施肥对麦田土壤微生物活性影响的微量热法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤微生物是陆地生态系统中分解者亚系统的主要组成部分,参与了包括有机质降解、营养转化、植物生长的促进或抑制以及各种土壤物理过程在内的一系列反应活动。土壤微生物是土壤质量重要的生物指标,可以用来监控土壤质量的变化。微量热法是近几十年发展起来的一种快速测量微生物活性的新技术,广泛地应用于土壤微生物活性的研究。国内有不少用微量热法进行的研究,包括药物、污染物、重金属离子、稀土元素等对细菌生长、细胞代谢影响以及大分子功能或细胞之间的相互作用等,但鲜有其在土壤微生物领域应用的研究。本文应用微量热法研究了甘肃平凉高平试验地长期施肥及轮作条件下麦田土壤微生物活性的变化,实验中采集了耕层土(5-15cm)N(氮肥)、NP(氮磷合施)、SNP(秸杆与氮磷合施)、M(厩肥)、MNP(厩肥与氮磷合施)五个施肥样品和一个不施肥的样品CK(对照),并且以MNP和CK为代表,采集了不同深度(5-15cm、15-20cm、25-30cm、35-40cm、45-50cm)的土样,以探明长期施肥对水平空间和垂直空间的土壤微生物活性的影响。实验结果如下:
     1.不同施肥处理下的土壤微生物活性不同。不同肥料处理的土壤微生物代谢热功率-时间曲线形状有所不同,MNP、NP、SNP的曲线陡峭,M、N、CK的曲线平缓;MNP、NP、SNP三个样的微量热特征参数μ(微生物生长速率常数)、Q_t(微生物生长代谢过程中的总热)、P_h(功率-时间曲线的峰值功率)值均高,P_t(到达功率-时间曲线峰值的时间)值低,所以,厩肥与氮磷配施、秸秆与氮磷配施及氮磷合施显著增加土壤微生物活性;单施氮肥或单施有机肥的土壤微生物活性与对照没显著性的差别。
     2.微生物活性基本是随深度而下降的趋势,施肥增加不同深度的土壤微生物活性。施肥土壤和不施肥土壤的微生物代谢热功率-时间曲线形状不同,特别是表层土壤的(5-20cm),施肥土壤的曲线明显的比不施肥的曲线陡,而且侧翼也明显的短;施肥土壤的μ和P_h值都大于不施肥土壤的,而且施肥土样的P_t值都小于不施肥土样的。
     3.不同施肥处理中,施加厩肥的土壤细菌和真菌量最高(样M),再次是MNP、NP、SNP。样N中只增加了细菌数量。土壤细菌与土壤各养分含量的关系不一致,其中,与全磷含量达到显著相关;与微量热各参数的相关性都不太好。但不同深度的土壤中细菌数量同微生物活性(P_t值)相关性良好。出现这样的差别,可能主要是因为深层土壤受外界的扰动小,土壤微生物群落结构相对稳定。此外,施肥也增加了深层土壤中的细菌数量。
     4.土壤微生物活性受土壤速效磷的影响明显。微量热各参数之间相关性良好,微生物活性与其他土壤养分的相关性复杂。
     5.长期施加厩肥及其与氮磷肥配施,明显的增加了土壤各养分含量,秸秆配施氮磷肥增加了大部分的养分含量,氮肥、磷肥合施增加了有机碳、全磷和速效磷的含量,单施氮肥略增加了土壤有机碳含量,土壤其他养分含量相差不多或降低。总之,长期施肥条件改变了土壤的微生物活性和微生物数量,也改变了土壤养分条件。这表明长期施肥条件下,土壤中微生物群落结构或功能改变,而这种改变必然同土壤微域环境的变化密切相关,即土壤质量或土壤肥力发生了变化,这有可能会进一步的影响作物产量。
Soil microbe is the major part of the decomposers in the continent ecosystem. As well it takes part in several physiologic activities including the decomposition of organic matter, the conversion of nutrition, the stimulation or depression of plant growing, and also all kinds of physical processes in soil. Microorganisms are really important bioindicators of soil quality, and thus they can be used to monitor the changes of soil quality. Microcalorimetry is a new technique to determine microbial activity rapidly, and so it is extensively applied in the measurement of the thermal effect produced by soil microbial metabolism. There were many researches using microcalorimetry in our domestic country, including the influence of drugs, pollutants, heavy metals and rare earth elements on the bacterial growth and cell metabolism, the function of macromolecules, or the interaction between cells etc., but rarely in the field of soil microorganisms. In this experiment, we collected five fertilizer samples in the surface of soil (5-15cm), including N (nitrogen), NP (application of nitrogen and phosphorus), SNP (application of straw, nitrogen and phosphorus), M (manure) and MNP (application of manure, nitrogen and phosphorus), and also a sample without fertilizer CK (the control). We took MNP and CK as the representative, collecting five soil samples respectively at different depths (5-15cm ,15-20cm ,25-30cm ,35-40cm ,45-50cm). In this paper, we studied the changes of soil microbial activity in level of horizontal and vertical space under the long-term fertilization and crop rotation in wheat fields. The main experiments results were summarized as follows:
     1. Different fertility treatments had different soil microbial activity. Shapes of thermal power-time curves of different fertility treatments are different. Curves of MNP, NP and SNP were steep, and curves of M, N and CK were flattening. Values of parameters of microcalorimetryμ(microbial growth rate constant), Q_t (the total heat of microbial metabolism), P_h (peak height of power-time curves) of MNP, NP and SNP were high, and value of P_t (time reaching the peak of power-time curves) was low. So fertility application treatments of manure plus nitrogen and phosphorus (MNP), straw plus nitrogen and phosphorus (SNP) and nitrogen plus phosphorus (NP) significantly increased microbial activity in wheat soil; application of single nitrogen fertilizer or single kind of organic fertilizer had no significant difference with the control (CK).
     2. Microbial activity had the basic trend that decreased with the depth in soil. Fertilization increased microbial activity in almost all soil layers measured. There were different shapes of thermal power-time curves in no fertilizer application treatment(CK) and mineral fertilizer plus manure application treatment(MNP), particularly in the former two layers of soil samples. Curves of MNP are obviously steeper than the CK, and their shouders before the peak were significantly much shorter; the P_h andμvalues of MNP are greater than CK, and the P_t values of MNP were less than the CK.
     3. In different fertilization treatments, number of soil bacteria and fungi in sample M was the highest, then following with MNP, NP and SNP. Only the number of bacteria in sample N increased. The relationship between bacteria and different nutrients was inconsistent. And the relationship between the number of bacteria and total phosphorus achieved significant correlation level. When compared with the parameters of microcalorimetry, the relationship was not so good. However, the number of bacteria in different depths of soil has good correlation with microbial activity (value of P_t). Such a difference occurred may be mainly because there was small disturbance in the deep soil. So soil microbial community structure was relatively stable. In addition, fertilization treatments had increased the number of bacteria in the deep layers of soil.
     4. Soil microbial activity and the number of microorganisms were significantly affected by soil available phosphorus. The relationship between the parameters of microcalorimetry was good. The relevance of microbial activity and other soil nutrients was complex.
     5. Compared with the control, long-term application of manure and manure plus inorganic fertilizer remarkably increased the nutrient content in soil; straw plus phosphate and nitrogen increased most of the nutrient content in soil; application of nitrogen plus phosphate fertilizer increased soil organic carbon, total phosphorus and available phosphorus content; the single application of nitrogen fertilizer slightly increased soil organic carbon content; other soil nutrient content of was similar or much lower.
     In this study, long-term fertilization of soil conditions changed the number of microbes and microbial activity, and also changed the conditions of soil nutrients. This showed, in the long-term fertilization conditions, the soil microbial community structure or function were changed, and this change was closely related to changes in the environment in soil, that was the change of soil quality or soil fertility, which might be further affect crop yields.
引文
1.王宏.微生物鉴定的一种新方法-微量热法[J].现代商检科技,1998,8(6):54-57.
    2.温德才,刘义,赵儒铭等.量热技术在生命科学中的应用[J].自然杂志,2l(1):41-45.
    3.刘鹏,刘义,陈酉贵等.等温微量热法在生命科学研究中的应用[J].化学通报,2002,(10):682-687.
    4.Anderson JM,Ingram JSI.Tropical Soil Biology and Fertility-A Handbook of Methods[M].Wallingford:CAB International,1993.
    5.周知义,周桂敏.微生物快速诊断新技术[M].上海科学技术文献出版社,1984:92-104.
    6.谢昌礼,汤厚宽,屈松生等.微量量热法测定细菌生长的热谱[J].物理化学学报,1986,2(6):481-483.
    7.颜承农,刘义.微量热法用于细菌分类鉴定的研究[J].化学世界,1997,38(5):252-255.
    8.刘义,冯英,谢昌礼等.细菌最佳生长的热化学研究[J].应用化学,1996,13(2):95-97.
    9.刘义,谢卫红,谢昌礼等.细菌有限生长热动力学研究[J].物理化学学报,1996,12(2):156-158.
    10.汤厚宽,何佶,刘义等.细菌生长速率与温度关系的微量热法研究[J].湖北农学院学报,1999,19(2):171-173.
    11.余润兰,佐藤和彦.细菌在低温低pH值条件下的活性研究[J].贵阳师范学院学报(自然科学版),1999,20(6):48-51.
    12.孙达远,汤厚宽,谢昌礼等.细胞代谢的热化学研究-鉴别静息细胞代谢的新方法[J].物理化学学报,1987,3(05):465-467.
    13.Uezu K,Yoshimura O,Goto M,et al.Extraction of rare earth metals using liquid surfactant membrances in a mixcoextractor[J].Transactions of the institution of chemical engineers,Part A,Chemical engineering research & design,2003,75(5):513-518.
    14.Valluzzi R,Guertin RP,HaasTE.Magnetically complexed collagen nanocopmposites[J].Philosophical magazine,2004,84(32):1478-6435.
    15.QK Zhuang,HC Dai,XX Gan,WK Xin.Electrochemical studies of the effect of lanthanide ions On the activity of glutamate ehydrogenase[J].Bioelectrochemistry,2000,52(1):37-41.
    16 宋香,王燕,段作营等.稀土元素对谷氨酸棒杆菌生长和酶酶活性的影响[J].无锡轻大学报,2004,23(3):16-21.
    17.王燕,孙彩云,杨平平等.稀土元素对微生物的生物学作用研究进展[J].山东轻工业学院学报,2005,19(3):14-17.
    18.黄在银,赵儒铭,冯英等.稀土硝酸盐抗菌活性的微量热法研究[J].稀土,1997,18(5):12-14.
    19.刘义,颜承农,宋昭华等.硒的热化学研究-IV微量热法研究Na_2SeO_3对微生物生长代谢的抑制[J].应用化学,1998,15(1):29-32.
    20.王夔.生命科学中的微量元素[M].北京:中国计量出版社,1996,858-888.
    21.李曦,丁玲,靳艳巧.镉对大肠杆菌生长代谢作用的微量热研究[J].武汉理工大学学报,2005,27(1):19-21.
    22.李曦,刘义,彭云山等.含硒的膦酸酯化合物抗菌作用的微量热研究[J].武汉理工大学学报,200l,23(11):4-7.
    23.李曦,刘义,屈松生等.微量热法研究砷对大肠杆菌的作用[J].武汉理工大学学报,2003,25(3):33-35.
    24.刘义,颜承农,谭智群等.重金属离子对黑根霉菌生长抑制作用微量热研究[J].环境化学,1998,17(3):255-259.
    25.黄在银,屈松生.金属离子化合物抗菌活性的微量热法[J].无机化学学报,1998,114(14):490-492.
    26.梁毅,屈松生,刘义等.热动力学研究的新进展[J].化学通报,1998,(3):13-18.
    27.冯英,黄在银,谢昌礼等.Schiff碱金属配合物在细菌代谢过程中的表征[J].化学学报,1997,55:967-973.
    28.刘义,冯英,谢昌礼等.Schiff碱药物对产气杆菌代谢抑制的热力学研究[J].化学学报,1996,54:1170-1176.
    29.冯英,谢昌礼,黄在银等.Schiff碱药物与产气杆菌作用的微量热研究[J].化学学报,1997,55:794-800.
    30.李晓霞,潘晓茹,吴莉莉等.麦冬对大肠杆菌代谢作用的微量量热法研究[J].山东中医药大学学报,2001,25(4):307-309.
    31.李向阳,丛冬俊,于静涛等.微量量热法测定芦荟对大肠杆菌的代谢作用研究[J].中国卫生检验杂志,2002,12(1):44-45.
    32.Beezer AE.Biological Microcalorimetry[M].London:Academic Press,UK,1980.
    33.Volpe PLO.Flow microcalorimetric measurements of the antibacterial activity of the homologous series m-alkoxyphenols and p-hydroxybenzoates on Escherichia coli.[J].Journal of the Brazilian Chemical Society.1997,8(4):343-48.
    34.Prado AGS,Airoldi C.Effect of the pesticide 2,4-D on microbial activity of the soil monitored by microcalorimetry[J].Thermochimica Acta,2000,349:17-22.
    35.Critter SAM,Freitas SS,Airoldi C..Comparison of microbial activity in some Brazilian soils by microcalorimetric and respirometric methods[J].Thermochimica Acta,2004,410:35-46.
    36.Critter SAM,Freitas SS,Airoldi C.Calorimetry versus respirometry for the monitoring of microbial activity in a tropical soil[J].Applied Soil Ecology,2001,18:217-227.
    37.Critter SAM,Freitas SS,Airoldi C.Comparison between microorganism counting and a calorimetric method applied to tropical soils[J].Thermochimica Acta,2002,394:133-144.
    38.Critter SAM,Freitas SS,Airoldi C.Microbial biomass and microcalorimetric methods in tropical soils[J].Thermochimica Acta,2002,394:145-154.
    39.Raubuch M,Beese F.Comparison of microbial properties measured by O_2consumption and microcalorimetry as bioindicators in forest soils[J].Soil Biology and Biochemistry,1999,31:949-956.
    40.Nunez L,Nunez O,Rodriguez Ahon JA,et al.The influence of some physicochemical parameters on the microbial growth in soils[J].Thermochimica Acta,2002,394:123-131.
    41.Tiwari SC,Tiwari BK,Mishra RR.The influence of moisture regimes on the population and activity of soil microorganisms[J]. Plant Soil, 1987, 101: 133-136.
    42. Barros N, Gomez I, Feijoo S, et al. The effect of soil moisture on soil microbial activity studied by microcalorimetry[J]. Thermochimica Acta, 1995,249: 161-168.
    43. Prado AGS, Airoldi C. The infuence of moisture on microbial activity of soils[J]. Thermochimica Acta, 1999, 332: 71- 74.
    44. Yamano H, Takahashi K. Temperature effect on the activity of soil microbes measured from heat evolution during the degradation of several carbon sources[J]. Agricultural and Biological Chemistry, 1983, 47(7): 1493- 1499.
    45. Nunez L, Barros N, Barja I. Effect of storage of soil at 4℃ on the microbial activity studied by microcalorimetry [J]. Journal of Thermal Analysis, 1994,41: 1379-1383.
    46. Tiwari SC, Tiwari BK, Mishra RR. The influence of moisture regimes on the population and activity of soil microorganisms[J]. Plant Soil, 1987,101: 133-136.
    47. Barros N, Gomez I, Feijoo S, et al. The effect of soil moisture on soil microbial activity studied by microcalorimetry [J]. Thermochimica Acta, 1995,249: 161- 168.
    48. Prado AGS, Airoldi C. The infuence of moisture on microbial activity of soils[J]. Thermochimica Acta, 1999, 332: 71- 74.
    49. Yamano H, Takahashi K. Temperature effect on the activity of soil microbes measured from heat evolution during the degradation of several carbon sources[J]. Agricultural and Biological Chemistry, 1983, 47(7): 1493- 1499.
    50. Barja I, Proupin J, Nunez L. Microcalorimetry study of the effect of temperature on microbial activity in soils[J]. Thermochimica Acta, 1997, 303: 155- 159.
    51. Nunez L, Rodriguez-Anon JA, Proupin-Castineiras J, et al. Microcalorimetric study of changes in the microbial activity in a humic Cambisol after reforestation with eucalyptus in Galicia (NW Spain)[J]. Soil Biology and Biochemistry, 2006, 38: 115-124.
    52. Zheng SX, Yao J, Zhao B, et al. Influence of agricultural practices on soil microbial activity measured by microcalorimetry [J]. European Journal of Soil Biology, 2007, 43: 151-157.
    53. Dumontet S, Perucci P. The effect of a acifluorfen and trifluralin on the size of microbial biomass in soil[J]. Science of the Total Environment, 1992, 123-124: 261-266.
    54.Cheah UB,Kirkwood RC,Lum KY.Adsorption,Desorption and Mobility of Four Commonly Used Pesticides in Malaysian Agricultural Soils[J].Pesticide Science,1997,50(1):53- 63.
    55.Vieira E M,Prado AGS,Langraf MD,et al.Study of adsorption desorption of herbicide 2,4-D in soil and in humic acid[J].Qumica Nova,1999,22:305- 310.
    56.[37]Prado AGS,Airoldi C.Microcalorimetry of the degradation of the herbicide 2,4-D via the microbial population on a typical Brazilian red Latosol soil[J].Thermochimica Acta,2001,371:169- 174.
    57.Prado AGS,Airoldi C.The toxic effect on soil microbial activity caused by the free or immobilized pesticide diuron[J].Thermochimica Acta,2002,394:155- 162.
    58.Airoldi C,Prado AGS.The inhibitory biodegradation effects of the pesticide 2,4-D when chemically anchored on silica gel[J].Thermochimica Acta,2002,394:163-169.
    59.Airoldi C,Critter SAM.The inhibitor effect of copper sulphate on microbial glucose degradation in red latosol soil[J].Thermochimica Acta,1996,288:73- 82.
    60.Yao J,Tian L,Wang YX et al..Microcalorimetric study the toxic effect of hexavalent chromium on microbial activity of Wuhan brown sandy soil:An in vitro approach[J].Ecotoxicology and Environmental Safety,2008,69:289- 295.
    61.Bridger GL,Salutsky ML,Starostka RW,et al.Metal Ammonium Phosphates as Fertilizers[J].Food Chem.,1962,10:181.
    62.Barros N,Airoldi C,Simoni JA,et al.Calorimetric determination of the effect of ammonium-iron(Ⅱ)phosphate monohydrate on Rhodic Eutrudox Brazilian soil[J].Thermochimica Acta,2006,441:89- 95.
    63.Degens BP,Schipper LA,Sparling GP,et al.Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities[J].Soil Biology and Biochemistry,2000,32(8):189- 196.
    64.#12
    65.樊廷录,周广业,王勇等.甘肃省黄土高原旱地冬小麦-玉米轮作制长期定位施肥的增产效果[J].植物营养与肥料学报,2004,10,127-131.
    66.刘春芳,宋尚有,王勇等.施肥对冬小麦生理特性和籽粒产量的影响[J].甘肃农业大学学报,2005,40(2):199-202.
    67.宋尚有,王勇,樊廷录等.氮素营养对黄土高原旱地玉米产量、品质及水分利用效率的影响[J].植物营养与肥料学报,2007,13(3):387-392.
    68.侯晓杰,汪景宽,李世朋.不同施肥处理与地膜覆盖对土壤微生物群落功能多样性的影响[J].生态学报,2007,27(2):655-661.
    69.Sakurai M,Suzuki K,Onodera M et al..Analysis of bacterial communities in soil by PCR-DGGE targeting protease genes[J].Soil Biology & Biochemistry,2007,39:2777-2784.
    70.鲁如坤,史陶钧.土壤磷素在利用过程中的消耗与积累[J].土壤通报,1980,(5):6-81.
    71.叶爱华,扬莉,昊延军.小麦VA菌根真菌分离鉴定[J].中国农学通报,2001,17(4):94-94,96.
    72.张旭红,朱永官,王幼珊等.不同施肥处理对丛枝菌根真菌生态分布的影响[J].生态学报,2006,26(9):3081-3087.
    73.林先贵,郝文英.在非灭菌土壤条件下施用磷肥对VA菌根效应的影响[J].土壤学报,1989,26(2):179-185.
    74.顾希贤,林先贵,郝文英.VA菌根效应的预测[J].土壤肥料,1991,(3):36-39.
    75.陈宁,王幼珊,李晓林等.营养液强度对AM真菌生长发育的影响[J].菌物系统,2003,22(3):394-401.
    76.Barros N,Feijoo S,Balsa R.Comparative study of the microbial activity in different soils by the microcalorimetric method[J].Thermochimica Acta,1997,296:53- 58.
    77.Barros N,Feijoo SS,Simoni JA et al..Microcalorimetric study of some Amazonian soils[J].Thermochimica Acta,1999,328:99-103.
    78.赵吉,廖仰南,张桂枝等.草原生态系统的土壤微生物生态[J].中国草地,1999,(3):57-67.
    79.邵玉琴,赵吉,包青海.库布齐固定沙丘土壤微生物生物量的垂直分布研究[J].中国沙漠,2001,21(1):88-92.
    80.彭佩钦,张文菊,童成立等.洞庭湖典型湿地土壤碳、氮和微生物碳、氮及其垂 直分布[J].水土保持学报,2005,19(1):49-53.
    81.易志刚,蚁伟民,丁明懋等.鼎湖山自然保护区土壤有机碳、微生物生物量碳和土壤CO_2浓度垂直分布[J].生态环境,2006,15(3):611-615.
    82.贾志红,杨珍平,张永清等.麦田土壤微生物三大种群数量的研究[J].麦类作物学报,2004,24(3):53-56.
    83.刘恩科,赵秉强,李秀英等.长期施肥对土壤微生物量及土壤酶活性的影响[J].植物生态学报,2008,32(1):176-182.
    84.李絮花,杨守祥,于振文等.有机肥对小麦根系生长及根系衰老进程的影响[J].植物营养与肥料学报,2005,11(4):467-472.
    85.史刚荣.植物根系分泌物的生态效应[J].生态学杂志,2004,23(1):97-101.
    86.#12
    87.Raich J W,Potters CS.Global patterns of carbon dioxide emissions from soils[J].Global Biogeochemical Cycles,1995,9:23- 36.
    88.Criddle RS,Fontana AJ,Rank DR,et al.Simultaneous measurement of metabolic heat rate,CO_2 production and O_2 consumption by microcalorimetry[J].Analytical Biochemistry,1991,194(2):413- 417.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700