视蛋白基因参与蚊抗药性机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杀虫剂的连续、大量使用导致了虫媒抗药性的发生和发展,进而加剧了虫媒病传播的恶化趋势。鉴定新的抗药性基因、阐明抗药性机制是有效治理虫媒抗药性的前提和必要条件。
     本研究根据已知的埃及伊蚊(Aedes aegypti)和淡色库蚊(Culex pipienspallens)Opsin基因序列,设计简并引物,从白纹伊蚊(Ae. albopictus)C6/36细胞中扩增出白纹伊蚊Opsin基因的开放阅读框(ORF)序列,T/A克隆入pCR2.1载体并测序。获得白纹伊蚊Opsin基因ORF序列为1122bp,编码373个氨基酸(NCBI/GenBank JQ354934,2012)。
     用BlastX软件将该基因推导编码的氨基酸序列与蛋白质公共数据库Swissprot分析,用ClustalW软件作序列比对和聚类分析。推导的氨基酸序列与埃及伊蚊、冈比亚按蚊(Anopheles gambiae)、淡色库蚊的视蛋白分别具有95%、91%和87%以上的同源性。
     将白纹伊蚊Opsin转染白纹伊蚊C6/36细胞,使其在蚊细胞中高表达,结果发现,在溴氰菊酯浓度为101.5μg/mL,102.0μg/mL和102.5μg/mL时,opsin转染组细胞的存活率分别比对照组增高了22%,14%,21%(p<0.05)。采用siRNA技术干涉白纹伊蚊C6/36细胞的Opsin基因,通过实时定量PCR实验验证,干涉Opsin基因的效率为81%,在溴氰菊酯浓度为101.5μg/mL,102.0μg/mL和102.5μg/mL时,干涉组细胞的存活率分别比对照组下降15%、16%和21%(p <0.05)。结果进一步证实,白纹伊蚊Opsin与蚊溴氰菊酯抗性有关,是一个新的杀虫剂抗性基因。
     为进一步研究Opsin参与蚊溴氰菊酯抗性形成的机制,本研究在蚊细胞中将Opsin分别高表达和低表达后,采用实时定量PCR法检测与Opsin相关的GPCR通路中Arrestin、Gqα基因及代谢抗性基因CYP6A1的表达,同时检测了PLC酶活性的变化。结果显示,与对照组相比,Opsin基因高表达后,Arrestin基因表达无差异,Gqα基因、CYP6A1基因分别高表达12倍和99倍,PLC酶活性增高了2.56倍(p<0.05);Opsin基因低表达后,Arrestin基因表达无差异,Gqα基因、CYP6A1基因表达分别降低了82%和81%,PLC酶活性降低了63%(p<0.05)。以上结果提示,Opsin基因可能通过影响Gqα基因表达及PLC酶活性,调节代谢酶基因CYP6A1的表达,从而促进代谢酶对杀虫剂的降解而对蚊细胞有保护作用。进一步采用实时定量PCR技术,分析Opsin、Arrestin、Gqα、PLC基因在蚊活体抗性品系和敏感品系中的表达差异。结果蚊活体与蚊细胞一致,Opsin、Arrestin、Gqα、PLC基因在淡色库蚊抗性蚊中的表达分别是敏感蚊的10.42、5.64、3.34、2.16倍(p<0.05)。Western blotting技术检测发现Opsin蛋白在无锡、塘口抗性蚊中较相应敏感蚊高表达。本实验室邹萍等在研究Arrestin基因与蚊溴氰菊酯抗性的关系时发现,当Arrestin基因在蚊细胞内高表达后,溴氰菊酯处理后的细胞存活率、Opsin基因与CYP6A1基因表达均增高;Arrestin基因低表达后,细胞存活率、Opsin基因与CYP6A1基因表达均降低。综合以上结果提示,GPCR信号通路可能作为一种新的机制参与了蚊抗药性的形成,即Arrestin可调控Opsin的表达,进而通过调控Gqα及PLC酶活性,影响CYP6A1基因的表达而导致蚊对溴氰菊酯抗性。
     以淡色库蚊活体为研究对象,采用实时定量PCR技术,研究不同地区溴氰菊酯抗性和敏感蚊、对溴氰菊酯不同抗性水平的蚊、对不同杀虫剂抗性蚊中Opsin基因的表达水平。结果显示,无锡抗性蚊中Opsin基因表达是敏感蚊的5.81倍(p<0.05),用接触筒法区分的南京抗性蚊中Opsin基因表达是敏感蚊的4.53倍(p<0.05)。经溴氰菊酯逐代筛选的塘口抗性蚊(LC50分别为0.05、0.1、0.5、0.55ppm)中Opsin基因表达分别是敏感蚊(LC500.02ppm)的1.30、2.50、3.99、10.42倍(p<0.05)。济宁对氯氰菊酯抗性蚊、对DDVP抗性蚊、对残杀威抗性蚊中Opsin基因的表达分别是敏感蚊的4.46、10.00、23.05倍(p<0.05)。分别提取塘口、无锡对溴氰菊酯抗性蚊和敏感蚊的全蛋白,采用Western blotting技术检测Opsin、Arrestin蛋白表达差异,结果发现Opsin蛋白在塘口、无锡抗性蚊中较相应敏感蚊高表达1.94及1.68倍, Arrestin蛋白在塘口、无锡抗性蚊中的表达量分别是相应敏感蚊的1.20及1.10倍。以上结果提示,Opsin基因在杀虫剂抗性蚊中高表达是一种普遍现象,其有望作为蚊抗药性检测的潜在靶标,值得进一步研究。
Frequent and wide application of insecticides has resulted in the emergence andspread of insecticide resistance in insect populations. Understanding the mechanismsof insecticide resistance is critical to vector control.
     A new opsin gene(NCBI/GenBank JQ354934,2012) was cloned from Aedesalbopictus C6/36cells. An open reading frame (ORF) of1122bp was found to encodea putative373amino acids protein that exhibits95%,91%and87%identity withopsins from Ae. aegypti, Anopheles gambiae and Culex pipiens pallens respectively.
     Over-expression of Ae. albopictus’s opsin gene by transfection increasedmosquito cell viabilities to deltamethrin at the concentrations of101.5μg/mL,102.0μg/mL和102.5μg/mL, and knock down of opsin by siRNA decreased mosquitocell viabilities to deltamethrin at the same three concertrations(p<0.05). The resultindicates that opsin gene is related to deltamethrin resistance.
     To further investigate the resistance mechanism related to opsin, thetranscriptional levels of Arrestin, Gqαand CYP6A1were detected by real-timequantitative PCR in mosqito cells with transfection and siRNA of opsin. Theactivities of PLC were also assayed. Over-expression of opsin by transfectionincreased the activity of PLC and the transcriptional levels of Gqα, CYP6A1but notArrestin. Knock down of Opsin by siRNA decreased the activity of PLC and thetranscriptional mRNA levels of Gqα, CYP6A1but not Arrestin. Interestingly,over-expression of Arrestin increased cell viability and mRNA levels of Opsin andCYP6A1in mosqito cells. On the other hand, knok down of Arrestin by siRNAdecreased cell viability and mRNA levels of Opsin and CYP6A1in C6/36cells. It isindicated that Opsin, which may be affected by Arrestin, may regulate expressionlevel of Gqαand activity of PLC, thus affect expression of CYP6A1, and finally is involved in insecticide resistance.The high mRNA levels of opsin, Arrestin, GqαandPLC between resistant and susceptible Culex mosquitoes further suggest that Opsin,together with other related genes, such as Arrestin, Gqα, PLC in GPCR signaltransportation, may be involved in a new mechanism in deltamethrin resistance.
     The mRNA levels of Opsin gene from deltamethrin-resistant and–susceptible Cx.pipiens pallens in different regions, from5strains selected with differentdeltamethrin-resistant levels by generations and from strains resistant to cypermethrin,propoxur and DDVP were detected by real-time quantitative PCR. The results shownup-regulated mRNA levels of Opsin gene in resistant mosquitoes compared to that ofsusceptible ones. Western blotting implicated up-expression levels of Opsin betweenresistant and susceptible mosquitoes in two regions. These results indicate that Opsinmight be used as a marker in insecticide-resistance detection.
引文
[1] Programme WHO.(2010) World malaria report2010, World HealthOrganization
    [2] Murray CJL,Rosenfeld LC,Lim SS, et al. Global malaria mortality between1980and2010: a systematic analysis.(2012) The Lancet379,(9814):413-431
    [3] Baneth G,Bourdeau P,Bourdoiseau G, et al. Vector-Borne Diseases-constantchallenge for practicing veterinarians: recommendations from the CVBDWorld Forum.(2012) Parasit Vectors5,(1):55
    [4] van den Berg H,Zaim M,Yadav RS, et al. Global Trends in the Use ofInsecticides for Vector-borne Disease Control.(2012) Environmental HealthPerspectives120:577-582
    [5] Rezza G. Aedes albopictus and the reemergence of Dengue.(2012) BMCPublic Health12:72
    [6] Denholm I, Devine GJ,Williamson MS. Evolutionary genetics. Insecticideresistance on the move.(2002) Science297,(5590):2222-2223
    [7] Chen L,Zhong D,Zhang D, et al. Molecular ecology of pyrethroid knockdownresistance in Culex pipiens pallens mosquitoes.(2010) PLoS One5,(7):e11681
    [8] Liu Y,Zhang H,Qiao C, et al. Correlation between carboxylesterase allelesand insecticide resistance in Culex pipiens complex from China.(2011)Parasit Vectors4:236
    [9] Yang T,Liu N. Genome analysis of cytochrome P450s and their expressionprofiles in insecticide resistant mosquitoes, Culex quinquefasciatus.(2011)PLoS One6,(12): e29418
    [10] Itokawa K,Komagata O,Kasai S, et al. Cis-acting mutation and duplication:History of molecular evolution in a P450haplotype responsible for insecticideresistance in Culex quinquefasciatus.(2011) Insect Biochem Mol Biol41,(7):503-512
    [11] Sarkar M,Baruah I,Srivastava RB, et al. High-throughput approach todetection of knockdown resistance (kdr) mutation in mosquitoes, Culexquinquefasciatus, based on real-time PCR using single-labelled hybridisationprobe/melting curve analysis.(2011) Pest Manag Sci67,(2):156-161
    [12] Xu Q,Tian L,Zhang L, et al. Sodium channel genes and their differentialgenotypes at the L-to-F kdr locus in the mosquito Culexquinquefasciatus.(2011) Biochem Biophys Res Commun407,(4):645-649
    [13] Luz PM,Codeco CT,Medlock J, et al. Impact of insecticide interventions onthe abundance and resistance profile of Aedes aegypti.(2009) Epidemiol Infect137,(8):1203-1215
    [14] Marcombe S,Poupardin R,Darriet F, et al. Exploring the molecular basis ofinsecticide resistance in the dengue vector Aedes aegypti: a case study inMartinique Island (French West Indies).(2009) BMC Genomics (10):494
    [15] Chuaycharoensuk T,Juntarajumnong W,Boonyuan W, et al. Frequency ofpyrethroid resistance in Aedes aegypti and Aedes albopictus (Diptera:Culicidae) in Thailand.(2011) J Vector Ecol36,(1):204-212
    [16] Kamgang B,Brengues C,Fontenille D, et al. Genetic structure of the tigermosquito, Aedes albopictus, in Cameroon (Central Africa).(2011) PLoS One6,(5): e20257
    [17] Kaufman PE, Mann RS,Butler JF. Evaluation of semiochemical toxicity toAedes aegypti, Ae. albopictus and Anopheles quadrimaculatus (Diptera:Culicidae).(2010) Pest Manag Sci66,(5):497-504
    [18] Mitchell SN,Stevenson BJ,Muller P, et al. Identification and validation of agene causing cross-resistance between insecticide classes in Anophelesgambiae from Ghana.(2012) Proc Natl Acad Sci U S A
    [19] Nwane P,Etang J,Chouasmall yi UM, et al. Kdr-based insecticide resistance inAnopheles gambiae s.s populations in.(2011) BMC Res Notes4,(1):463
    [20] Marois E. The multifaceted mosquito anti-Plasmodium response.(2011) CurrOpin Microbiol14,(4):429-435
    [21] Trape JF,Tall A,Diagne N, et al. Malaria morbidity and pyrethroid resistanceafter the introduction of insecticide-treated bednets and artemisinin-basedcombination therapies: a longitudinal study.(2011) Lancet Infect Dis11,(12):925-932
    [22] Stevenson BJ,Bibby J,Pignatelli P, et al. Cytochrome P4506M2from themalaria vector Anopheles gambiae metabolizes pyrethroids: Sequentialmetabolism of deltamethrin revealed.(2011) Insect Biochem Mol Biol41,(7):492-502
    [23] Tan WL,Wang ZM,Li CX, et al. First report on co-occurrence knockdownresistance mutations and susceptibility to beta-cypermethrin in Anophelessinensis from Jiangsu Province, China.(2012) PLoS One7,(1): e29242
    [24] Verhaeghen K,Van Bortel W,Trung HD, et al. Knockdown resistance inAnopheles vagus, An. sinensis, An. paraliae and An. peditaeniatus populationsof the Mekong region.(2010) Parasit Vectors3,(1):59
    [25] Markussen MD,Kristensen M. Spinosad resistance in female Muscadomestica L. from a field-derived population.(2012) Pest Manag Sci68,(1):75-82
    [26] Memmi BK. Mortality and knockdown effects of imidacloprid and methomylin house fly (Musca domestica L., Diptera: Muscidae) populations.(2010) JVector Ecol35,(1):144-148
    [27] Zhang L,Shi J,Shi X, et al. Quantitative and qualitative changes of thecarboxylesterase associated with beta-cypermethrin resistance in the housefly,Musca domestica (Diptera: Muscidae).(2010) Comp Biochem Physiol BBiochem Mol Biol156,(1):6-11
    [28] Springate S,Colvin J. Pyrethroid insecticide resistance in British populationsof the cabbage whitefly, Aleyrodes proletella.(2012) Pest Manag Sci68,(2):260-267
    [29] Cardozo RM,Panzera F,Gentile AG, et al. Inheritance of resistance topyrethroids in Triatoma infestans, the main Chagas disease vector in SouthAmerica.(2010) Infect Genet Evol10,(8):1174-1178
    [30]刘维德.我国蚊类抗药性发展动向.(1990)中国媒介生物学及控制杂志1,(1):41-44
    [31]全国家蝇抗性协作组.我国家蝇抗性现状及其防治.(1986)中国公共卫生---全国家蝇抗性及防治研究资料汇编12:1-5
    [32] Ranson H,N'Guessan R,Lines J, et al. Pyrethroid resistance in Africananopheline mosquitoes: what are the implications for malaria control?(2011)Trends Parasitol27,(2):91-98
    [33] Ndjemai HN,Patchoke S,Atangana J, et al. The distribution of insecticideresistance in Anopheles gambiae s.l. populations from Cameroon: anupdate.(2009) Trans R Soc Trop Med Hyg103,(11):1127-1138
    [34] Ramphul U,Boase T,Bass C, et al. Insecticide resistance and its associationwith target-site mutations in natural populations of Anopheles gambiae fromeastern Uganda.(2009) Trans R Soc Trop Med Hyg103,(11):1121-1126
    [35] Kelly-Hope L, Ranson H,Hemingway J. Lessons from the past: managinginsecticide resistance in malaria control and eradication programmes.(2008)Lancet Infect Dis8,(6):387-389
    [36] Soderlund DM. Pyrethroids, knockdown resistance and sodiumchannels.(2008) Pest Manag Sci64,(6):610-616
    [37]杨维芳徐燕,孙俊等.2002-2007年江苏省主要病媒生物密度与构成情况分析..(2008)中国媒介生物学及控制杂志19,(5):432-435
    [38]中华人民共和国卫生部.卫生部发布2012年1月及2011年度全国法定传染病疫情概况.(2012): http://www.moh.gov.cn/publicfiles/business/htmlfiles/mohjbyfkzj/s3578/201202/254106.htm
    [39] Thomas SJ,Endy TP. Critical issues in dengue vaccine development.(2011)Curr Opin Infect Dis24,(5):442-450
    [40] Vidal PO,Suesdek L. Comparison of wing geometry data and genetic data forassessing the population structure of Aedes aegypti.(2012) Infect Genet Evol12,(3):591-596
    [41] Prasad N,Bhadauria D,Sharma RK, et al. Dengue virus infection in renalallograft recipients: a case series during2010outbreak.(2011) Transpl InfectDis doi:10.1111/j.1399-3062.2011.00699.x.[Epub ahead of print]
    [42] Mamidala P,Wijeratne AJ,Wijeratne S, et al. RNA-Seq and moleculardocking reveal multi-level pesticide resistance in the bed bug.(2012) BMCGenomics13:6
    [43] Bass C,Carvalho RA,Oliphant L, et al. Overexpression of a cytochrome P450monooxygenase, CYP6ER1, is associated with resistance to imidacloprid inthe brown planthopper, Nilaparvata lugens.(2011) Insect Mol Biol20,(6):763-773
    [44] Giraudo M,Unnithan GC,Le Goff G, et al. Regulation of cytochrome P450expression in Drosophila: Genomic insights.(2010) Pestic Biochem Physiol97,(2):115-122
    [45] Srivastava H,Sharma M,Dixit J, et al. Evolutionary insights into insecticideresistance gene families of Anopheles gambiae.(2010) Infect Genet Evol10,(5):620-628
    [46] Dong K. Insect sodium channels and insecticide resistance.(2007) InvertNeurosci7,(1):17-30
    [47] Davies TE,O'Reilly AO,Field LM, et al. Knockdown resistance to DDT andpyrethroids: from target-site mutations to molecular modelling.(2008) PestManag Sci64,(11):1126-1130
    [48] Davies TG,Field LM,Usherwood PN, et al. DDT, pyrethrins, pyrethroids andinsect sodium channels.(2007) IUBMB Life59,(3):151-162
    [49] Komagata O, Kasai S,Tomita T. Overexpression of cytochrome P450genes inpyrethroid-resistant Culex quinquefasciatus.(2010) Insect Biochem Mol Biol40,(2):146-152
    [50] Zhu F,Parthasarathy R,Bai H, et al. A brain-specific cytochrome P450responsible for the majority of deltamethrin resistance in the QTC279strain ofTribolium castaneum.(2010) Proc Natl Acad Sci U S A107,(19):8557-8562
    [51] Yamamoto K,Ichinose H,Aso Y, et al. Molecular characterization of aninsecticide-induced novel glutathione transferase in silkworm.(2011) BiochimBiophys Acta1810,(4):420-426
    [52] Morou E,Dowd AJ,Rajatileka S, et al. A simple colorimetric assay for specificdetection of glutathione-S transferase activity associated with DDT resistancein mosquitoes.(2010) PLoS Negl Trop Dis4,(8):e808
    [53] Hassan MM,Widaa SO,Osman OM, et al. Insecticide resistance in the sand fly,Phlebotomus papatasi from Khartoum State, Sudan.(2012) Parasit Vectors5,(46
    [54] Zhang J,Yang M,Jia Q, et al. Genomics-based approaches to screeningcarboxylesterase-like genes potentially involved in malathion resistance inoriental migratory locust (Locusta migratoria manilensis).(2011) Pest ManagSci67,(2):183-190
    [55] Donnelly MJ,Corbel V,Weetman D, et al. Does kdr genotype predictinsecticide-resistance phenotype in mosquitoes?(2009) Trends in parasitology25,(5):213-219
    [56] Brooke BD. kdr: can a single mutation produce an entire insecticide resistancephenotype?(2008) Transactions of the Royal Society of Tropical Medicine andHygiene102,(6):524-525
    [57] Perry T, Batterham P,Daborn PJ. The biology of insecticidal activity andresistance.(2011) Insect Biochem Mol Biol41,(7):411-422
    [58] Pedra JH,McIntyre LM,Scharf ME, et al. Genome-wide transcription profileof field-and laboratory-selected dichlorodiphenyltrichloroethane(DDT)-resistant Drosophila.(2004) Proc Natl Acad Sci U S A101,(18):7034-7039
    [59] Pedra JH,Festucci-Buselli RA,Sun W, et al. Profiling of abundant proteinsassociated with dichlorodiphenyltrichloroethane resistance in Drosophilamelanogaster.(2005) Proteomics5,(1):258-269
    [60] Vontas J,Blass C,Koutsos A, et al. Gene expression in insecticide resistantand susceptible Anopheles gambiae strains constitutively or after insecticideexposure.(2005) Insect molecular biology14,(5):509-521
    [61] David JP,Strode C,Vontas J, et al. The Anopheles gambiae detoxification chip:a highly specific microarray to study metabolic-based insecticide resistance inmalaria vectors.(2005) Proc Natl Acad Sci U S A102,(11):4080-4084
    [62] Wu HW,Tian HS,Wu GL, et al. Culex pipiens pallens: identification of genesdifferentially expressed in deltamethrin-resistant and-susceptible strains.(2004)Pesticide Biochemistry and Physiology79,(3):75-83
    [63] Hu X,Sun Y,Wang W, et al. Cloning and characterization of NYD-OP7, anovel deltamethrin resistance associated gene from Culex pipienspallens.(2007) Pesticide Biochemistry and Physiology88,(1):82-91
    [64] Kefalov V,Fu Y,Marsh-Armstrong N, et al. Role of visual pigment propertiesin rod and cone phototransduction.(2003) Nature425,(6957):526-531
    [65] Terakita A. The opsins.(2005) Genome Biol6,(3):213
    [66] Tarttelin EE,Bellingham J,Hankins MW, et al. Neuropsin (Opn5): a novelopsin identified in mammalian neural tissue.(2003) FEBS Lett554,(3):410-416
    [67] Arendt D,Tessmar-Raible K,Snyman H, et al. Ciliary photoreceptors with avertebrate-type opsin in an invertebrate brain.(2004) Science306,(5697):869-871
    [68] White JH,Chiano M,Wigglesworth M, et al. Identification of a novel asthmasusceptibility gene on chromosome1qter and its functional evaluation.(2008)Hum Mol Genet17,(13):1890-1903
    [69] Provencio I,Jiang G,De Grip WJ, et al. Melanopsin: An opsin inmelanophores, brain, and eye.(1998) Proc Natl Acad Sci U S A95,(1):340-345
    [70] Do MT,Kang SH,Xue T, et al. Photon capture and signalling by melanopsinretinal ganglion cells.(2009) Nature457,(7227):281-287
    [71] Gonzalez-Menendez I,Contreras F,Cernuda-Cernuda R, et al. Daily rhythm ofmelanopsin-expressing cells in the mouse retina.(2009) Front Cell Neurosci3:3
    [72] Minke B,Peters M. Cell biology. Rhodopsin as thermosensor?(2011) Science331,(6022):1272-1273
    [73] Menon I,Huber T,Sanyal S, et al. Opsin is a phospholipid flippase.(2011)Curr Biol21,(2):149-153
    [74] Williamson P. Phospholipid transport: sighting a new face of an oldfriend.(2011) Curr Biol21,(4): R168-169
    [75] Jiao J,Hong S,Zhang J, et al. Opsin3sensitizes hepatocellular carcinoma cellsto5-fluorouracil treatment by regulating the apoptotic pathway.(2012) CancerLett320,(1):96-103
    [76] Schneider M,Wolf S,Schlitter J, et al. The structure of active opsin as a basisfor identification of GPCR agonists by dynamic homology modelling andvirtual screening assays.(2011) FEBS Lett585,(22):3587-3592
    [77] Labbeī P,Alout H,Djogbeīnou L, et al. Evolution of Resistance to Insecticidein Disease Vectors.(2010) Genetics and Evolution of Infectious Diseases:363
    [78] Chen XG, Mathur G,James AA. Gene expression studies in mosquitoes.(2008)Adv Genet64,19-50
    [79] Liu N,Liu H,Zhu F, et al. Differential expression of genes in pyrethroidresistant and susceptible mosquitoes, Culex quinquefasciatus (S.).(2007) Gene394,(1-2):61-68
    [80]刘虎岐,刘应保,宋云鹏等.淡色库蚊氯菊酯抗性相关基因PR-OP全长cDNA的克隆及生物信息学分析.(2011)西北农林科技大学学报:自然科学版38,(9):109-117
    [81] Nawagitgul P,Morozov I,Bolin SR, et al. Open reading frame2of porcinecircovirus type2encodes a major capsid protein.(2000) Journal of GeneralVirology81,(9):2281-2287
    [82] Angel TE,Gupta S,Jastrzebska B, et al. Structural waters define a functionalchannel mediating activation of the GPCR, rhodopsin.(2009) Proc Natl AcadSci U S A106,(34):14367-14372
    [83] Yeagle PL, Alderfer JL,Albert AD. Structure of the carboxy-terminal domainof bovine rhodopsin.(1995) Nat Struct Biol2,(10):832-834
    [84] Kiselev A,Subramaniam S. Activation and regeneration of rhodopsin in theinsect visual cycle.(1994) Science266,(5189):1369-1373
    [85] Broeck JV. Insect G protein-coupled receptors and signal transduction.(2001)Arch Insect Biochem Physiol48,(1):1-12
    [86] Niemeyer BA,Suzuki E,Scott K, et al. The Drosophila light-activatedconductance is composed of the two channels TRP and TRPL.(1996) Cell85,(5):651-659
    [87] Kato HE,Zhang F,Yizhar O, et al. Crystal structure of the channelrhodopsinlight-gated cation channel.(2012) Nature482,(7385):369-374
    [88] Jeffery CJ. Moonlighting proteins.(1999) Trends in biochemical sciences24,(1):8-11
    [89] Hancock AA. The challenge of drug discovery of a GPCR target: analysis ofpreclinical pharmacology of histamine H3antagonists/inverse agonists.(2006)Biochem Pharmacol71,(8):1103-1113
    [90] Congreve M, Langmead C,Marshall FH. The use of GPCR structures in drugdesign.(2011) Adv Pharmacol62,1-36
    [91] Tadagaki K, Jockers R,Kamal M. History and Biological Significance ofGPCR Heteromerization in the Neuroendocrine System.(2011)Neuroendocrinology Dec9.[Epub ahead of print]
    [92] Agnati LF,Guidolin D,Leo G, et al. Possible new targets for GPCRmodulation: allosteric interactions, plasma membrane domains, intercellulartransfer and epigenetic mechanisms.(2011) J Recept Signal Transduct Res31,(5):315-331
    [93] Carbajal L,Biswas A,Niswander LM, et al. GPCR/EGFR cross talk isconserved in gonadal and adrenal steroidogenesis but is uniquely regulated bymatrix metalloproteinases2and9in the ovary.(2011) Mol Endocrinol25,(6):1055-1065
    [94] Lebon G,Warne T,Edwards PC, et al. Agonist-bound adenosine A2A receptorstructures reveal common features of GPCR activation.(2011) Nature474,(7352):521-525
    [95] Kovoor A, Henry DJ,Chavkin C. Agonist-induced desensitization of the muopioid receptor-coupled potassium channel (GIRK1).(1995) J Biol Chem270,(2):589-595
    [96] Carino FA,Koener JF,Plapp FW, Jr., et al. Constitutive overexpression of thecytochrome P450gene CYP6A1in a house fly strain with metabolicresistance to insecticides.(1994) Insect Biochem Mol Biol24,(4):411-418
    [97] Guzov VM,Unnithan GC,Chernogolov AA, et al. CYP12A1, a mitochondrialcytochrome P450from the house fly.(1998) Arch Biochem Biophys359,(2):231-240
    [98] Yau KW,Hardie RC. Phototransduction motifs and variations.(2009) Cell139,(2):246-264
    [99] Plachetzki DC, Fong CR,Oakley TH. Cnidocyte discharge is regulated bylight and opsin-mediated phototransduction.(2012) BMC Biol10,(1):17
    [100] Terakita A,Takahama H,Hariyama T, et al. Light-regulated localization of thebeta-subunit of Gq-type G-protein in the crayfish photoreceptors.(1998) JComp Physiol A183,(4):411-417
    [101]严红,刘烈刚.溴氰菊酯对大鼠脑组织G蛋白转换的影响.(2003)中国公共卫生19,(001):19-20
    [102]谭文彬.蚊核糖体蛋白L39基因克隆及初步功能的研究.(2007)南京医科大学博士学位论文
    [103] Murataliev MB,Guzov VM,Walker FA, et al. P450reductase and cytochromeb5interactions with cytochrome P450: effects on house fly CYP6A1catalysis.(2008) Insect Biochem Mol Biol38,(11):1008-1015
    [104] Andersen JF, Utermohlen JG,Feyereisen R. Expression of house fly CYP6A1and NADPH-cytochrome P450reductase in Escherichia coli andreconstitution of an insecticide-metabolizing P450system.(1994)Biochemistry33,(8):2171-2177
    [105] Reed JR,Quilici DR,Blomquist GJ, et al. Proposed mechanism for thecytochrome P450-catalyzed conversion of aldehydes to hydrocarbons in thehouse fly, Musca domestica.(1995) Biochemistry34,(49):16221-16227
    [106] He J,Sun H,Zhang D, et al. Cloning and characterization of60S ribosomalprotein L22(RPL22) from Culex pipiens pallens.(2009) Comp BiochemPhysiol B Biochem Mol Biol153,(2):216-222
    [107] Heo GY,Liao WL,Turko IV, et al. Features of the retinal environment whichaffect the activities and product profile of cholesterol-metabolizingcytochromes P450CYP27A1and CYP11A1.(2012) Arch Biochem Biophys518,(2):119-126
    [108] Zhou Y, Gottesman MM,Pastan I. Domain exchangeability between themultidrug transporter (MDR1) and phosphatidylcholine flippase(MDR2).(1999) Mol Pharmacol56,(5):997-1004
    [109] Chanda E,Hemingway J,Kleinschmidt I, et al. Insecticide resistance and thefuture of malaria control in Zambia.(2011) PLoS One6,(9): e24336
    [110] Brengues C,Hawkes NJ,Chandre F, et al. Pyrethroid and DDTcross-resistance in Aedes aegypti is correlated with novel mutations in thevoltage-gated sodium channel gene.(2003) Med Vet Entomol17,(1):87-94
    [111] Apperson CS,Georghiou GP. Changes in cross-resistance spectrum resultingfrom methyl parathion selection of Culex tarsalis Coq.(1975) Am J Trop MedHyg24,(4):698-703
    [112]张春华,李新华,戴伟等.残杀威选育淡色库蚊抗药性研究.(2005)中国热带医学5,(6):1173-1174
    [113]陈延平,程鹏,王海防等.淡色库蚊DDVP抗性选育及交互抗性的实验研究.(2009)中国热带医学8,(12):2078-2079
    [114]王学军,霍新北,刘峰等.德国小蠊抗药性检测方法的研究.(2009)中华卫生杀虫药械15,(4):276-278
    [115] Scott JG,Wen Z. Cytochromes P450of insects: the tip of the iceberg.(2001)Pest Manag Sci57,(10):958-967
    [116] Hlavica P. Insect cytochromes P450: topology of structural elements predictedto govern catalytic versatility.(2011) J Inorg Biochem105,(10):1354-1364
    [117] Daborn P,Boundy S,Yen J, et al. DDT resistance in Drosophila correlateswith Cyp6g1over-expression and confers cross-resistance to theneonicotinoid imidacloprid.(2001) Mol Genet Genomics266,(4):556-563
    [118] Gorman K,Slater R,Blande JD, et al. Cross-resistance relationships betweenneonicotinoids and pymetrozine in Bemisia tabaci (Hemiptera:Aleyrodidae).(2010) Pest Manag Sci66,(11):1186-1190
    [119] Feyereisen R. Insect cytochrome P450.(2005) In Comprehensive MolecularInsect Science,4,(ed. LI Gilbert, K Latrou, SS Gill):1-77
    [120] Bride JM,Cuany A,Amichot M, et al. Cytochrome P-450field insecticidetolerance and development of laboratory resistance in grape vine populationsof Drosophila melanogaster (Diptera: Drosophilidae).(1997) J Econ Entomol90,(6):1514-1520
    [121] Liu N,Scott JG. Genetic analysis of factors controlling high-level expressionof cytochrome P450, CYP6D1, cytochrome b5, P450reductase, andmonooxygenase activities in LPR house flies, Musca domestica.(1996)Biochem Genet34,(3-4):133-148
    [122] Li X, Schuler MA,Berenbaum MR. Molecular mechanisms of metabolicresistance to synthetic and natural xenobiotics.(2007) Annu Rev Entomol52,(231-253
    [123] Rust MK,Waggoner M,Hinkle NC, et al. Development of a larval bioassay forsusceptibility of cat fleas (Siphonaptera: Pulicidae) to imidacloprid.(2002) JMed Entomol39,(4):671-674
    [124]潘志萍,李敦松.昆虫抗药性监测与检测技术研究进展.(2006)应用生态学报17,(8):1539-1543
    [125] Scharf ME,Neal JJ,Marcus CB, et al. Cytochrome P450purification andimmunological detection in an insecticide resistant strain of Germancockroach (Blattella germanica, L.).(1998) Insect Biochem Mol Biol28,(1):1-9
    [126] Anstead JA,Williamson MS,Eleftherianos I, et al. High-throughput detectionof knockdown resistance in Myzus persicae using allelic discriminatingquantitative PCR.(2004) Insect Biochem Mol Biol34,(8):871-877
    [1] Hendriks W, Mulders JW, Bibby MA, et al. Duck lens epsilon-crystallin andlactate dehydrogenase B4are identical: a singlecopy gene product with twodistinct functions.(1988) Proc Natl Acad Sci U S A85:7114–7118
    [2] Wistow GJ, Lietman T, Williams LA, et al. Tau-crystallin/alpha-enolase: onegene encodes both an enzyme and a lens structural protein.(1988) J Cell Biol107:2729–2736
    [3] Piatigorsky J, O'Brien WE, Norman BL, et al. Gene sharing by delta-crystallinand argininosuccinate lyase.(1988) Proc Natl Acad Sci U S A85:3479–3483
    [4] Jeffery CJ. Moonlighting proteins.(1999) Trends Biochem Sci24:8–11
    [5] Jeffery CJ. Mass spectrometry and the search for moonlighting proteins.(2005)Mass Spectrom Rev24:772–782
    [6] Huberts Daphne HEW., Klei Ida J van der. Moonlighting proteins: Anintriguing mode of multitasking.(2010) B B A1803:520–525
    [7] Moore B. Bifunctional and moonlighting enzymes: lighting the way toregulatory control.(2004) Trends Plant Sci.9:221–228
    [8] Sriram G, Martinez JA, McCabe ER, et al. Single-gene disorders: what rolecould moonlighting enzymes play?(2005) Am. J Hum Genet76:911–924
    [9] Gancedo C, Flores CL. Moonlighting proteins in yeasts.(2008) Microbiol Mo.Biol Rev72:197–210
    [10] Jeffery CJ. Molecular mechanisms for multitasking: recent crystal structures ofmoonlighting proteins.(2004) Curr Opin Struct Biol14:663–668
    [11] Jeffery CJ. Moonlighting proteins—an update.(2009) Mol Biosyst5:345–350
    [12] Chen XJ, Wang X, Kaufman BA, et al. Aconitase couples metabolic regulationto mitochondrial DNA maintenance.(2005) Science307:714–717
    [13] Lu M, Ammar D, Ives H, et al. Physical interaction between aldolase andvacuolar H+-ATPase is essential for the assembly and activity of the protonpump.(2007) J Biol Chem282:24495–24503
    [14] Yuan W, Tuttle DL, Shi YJ, et al. Glucose-induced microautophagy in Pichiapastoris requires the alpha-subunit of phosphofructokinase.(1997) J Cell Sci110(Pt16):1935–1945
    [15] Decker BL, Wickner WT. Enolase activates homotypic vacuole fusion andprotein transport to the vacuole in yeast.(2006) J Biol Chem281:14523–14528
    [16] Kim JW, Dang CV. Multifaceted roles of glycolytic enzymes.(2005) TrendsBiochem Sci30:142–150
    [17] Fothergill-Gilmore LA, Michels PA. Evolution of glycolysis.(1993) ProgBiophys Mol Biol59:105–235
    [18] Baker HV. GCR1of Saccharomyces cerevisiae encodes a DNA bindingprotein whose binding is abolished by mutations in the CTTCC sequencemotif.(1991) Proc Natl Acad Sci U S A88:9443–9447
    [19] Ozimek P, Kotter P, Veenhuis M, et al. Hansenula polymorpha andSaccharomyces cerevisiae Pex5p's recognize different, independentperoxisomal targeting signals in alcohol oxidase.(2006) FEBS Lett.580:46–50
    [20] Waterham HR, Russell KA, Vries Y, et al. Peroxisomal targeting, import,and assembly of alcohol oxidase in Pichia pastoris.(1997) J Cell Biol139:1419–1431
    [21] Bakouh N, Chérif-Zahar B, Hulin P, et al. Functional interaction betweenCFTR and the sodium-phosphate co-transport type2a in Xenopus laevisoocytes.(2012) PLoS One e34879
    [22] Lu M, Ding C. CFTR-mediated Cl-transport in the acinar and duct cells ofrabbit lacrimal gland.(2012) Curr Eye Res [Epub ahead of print]
    [23] Heikkinen J, Risteli M, Chunguag W, et al. Lysyl hydroxylase3is amultifunctional protein posessing collagen glucosyltransferase activity.(2000)J Biol Chem275:36158–36163
    [24] Guo GG, Gu M, Etlinger JD.240-kDa proteasome inhibitor (CF-2) is identicalto delta-aminolevulinic acid dehydratase.(1994) J Biol Chem269:12399–12402
    [25] Gregory TR. Synergy between sequence and size in large-scale genomics.(2005) Nat Rev Genet6:699–708
    [26] Jacob F. Evolution and tinkering.(1977) Science196:1161–1166
    [27] Aharoni A, Gaidukov L, Khersonsky O, et al. The ‘evolvability’ ofpromiscuous protein functions.(2005) Nat Genet37:73–76
    [28] Yoshida N, Oeda K, Watanabe E, et al. Protein function. Chaperonin turnedinsect toxin.(2001) Nature411:44
    [29] Braig K, Otwinowski Z, Hegde R, et al. The crystal structure of the bacterialchaperonin GroEL at2.8A.(1994) Nature371:578–586
    [30] Moxley MA, Becker DF. Rapid reaction kinetics of proline dehydrogenase inthe multifunctional proline utilization A protein.(2012) Biochemistry51:511-520
    [31] Singh RK, Larson JD, Zhu W, et al. Small-angle X-ray scattering studies ofthe oligomeric state and quaternary structure of the trifunctional prolineutilization A (PutA) flavoprotein from Escherichia coli.(2011) J Biol Chem286:43144-43153
    [32] Chuang DM, Hough C, Senatorov VV. Glyceraldehyde-3-phosphatedehydrogenase,apoptosis, and neurodegenerative diseases.(2005) Annu RevPharmacol Toxicol45:269-290
    [33] Kainulainen V, Loimaranta V, Pekkala A, et al. Glutamine synthetase andglucose-6-phosphate isomerase are adhesive moonlighting proteins oflactobacillus crispatus released by epithelial cathelicidin LL-37.(2012) JBacteriol194:2509-2519
    [34] Copley SD. Enzymes with extra talents: moonlighting functions and catalyticpromiscuity.(2003) Curr Opin Chem Biol2:65-72
    [35] Watanabe H, Takehana K, Date M, et al. Tumor cell autocrine motility factoris the neuroleukin/phosphohexose isomerase polypeptide.(1996) Cancer Res56:2960-2963
    [36] Xu W, Seiter K, Feldman E, et al. The differentiation and maturation mediatorfor human myeloid leukemia cells shares homology with neuroleukin orphosphoglucose isomerase.(1996) Blood87:4502-4506
    [37] Furukawa T, Yoshimura A, Sumizawa T, et al. Angiogenic factor.(1992)Nature356:668
    [38] Muller C, Paupert J, Monferran S, et al. The double life of the Ku protein:facing the DNA breaks and the extracellular environment.(2005) Cell Cycle4:438-441
    [39] Soker S, Takashima S, Miao HQ, et al. Neuropilin-1is expressed byendothelial and tumor cells as an isoform-specific receptor for vascularendothelial growth factor (1998) Cell92:735-737
    [40]陈翠翠,马元武,冯永君等. MADS-box家族蛋白在植物开花、结实及根瘤形成中的多功能调节作用.(2008)华北农学报23:74-77
    [41] Wu C, Ma Q, Yam KM, et al. In situ expression of the GmNMH7gene isphotoperiod-dependent in a unique soybean (Glycine max [L.]Merr.)flowering reversion system.(2006) Planta223:725-735
    [42] Rawat P, Kumar S, Sheokand N, et al. The multifunctional glycolytic proteinglyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a novel macrophagelactoferrin receptor.(2012) Biochem Cell Biol90:329-338
    [43] Meyer-Siegler K, Mauro DJ, Seal G, et al. A human nuclear uracil DNAglycosylase is the37-kDa subunit of glyceraldehyde-3-phosphatedehydrogenase.(1991) Proc Natl Acad Sci U S A88:8460-8464
    [44] Kennedy MC, Mende-Mueller L, Blondin GA, et al. Purification andcharacterization of cytosolic aconitase from beef liver and its relationship to theiron-responsive element binding protein.(1992) Proc Natl Acad Sci U S A89:11730–11734
    [45] Wolff C, Parkinson JS. Aspartate taxis mutants of the Escherichia coli tarchemoreceptor.(1988) J Bacteriol170:4509–4515
    [46] Mowbray SL, Jr Koshland DE. Mutations in the aspartate receptor ofEscherichia coli which affect aspartate binding.(1990) J Biol Chem265:15638–15643
    [47] Condò I, Malisan F, Guccini I, et al. Molecular control of the cytosolicaconitase/IRP1switch by extramitochondrial frataxin.(2010) Hum Mol Genet19:1221-1229
    [48] Justice SS, Hunstad DA, Harper JR. Periplasmic peptidyl prolyl cis-transisomerases are not essential for viability, but SurA is required for pilusbiogenesis in Escherichia coli.(2005) J Bacteriol187:7680-7686
    [49] Rho H, Jones CN, Rose RB. Kinetic stability may determine the interactiondynamics of the bifunctional protein DCoH1, the dimerization cofactor of thetranscription factor HNF-1α.(2010) Biochemistry49:10187-10197
    [50] Mark DF, Richardson CC. Escherichia coli thioredoxin: a subunit ofbacteriophage T7DNA polymerase.(1976) Proc Natl Acad Sci U S A73:780-784
    [51] Luckie DB, Krouse ME, Harper KL, et al. Selection for MDR1/P-glycoproteinenhances swelling-activated K+and Cl-currents in NIH/3T3cells.(1994) Am JPhysiol267: C650–C658
    [52] Vu T-KH, Hung DT, Wheaton VI, et al. Molecular cloning of a functionalthrombin receptor reveals a novel proteolytic mechanism of receptor activation.(1991) Cell64:1057–1068
    [53] Chu E, Koeller DM, Casey JL, et al. Autoregulation of human thymidylatesynthase messenger RNA translation by thymidylate synthase.(1991) ProcNatl Acad Sci U S A88:8977–8981
    [54] Barker DF, Campbell AM. Genetic and biochemical characterization of thebirA gene and its product: evidence for a direct role of biotin holoenzymesynthetase in repression of the biotin operon in Escherichia coli.(1981) J MolBiol146:469–492
    [55] Zhao B, Lei L, Vassylyev DG, et al. Crystal structure of albaflavenonemonooxygenase containing a moonlighting terpene synthase active site.(2009)J Biol Chem284:36711–36719
    [56] Babady NE, Pang YP, Elpeleg O, et al. Cryptic proteolytic activity ofdihydrolipoamidedehydrogenase.(2007) Proc Natl Acad Sci U S A104:6158–6163
    [57] Chiou SH, Lo CH, Chang CY, et al. Ostrich crystallins. Structuralcharacterization of delta-crystallin with enzymic activity.(1991) Biochem J273:(Pt2)295–300
    [58] Rubio-Texeira M. A comparative analysis of the GAL genetic switch betweennotso-distant cousins: Saccharomyces cerevisiae versus Kluyveromyces lactis(2005) FEMS Yeast Res5:1115–1128
    [59] Meyer J, Walker-Jonah A,. Hollenberg CP. Galactokinase encoded by GAL1isa bifunctional protein required for induction of the GAL genes inKluyveromyces lactis and is able to suppress the gal3phenotype inSaccharomyces cerevisiae.(1991) Mol. Cell. Biol.11:5454–5461
    [60] Hittinger CT, Carroll SB. Gene duplication and the adaptive evolution of aclassic genetic switch.(2007) Nature449:677–681
    [61] Lohr D, Venkov P, Zlatanova J. Transcriptional regulation in the yeast GALgene family: a complex genetic network.(1995) FASEB J9:777–787
    [62] Platt A, Ross HC, Hankin S, et al. The insertion of two amino acids into atranscriptional inducer converts it into a galactokinase.(2000) Proc Natl AcadSci U S A97:3154–3159
    [63] Bhat PJ, Hopper JE. Overproduction of the GAL1or GAL3protein causesgalactose-independent activation of the GAL4protein: evidence for a newmodel of induction for the yeast GAL/MEL regulon.(1992) Mol Cell Biol12:2701–2707
    [64] Sellick CA, Jowitt TA, Reece RJ. The effect of ligand binding on thegalactokinase activity of yeast Gal1p and its ability to activate transcription.(2009) J Biol Chem284:229–236
    [65] Philpott CC, Klausner RD, Rouault TA. The bifunctional iron-responsiveelement binding protein/cytosolic aconitase: the role of active-site residues inligand binding and regulation.(1994) Proc Natl Acad Sci U S A91:7321–7325
    [66] Wegrzyn J, Potla R, Chwae YJ, et al. Function of mitochondrial Stat3incellular respiration.(2009) Science323:793–797
    [67] Hao Z, Duncan GS, Chang CC, et al. Specific ablation of the apoptoticfunctions of cytochrome C reveals a differential requirement for cytochrome Cand Apaf-1in apoptosis.(2005) Cell121:579–591
    [68] Hu S, Xie Z, Onishi A, et al. Profiling the human protein–DNA interactomereveals ERK2as a transcriptional repressor of interferon signaling.(2009) Cell139:610–622
    [69] Irion U, Johnston DSt. bicoid RNA localization requires specific binding of anendosomal sorting complex.(2007) Nature445:554–558
    [70] Menon I, Huber T, Sanyal S, et al. Opsin is a phospholipid flippase.(2011)Curr Biol21:149-153
    [71] Moore B, Zhou L, Rolland F, et al. Role of the Arabidopsis glucose sensorHXK1in nutrient, light, and hormonal signaling.(2003) Science300:332–336
    [72] Khandelwal A, Chandu D, Roe CM, et al. Moonlighting activity of presenilinin plants is independent of gamma-secretase and evolutionarily conserved.(2007) Proc Natl Acad Sci U S A104:13337–13342
    [73] Ruiz A, Gonzalez A, Munoz I, et al. Moonlighting proteins Hal3and Vhs3form a heteromeric PPCDC with Ykl088w in yeast CoA biosynthesis.(2009)Nat Chem Biol5:920–928
    [74] Kaufman BA, Kolesar JE, Perlman PS, et al. A function for the mitochondrialchaperonin Hsp60in the structure and transmission of mitochondrial DNAnucleoids in Saccharomyces cerevisiae.(2003) J. Cell Biol163:457–461
    [75] Ozimek P, Dijk R van, Latchev K, et al. Pyruvate carboxylase is an essentialprotein in the assembly of yeast peroxisomal oligomeric alcohol oxidase.(2003)Mol Biol Cell14:786–797
    [76] Banerjee S, Nandyala AK, Raviprasad P, et al. Iron-dependent RNA-bindingactivity of Mycobacterium tuberculosis aconitase.(2007) J Bacteriol189:4046–4052
    [77] Pancholi V, Fischetti VA. Alpha-enolase, a novel strong plasmin(ogen)binding protein on the surface of pathogenic streptococci.(1998) J Biol Chem273:14503–14515
    [78] Bedford E, Tabor S, Richardson CC. The thioredoxin binding domain ofbacteriophage T7DNA polymerase confers processivity on Escherichia coliDNA polymerase I.(1997) Proc Natl Acad Sci U S A94:479–484
    [79] Bosch J, Buscaglia CA, Krumm B, et al. Aldolase provides an unusual bindingsite for thrombospondin-related anonymous protein in the invasion machineryof the malaria parasite.(2007) Proc Natl Acad Sci U S A104:7015–7020

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700