大厂92号矿体采矿技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大厂92号矿体位于91号矿体的下部,并与之紧密相连,是目前铜坑矿开采的主要矿体。由于它的直接顶板就是开采91号矿体时的胶结或者非胶结的空区充填体,部分地段甚至是未充填的采空区,使92号缓倾斜厚大矿体的上部形成大范围的隐患区,因此,必须针对92号矿体复杂的开采技术条件,寻找新的采矿技术与工艺。92号矿体的可凿性极差,选择合理的凿岩爆破参数,提高凿岩爆破工作的总体技术经济效益,也是92号矿体开采急待解决的问题。92号矿体与细脉带、91号矿体开采相互影响,目前在采空区不断增大的情况下地压显现有明显加剧的趋势,在下一步92号矿体大规模开采时,地压问题将越来越严重。
     本文通过对92号矿体采矿工艺、矿体凿岩爆破参数工艺和技术和矿体开采过程中的地压的研究,获得如下结论和成果:
     (1)连续开采诱导崩落采矿新工艺具有贫损低、机械化程度高、回采强度高、工人劳动生产率高和安全性高的优点,为92号矿体的开采提供了一条新的途径。
     (2)采用RFPA~(2D)对连续采矿诱导崩落的数值仿真结果表明,在顶板岩层发生破坏后,岩层仍有一定的承载能力,能够使连续采矿作业系统维持一定时期的稳定,大量冒落区域与采矿工作面之间的距离始终可保持在两个回采推进距离的范围内,这样就大大减少了顶板诱导崩落产生的废石引起矿石损失贫化的可能性,从而可以保证连续回采工艺的成功实施。
     (3)根据92#矿体岩石条件和采矿工艺,确定选用河北宣化采掘机械厂生产的QZG80中高风压潜孔钻机,深孔孔径定为90mm比较合适;推荐铵油炸药与乳化炸药混合搅拌均匀后组成混合炸药(重铵油炸药)作为下一步92#矿体采矿爆破用炸药;
     (4)采用3D-σ对矿体回采过程计算结果表明:在走向方向上,回采顺序方案的稳定性从好到差的排列顺序依次是:①由西往东后退式方案;②从中央往东、西两端方案;③从东、西两端往中央方案;④由东往西前进式方案。
     在倾向方向上,非重叠区内稳定性最优的方案是由南往北方案,其次是从中央往南、北方案;第三是从南、北往中央方案,最差是由北往南方案;重叠区内最优的方案仍然是由南往北方案,次优的方案也是由中央往南、北方案,第三是从重叠区的正中央向两边后退式方案,最差的方案是先用前进式采两边非重叠部分,然后从重叠区的中央后退。先采(中央)重叠区较先采(两边)非重叠区有利些,重叠区内又以后退式为佳。
The No.92 ore-body of DaChang lie in the under-part of the No.91orebody, and they are jointed closely, the No.92 ore-body is the main part in TongKeng Mine. Because the direct roof of the No.92 ore-body is the backfilling of the No.91orebody which is the cementing materials or non-cementing materials, and there are no-filled mined-areas in someplace. So there are large-scale hidden troubles on the top of the No.92 slowly inclined large and thick ore-body, then we must find a new mining technology which aims at the complex mining condition of the No.92 ore-body. The cutting nature of the No.92 ore-body is very poor, so choosing the rational drilling and blasting parameters and enhancing the overall technological economic benefits are also the urgent problems waiting to be solved in the exploitation of the No.92 ore-body. The No.92 ore-body, thin lodes and the exploitation process of the No.91orebody influence each other, the geo-pressure phenomena aggravates obviously in case of the mined-areas increase const
    antly, and the geo-pressure problem will be more and more serious when the No.92 ore-body be exploited on a large scale in the next step.
    Ore-body mining technology, ore-body drilling and blasting parameters and geo-pressure problem of the No.92 ore-body have been researched in this paper, and obtain the following conclusions and achievements.
    (1)The abducting caving method in continues mining is a new mining technology and it has many merits such as the low loss and dilution of ore, the high mechanization degree, the high stoping strength, the high worker labour productivity and high safety, and it provides a new approach for the mining in the No.92 ore-body.
    (2)The numerical simulation on the abducting caving method in continues mining when we use RFPA2D software indicate that the terrane has some sustainable capacity as the roof terrane has been destroyed, and it can keep the continues mining system under stability for a period, the distance between the mass falling area and the mining face can keep in the range of the scope between two working push, and this greatly reduce the possibility that loss and dilution of ore as the mullock produced by the abducting caving of the roof, then it guarantees the continues stoping technology be
    
    
    succeed in implementing.
    (3) We determine and select the QZG80 high and medium wind pressure down-hole drill produceed by Xuanhua Machine Factory Hebei province, and the aperture of the deep hole is 90 mm which is relatively suitable. We commend the mixing explosive (Heavy ANFO) evenly mixed by the ANFO and the emulsion explosive as the next explosive which used by the No.92 ore-body' exploitation.
    (4) As we use the 3D- a software , the counting results of the sloping process indicate that: at the striking bearing, the permutation order from kind at difference on the stability of the projects in the mining process is: (1)The backward mining method to the east from the west; (2)From the central part to the east, the west;(3)From the east, the west to the central part; (4)The advancing project from the east to the west.
    At the inclining bearing, the best project on the stability of the non-overlapping areas is the case from south to the north; the second is the case from the central part to the south, the north; the third is the case from the south, the north to the central part; the worst is the case from the north to the south. The best project on the stability of the overlapping areas is also the case from south to the north; the second is the case from the central part to the south, the north; the third is the case from the central part at the overlapping area to two ends in a backing method; the worst is the case which mine two sides at the non-overlapping areas in a advancing way at first, then back from the central part at the overlapping areas. The project of first mining the central part at the overlapping areas is better than one that first mining two sides at the non-overlapping areas, and the backing method is better than other projects at the overlapping areas.
引文
[1] 蔡汉迁,姜凡均.垂直上向深大孔装药试验研究.矿业研究与开发,2001,06
    [2] 罗一忠,余阳仙等.大厂铜坑矿地压活动预报准则探讨.有色金属,2001,06
    [3] 姜凡均,蔡汉迁.柿竹园三矿带高分段采矿新工艺.湖南有色金属,2002,01
    [4] 蔡汉迁,玉子庆,姜凡均.两面临空条形矿柱回采方案的探讨.矿业研究与开发,2003,02
    [5] 玉子庆,蔡汉迁等.大矿房空场法回采的设计与实践.矿业研究与丌发,2003,03
    [6] 玉子庆,蔡汉迁等.大厂铜坑矿岩层活动监测预报研究.采矿技术,2003,02
    [7] 蔡汉迁,陈寿如等.地下矿深孔中深孔底起爆弹的应用及改进.爆破器材,2003,06
    [8] 姜凡均,子彦.基律纳矿Simba 269型钻机的自动化深孔凿岩.采矿技术,1994,15
    [9] 姜凡均.狭长形采场块石胶结充填中块石和砂浆的分流.有色矿山1995,01
    [10] 姜凡均,莫荣世.井下高台阶柱状药包爆破技术及其应用.湖南有色金属,1996,06
    [11] 陆锋,姜凡均.铜坑矿采矿方法的变更与发展.矿业研究与开发,1997,03
    [12] 姜凡均.井下高台阶柱状药包爆破技术及其应用.有色矿山,1998,01
    [13] 姜凡均,玉子庆.影响块石胶结充填体质量的主要因素.湖南有色金属,1999,05
    [14] 戈登利,杨伟忠,刘湘平.充填体下采矿.采矿技术 2001,01
    [15] 曹庆林,毛建华.老厂锡矿14—5矿体采场稳定性分析的数值模拟研究.湖南有色金属,1996,02
    [16] Yoshida H, Horii H. Excavation Analysis of a Large-scale Underground Power House Cavern by Micro mechanics-based Continuum Model of Jointed Rock Mass. International Journal of Rock Mechanics & Mining Sciences & Geo mechanics Abstracts. 1997, 34(3/4):569
    [17] Mohanty B, Ludwig G. Optimization of Development Drilling and Blasting in an Underground Mine. Proceedings of the 24th Annual Conference on Explosives and Blasting Technique. New Orleans, Louisiana USA. February 1998:441-450
    [18] 陶颂霖:凿岩爆破,冶金工业出版社,1983
    [19] 牛成俊:现代露天开采理论与实践,科学出版社,1990
    [20] 高金石,张奇:爆破理论与爆破优化,西安地图出版社.1992
    
    
    [21] 纽强:岩石爆破机理,东北工学院出版社,1990
    [22] 史秀志.铜山口露天陡边坡开采控制爆破试验研究[R],2000.
    [23] 陈寿如等.近河堤采矿爆破的震动监测与控制.中国有色金属学报,2000,10(1):163-139
    [24] 陈寿如等.无线自记测震系统在露天矿爆破地震控制中的应用.爆破器材,1998,27(1):18-20
    [25] 陈寿如等.两种质点公式的比较与选择,第七届工程爆破学术会议论文集,新疆青少年出版社,2001:702-706
    [26] 陈寿如,等.减少贵铝二矿露天台阶爆破根底和控制爆破地震危害研究总结报告[R],2000.
    [27] 刘殿中.工程爆破实用手册[M].北京:冶金工业出版社,1999.
    [28] 龙维祺.特种爆破技术[M].北京:冶金工业出版社,1993.
    [29] 秦明武.控制爆破.北京:冶金工业出版社,1993.
    [30] Dowding C H. Vibration analysis software. Proceedings of the Twenty-third Annual Conference on Explosives and Blasting Technique. 1997: 121-132
    [31] Crum S V, Siskind D E and Eltschlager K. Blast vibration measurement at far distances and design influences on ground vibrations. Proceedings of the Eighteenth Annual Conference on Explosives and Blasting Technique. 1992:167-179
    [32] Hinzen K G. Comparison of seismic and explosive energy in five smooth blasting test rounds. International Journal of Rock Mechanics and Mining Sciences. 1998, 35(7): 957-967
    [33] Adhikari G R, Singh M M and Gupta R N. Influence of rock properties on blast-induced vibration. Mining Science and Technology. 1989, 8(3): 297-300
    [34] Sunu M Z. Effect of blast- and plant-induced vibration on stability in surface mining operations. Mining Science and Technology. 1989, 9(1): 47-56
    [35] 毛建华.采场安全监测与冒顶预报.采矿技术,1996,04
    [36] 余阳先,毛建华.铜坑锡矿东盘区采场的稳定性监测.矿业研究与开发,2000,03
    [37] 毛建华.有色金属矿山地压与地质灾害防治.采矿技术,2002,01
    [38] 吴树云,毛建华.铜坑矿92~#矿体开采地压控制.采矿技术,2002,04
    [39] 罗一忠.弹塑性有限元程序的改进及其工程应用.矿业研究与开发,1994,02
    [40] 罗一忠.大厂91号矿体及充填体稳定性有限元分析与预测.矿业研究与开发,1997,01
    [41] 罗一忠,叶粤文.大厂91号矿体岩石力学参数工程处理.江西有色金属,
    
    1998,03
    [42] 罗一忠,文衍瑜.大厂91号矿体矿柱回采顺序优化.西部探矿工程,1998,06
    [43] 张绍国,罗一忠.井下充填体安全隔离层稳定性分析.采矿技术,2003,02
    [44] 叶粤文.铜坑锡矿磨砂胶结充填质量评估.矿业研究与开发,1996,04
    [45] 叶粤文.大厂铜坑锡矿91号矿体地压监测及充填体稳定性评价.有色金属(矿山部分),1998,03
    [46] 周罗中.大厂铜坑矿块石胶结充填技术研究.湖南有色金属,1995,01
    [47] 杨立根.矿山岩体原岩应力场的研究与应用.长江科学院院报,1996,S1
    [48] 臧士勇.块体理论及其在采场巷道稳定性分析中的应用.昆明理工大学学报,1997,04
    [49] 余阳先.用混凝土搅拌机加工粒状铵油炸药的实践.矿业研究与开发,1997,03
    [50] 鲍勇峰,彭续承.块石胶结充填技术的研究及应用.矿冶工程,1998,03
    [51] 周小平,何翠秀,张永兴.光弹性应力计在大厂铜坑锡矿细脉带570中段的应用.重庆建筑大学学报,1999,02
    [52] 朱明亮,刘湘平.铜坑矿91号矿体的地压研究.矿业研究与开发,1999,05
    [53] 周小平,黄煜镔,周昌达.大厂铜坑矿细脉带采场尺寸的优化研究.地下空间,2001,02
    [54] 李有仁.铜坑矿加大残矿回收力度.有色矿山,2002,03

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700