooxidative degradation of coloured organics in water using supported catalystsTiO_2 on sand[J]. Water Res., 1991, 25(10): 1169-1176
    [33] Matthews W R et al. Destruction of phenol in water with sun, sand, and photocatalysis[J]. Solar Energy, 1992,49(6):507-513
    [34] Wyness Pet al. Performance of nonconcentrating solar photocatalytic oxidation reactors, Part Ⅱ: shallow pond configuration[J]. Solar Energy Engineering, 1994,116:8-13
    [35] Peill J Net al. Iron(Ⅲ)-doped Q-sized TiO_2 coatings in a fiber-optic cable photochemical reactor[J]. Photochem. Photobiol. A: Chem., 1997,108:221-228
    [36] Ray K A et al. Novel photocatalytic reactor for water purification[J]. Environmental and Enery Engineering, 1998,44(2):477-483
    [37] Saltiel C et al. Performance analysis of solar water detoxification systems by detailed simulation[J]. (In):ASME-JSES-KSES International Solar Energy Conference. New York: ASME, 1992,21-28
    [38] 华兆哲,陈坚,李丽洁等.新型光催化反应器降解典型有机物污染物2,4-二硝基苯酚[J].无锡轻工大学学报,1998,17(3):66-69
    [39] Sczechowski G J, Koval C A, Noble R D.A Taylor Vortex Reactor for Heterogeneous Photocatalysis[J]. 3136-3173
    [40] Ray K A, Beenackers Antonic A C M. Novel Swirl-flow Reactor for Kinetic Studies of Semiconductor Photocatalysis[J]. Environmental and
    
    Energy Engineering, 1997,43(10):2571-2578
    [41] 董文庚,白天雄,曹跟华等,提高.TiO_2光催化反应器氧化效率的途径[J].河北科技大学学报,2003,24(1):86-90
    [42] Peill J N, Bournel, Hoffmann M R. Iron(Ⅲ)-doped Q-sized TiO_2 Coatingsin a Filer-optic Cable Photochemical Reactor[J]. Photochem Photobiol A: Chem, 1997, (108):221-228'
    [43] Ray K A, Beenackers Antonie A C M. Novel Photocatalytic Reactor for Water Purification[J].Environmental and Energy Engineering, 1998,44(2):447-483
    [44] 姚晓斌,马颖,姚建年等,Ag和Pd及其离子对TiO_2光催化分解CH_3CHO的影响[J].感光科学与光化学,1999,17(1):12-15
    [45] 高铁,钱新勇.TiO_2光催化氧化水中有机污染物进展[J].工业水处理.2000,20(4):10-13
    [46] Yinodgopal K, Kamat P V. Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO_2/ TiO_2 Coupled Semiconductor Thin Films[J]. Environmental Science Technology, 1995, 29 (3) :842-845
    [47] 符小荣,张校刚,宋世庚等.TiO_2/Pt/glass纳米薄膜的制备及对可溶性染料的光电催化降解[J].应用化学,1997,14(4):77-79
    [48] 陈茹玉,刘纶祖.有机磷农药化学[M].上海:上海科学技术出版社,1995
    [49] Brinker C J, Frye G C, Hurd A J, et al; Fundamental of sol-gel dip coating[J]. Thin Solid Films. 1991,201:97-108
    [50] 陈非力,王良焱,杨宝山等.玻璃管负载TiO_2光催化反应器去除饮用水中微量有机物的研究[J].太阳能学报.1999,20(4)411-413
    [51] Okamono K, Yamamoto Y. Photocatalytic degradation pathway of methylene blue in water[J].Chem. Soc. Jpn, 1985,58:2015-2022
    [52] 胡春,王怡中,汤鸿霄。TiO_2光催化氧化苯酚动力学研究[J].环境科学,1997,18(4):1-4
    
    
    [53] Crittenden J C, Zhang Y, Hand DWet al., Solar Detoxification of Fuel-Contaminated Groundwater Using Fixe-Bed Photocatalysts [J]. Water. Envir. Res., 1996, 68 (3): 270-278
    [54] Martin M Halman, Photodegradation of Water Pollutants. CRC press, Florida, 1996
    [55] Chen Chuncheng, Li Xiangzhong, Ma Wanhong et al., Effect of Transition Metal Ions on the TiO_2-Assisted Photodegradation of Dyes under Visible Irradiation: A Probe for the Interfacial Electron Transfer Process and Reaction Mechanism [J].J. Phys. Chem. B, 2002, 106: 318-324
    [56] 刘旦初,多相催化原理.上海:复旦大学出版社,1997,198-201
    [57] 唐玉朝.胡春,王怡中.无机阳离子对TiO_2/SiO_2 光催化降解染料化合物活性的影响[J].国际网上化学学报,2001,3(12):60
    [58] 唐玉朝,胡春,王怡中,无机阳离子对TiO_2光催化降解染料的影响[J]环境化学,2003,4(22):364-367
    [59] Burns RA, Crittenden J C, David W H et al., Effect of InorganicIons in'Heterogeneous Photocatalysis of TCE [J]. Journal of Environmental Engineering., 1999, 1:77-86
    [60] 雷乐成,汪大晕,水处理高级氧化技术.北京:化学工业出版社.2001,246
    [61] 唐玉朝,胡春,王怡中,TiO_2光催化反应机理及动力学研究进展[J]化学进展,2002,3(14):192-198

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700