海藻糖合酶基因遗传转化烟草的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是我国农业最主要的自然灾害。它影响了植物的生长发育,造成作物严重减产,加剧了全球性的粮食危机。在中国,有将近1/3的土地处于干旱和半干旱状态,7%以上耕地处于干旱和盐碱之中。随着土地沙漠化的加剧,以及淡水资源的日益短缺,这一数字还在不断上升。因此培育抗旱新品种是利用干旱地的一条经济而有效的途径。
     海藻糖在生物体内扮演极其特殊的角色,它具有保护细胞膜和蛋白质结构的特殊功能,使生物体具有较强的抗旱、抗寒的能力,且对蛋白质制品、食品具有特殊的保护作用。
     本研究利用担子菌灰树花海藻糖合酶基因(Tsase)遗传转化烟草,以进一步验证该基因的功能。首先将Tsase基因取代植物表达载体pBBB-ETR的ETR基因构建植物表达载体pBBBT,然后利用“三亲交配”法导入超毒性农杆菌菌株EHA105中,接着通过农杆菌介导法遗传转化烟草,经过连续的PPT抗性筛选,获得20株抗性植株。抗性植株经PPT体外抗性初筛,获得3株阳性植株;经PCR检测,其中的2株呈阳性反应;接下来的Southern杂交检测结果仍呈阳性,证明海藻糖合酶基因已整合到烟草基因组中。通过HPLC/ELSD法测得这两株转基因烟草海藻糖含量分别为2.126mg/g FW和2.556mg/g FW,而对照则检测不出海藻糖。与对照相比转基因烟草在形态上发生了明显的改变:叶片颜色变深绿;叶片增厚;主叶脉变粗壮等。田间抗旱试验结果证明转基因烟草的抗旱性得到了增强。这为植物抗旱基因工程的研究打下了良好的基础,同时也为利用植物生物反应器生产海藻糖奠定了基础。
Drought has been one of the greatest natural disaster threatening agriculture in our country . It affects the growth of plants and sharply reduces the yield. In china, about one-third of the land is in the drought and half-drought state and above 7% of the arable is threatened by drought and salinization. However the number is still increasing with the desertification of land and the lack of fresh water. So, it is an economical and efficient approach for utilizing the drought-stress land better to cultivate a new variety with drought-resistance trait.
    Trehalose plays a special role in the organism.. It endows the trehalose-producing organisms with the ability to resist drought and freeze because it can protect the structures of the protein and the membrane. Besides, it also has the special protective function on protein products and food.
    In our experiments, we transformed the Grifola frondos ( bacidiomycete ) trehalose synthase gene (Tsase) into tobacco to make further study to verify the function of the gene. First, a plant expression vector, pBBBT was constructed by inserting Tsase into pBBB-ETR to substitute the ETR gene within the plant expression vector. Then, it was introduced into the super-poison Agrobacterium tumerfaciens EHA105 through the "Triparental mating" method. Twenty regenerated tobacco plantlets were obtained with selection medium under the PPT selective pressure. Three plantlets were selected positive via vitro studies with PPT. We used the method of PCR to detect the trehalose synthase gene in them and there were two PCR-positive plants in the three. Southern blotting analysis suggested that the trehalose synthase gene had been integrated into the genome of the two PCR-positive regenerated plants. Here we used a method of HPLC/ELSD to analyse the content from leaf extract of the two transformants and CK. There were 2.126 mg/gFW and 2.556 mg/gFW trehalose in these two
    
    
    
    transformants, respectively, whilst no trehalose was detected in CK. In comparison with CK, obvious morphological variation were observed in the transgenic tobaccos. Their leaves became greener and thicker, chief veins turned bolder and thicker than those of CK. In addition, drought-stress trials in field proved that the capability of drought-resistance of the transgenic tobaccos were improved. All this have made a firm foundation for the gene engineering research of drought-resistance in plant and will be useful in producing trehalose by plant bioreactors.
引文
1. 参考http://www.chinakol.com/wucai/huanjing/guansha/gc1001031503.asp网址.
    2.郑成木选编.现代作物育种研究与进展.抗旱生理与遗传育种,华南热带农业大学:75~107.
    3. BohnertHJ, NelsonDE, JensenRG. Adaptationsto environmental stress [J]. Plant Cell, 1995,7:1099~1111.
    4.王忠华,李旭晨,夏英武.作物抗旱的作用机制及其基因工程改良研究进展.生物技术学报.2002年第一期,综述与专论,16~19.
    5. Baker J, SteeleC, DureL. Sequence and characterization of 6-Lea proteins and their genes from cotton [J]. Plant Mol Biol, 1988,11:277~291.
    6.王忠华,李旭晨,夏英武.作物抗旱的作用机制及其基因工程改良研究进展.生物技术通报,综述与专论,2002(1):16~19
    7. IngramJ, BarteisD. The molecular basis of dehydration tolerance in plants [J] .Plant Mol Biol, 1996,47:377~403.
    8. KosterKL. Glass formation and desiccation tolerance in seeds [J]. Plant Physiol, 1991, 96: 302~304.
    9. Maurel C. Aquaporins and water permeability of plant membranes [J] .Annu Rev Plant Physiol Plant Mol Biol, 1997,48:399~429.
    10. SandalNN, MarckerKA. Soybean nodulin 26 is homoiogoustothemajorintrinsic protein of bovinelens fiber menbrane [J].Nucleic Acids Res, 1988,16:9347.
    11. Chaumont F, Loomis WF, Chrispeels MJ. Expression an Arabidopsis plasma bembrane aquaporin in Dictyostelium results in hypoosmotic sensitivity and developmental abnormalities[J]. Proc Natl Acad Sci USA. 1997 Jun 10; 94(12):6202~6209.
    12. Chaumont F, Crossland L. Identification of the tissue-specific, dehydration-responsive elements in the Trg-31 promoter[J]. Plant Mol Bilo, 1996,30:1247~1257.
    
    
    13. Ingram J, Barrels D. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Mol Biol, 1996,47:377~403.
    14.赵恢武,刘晗,于海源等.耐旱植物厚叶旋蒴苣苔BDN1脱水素基因的克隆及表达特性分析.科学通报,2000,45(15):1648~1654.
    15. TingIP. Crassulacea acid metabolism[J]. Annu Rev Plant Physiol, 1985,36:595~622.
    16. HoltumJ, WinterK. Activity of enzymes of carbon metabolism during the induction of crassulacean acid metabolism in Mesembry anthemum crystal inumL [J].Planta, 1982, 155: 8~16.
    17. LiLius G, Holmberg N, Bulow L. Enhanced NaCl stress tolerance in transgenic expressing bacterial choline dehydrogenase. Biotechnology, 1996,14:177~180.
    18. Yeo ET, Kwon HB,Han SE, et al. Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phosphate synthase (TPS1) gene from Saccharomyces cerevisiae. Mol Cells,2000,30:10(3):263~268.
    19. McDougall J, Kaasen I, Strom AR. A yeast gene for trehalose-6-phosphate synthase and its complementation of an Escherichia coli otsA mutant. FEMS Microbiol Lett, 1993, 107(1): 25~30.
    20.戴秀玉,吴大鹏,周坚.大肠杆菌海藻糖合成酶基因的克隆和表达.遗传学报,2000,27(2):158~164.
    21. kavi Kishor PB, Hong Z, Miao GH, et al. Overexpression of delta- pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol, 1995,108:1387~1394.
    22. Zhu JK, Hasegawa PM, Bressan PA. Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci, 1997,16:253~277.
    23.王关林,方宏筠主编.植物基因工程原理与技术,北京:科学出版社,1998.
    24. Tarczynski MC, Jensen RG, Bohnert HJ. Stress protection in transgenic tobacco producing a putative osmopretectant, mannitol.Science, 1993,259:509~510
    
    
    25. Thomas JC, Sepahi M, Arendall B, et al. Enhancement of seed germination in high salinity by engineering mannitol-expression in Arabidopsis thaliana. Plant Cell Envir, 1995, 18:801~806.
    26.梁峥,马德钦,汤岚等.菠菜甜菜碱醛脱氢酶基因在烟草中的表达.生物工程学报,1997,13:236~240.
    27. Alia, Hayashi H, Chen THH, Murata N. Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell Envir, 1998,21:232~239.
    28. Sakamoto A, Alia, Murata N. Genetic engineering of salt tolerance in rice: glycinebetaine accumulated in transgenic rice efficiently protected the photosynthetic activity under salt stress. Plant Mol Biol, 1998,38:1011~1019.
    29. CroweJH, CroweLM. Preservation of membrane sinan hydrobiotic organisms: Therole of trehalose [J]. Science, 1984,223:101~703.
    30. BianchiG, LimiroliR, PozziN, et al. Theunusual sugar composition in leaves of there surrection plant My-rothamnus flabelli folia[J].Physiologial Plant arum, 1993, 87:223~226.
    31. HolmstromKO, MantylaE, WelinB, et al. Drought tolerance in tobacco[J]. Nature, 1996, 379:683.
    32. Romero C, Belles JM, Vaya J L, et al. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta, 1997,201:293~297.
    33. Goddijn OJM, Verwoerd TC, Voogd E,.et al. Inhibition of trehalose activity enhances trehalose accumulation in transgenic plants. Plant Physiology, 1997,113:181~190.
    34. Holmstrom-KO. Engineering plant adaptation to water stress. Acta-universitatis-Agri -culture -Sueciae-Agraia, 1998, 84: 49.
    35. Pilon Smits EAH, Terry N, Sears T, et al. Trehalose-producing transgenic tobacco plants
    
    show improved growth performance under drought stress. J Plant Physiol, 1998, 152: 525~532.
    36. Vander Meer IM, Ebskamp MJM, Visser RGF et al. Fructan as a new carbohydrate sink in transgenic tobacco plants. Plant cell, 1994, 6(4): 561~570.
    37. Pilon-Smits EAH, Ebskamp MJM, Paul MJ, et al. Improved performance of transgenic fructan accumulating tobacco under drought stress. Plant Physiol, 1995,107:125~130.
    38. Sheveleva E, Chmara W, Bohnert HJ, et al. salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol, 1997,115:1211~1219.
    39.董云洲.表达肌醇甲基转移酶基因载体的构建及转基因烟草的耐盐性研究.植物学报,1999,(2):146~149.
    40. Capell T, Escobar C, Liu H, et al. Overexpression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants. Theor Appl Genet, 1998,97:246~254.
    41. Minocha SC, Sun Dy. Stress tolerance in plants through transgenic manipulation of polyamine biosynthesis. Plant Physiol Suppl, 1997,297.
    42. Ryozo Imai, Meenas, Moses and Elizabeth A Bray, Expression of an ABA induced gene of tomato in transgenic tobacco during periods of water deficit. Journal of Experimental Botany, 1995,46(290): 1077~1084.
    43. Hong B, Ukaes SJ, Ho THD. Cloning and characterization of a cDNA encoding a mRNA rapidly-induced by ABA in barley aleurone layers. Plant Mol Biol, 1988,11:495~506.
    44. Hong B, Barg R, Ho THD. Developmental and organ-specific expression of an ABA- and stress-induced protein in barley. Plant Mol Biol, 1992,18:663~674.
    45. Zhu B, Su J, Chang MC, et al. Overexpression of a deltal-pyrroline-5- carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice. Plant Sci, 1998,139:41~48.
    
    
    46. XuD, DuanX, WangB,et al. Expression of alate embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice[J]. Plant Physiol, 1996,110:249.
    47. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, et al. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998,280:104~106.
    48. Kasuga M, Liu Q, Miura S, et al Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnol, 1999, 17: 287~291
    49. Van Rensburg L,Kruger GHJ. Evaluation of components of oxidative stress metabolism for use in selection of drought tolerance cultivars of Nicotiana tabacum L. J Plant Physiol, 1994,143:730~737.
    50. McKersie BD, Bowley SR, Jones KS. Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol, 1999,119:839~847.
    51.张可喜.日培育出强耐旱植物.中国科学报,1998,9:28.
    52.杉本利行.糖类新资源的开发现状和应用.食品工业,1994,34~38.
    53.任小青,庄桂,廖劲松等.海藻糖的生产与应用研究现状及其开发前景.郑州工程学院学报,2001,22(1):82-85.
    54. Barrett J. An hydrobiotic nematodes. Agricultural zoology Reviews, 1989,4:161~176.
    55.袁勤生.隐生生物中的典型化合物—海藻糖.中国生化药物杂志,1999,20(1):48~50
    56.黄平,奇妙的双糖——海藻糖.生命的化学,1995,15(4):26.
    57. Behm C A. The role of trehalose in the physiology of nematodes. International Journal for parasitology, 1995, 27:215~22.
    58. Kumino YoKoigawa, YoKo Murakami, Trehalse Activity and Content in a Freeze-tolerant Yeast and Its Freeze-sensitive Mmutant. Biotech, biochem 1995,59(2)2143~2145.
    59.海藻糖在食品工业中的应用前景展望.中国玉米淀粉网:http://www.ex-starch.com.
    60. Maria, Ines borelli at el. Cryoprotective agent FEMS Microlid, 1996,Vol 67:121.
    
    
    61. Bhandal, IS, Hauptman, RM& Widholm, JM. Trehalose as Cryoprotectant for the Freeze Preservation of Carrot and Tobacco cells. Plant Physiol, 1985,Vol 78:430~432.
    62. Crowe JH, Crowe LM, Corpenter J F et al. Interaction of sugers with membranes. Biochem Biophys Acta, 1988,947:367~384.
    63. Leslie S B. Trehalose lowers membrane phase transitions in dry yeast cells. Biochimicaet Biophysica Acta, 1987,1192:7~13.
    64. Koichi Yoshinaga, Hiroe Yoshioka at el.,Protection by trehalose of DNA from Radiation Damage. Biochem, 1997,Vol 84:157~1540.
    65.黄成根,安国瑞,王庆敏等.海藻糖对医用诊断工具酶活性保护研究微生物学通报,1997,24(6):341~343.
    66. Mozhaev VV. Structure--stability relationships in proteins: new approaches to stabilizing. Enzyme. Microb. Trchnol, 1984,6(2):50.
    67.李浩明,高兰.海藻糖在生物制品干燥与保存中的应用研究.食品与发酵工业,1994,4:49~52.
    68.罗明典.微生物生产海藻糖及其应用前景.微生物学通报,1996,23(4):252~254.
    69. Lucy LA. The fusion of biological membranes. Nature. 1970,227:815.
    70. Otting G. Protein hydration in aqueons. Science, 1991,254:974.
    71.董志杨,张树政,方宣筠等.海藻糖的生物合成及抗塑研究机理,核农学研究进展,1993,121~123.
    72.张红缨,刘洋,张今等.海藻糖的生物合成及相关的特性.微生物学通讯,1998:25(4):236~238.
    73. Franks F. Materials science and the production of shelf-stable biological. Biopharm, 1991,4:38.
    74. F. Sussich, R. Urbani, F. Princivalle. Polymorphic Amorphous and Crystalline Forms of Trehalose. J. Amer. Chem Soc. 1998, 31, 7893~7899.
    75.杨小民,杨基础.几种糖对纤维素酶热稳定性影响的研究.清华大学学报(自然科学
    
    版),2000,40(2):51~58.
    76. Kassen I, MeDougall J, Strom A R. Molecular cloning and physical mapping of the OtsBA genes. Which encode the osmoregulatory trehalose pathway of Escherichia coil Journal of Bacteriol, 1992, 174:889~898
    77. Holmstrom-KO. Engineering plant adaptation to water stress. Acta- universitatis- Agriculture- Sueciae-Agraia, 1998, 84:49
    78. Vuorio O E, Kalkkinen N, Londesborough J. Cloning of two related genes encoding the 56-Kda and 123Kda subunits of trehalose synthase from the yeast Saccharomyces Ceretisiae. European-Journal-of-Biochemistry, 1993,216:849~861
    79. Lebo Z. Analysis of PFK 3 a gene involved in partculate phso. yeast, 1994,10:199-204
    80. Carlos R, Jose M, Belles J et al. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta, 1997, 201:293~297
    81. Holmstrom-KO, Mantyla-E, Welin-B et al. Drought tolerance in tobacco. Nature, 1996, 379(22): 683~684
    82. Yoshida M, Nakamura N, Horikoshi K. Production of trehalose by a dual enzyme systen of immobilized maltose phosphorylase and trehalose phosphorylase. Enzyme Microb, Technol., 1998,22:71~75
    83. Saito K, Yamazaki H, Ohnishi Y et al. Production of trehalose synthase from a basidiomycete. Grifola frondose in Escherichia coli. Appl Microbil Bioteehnol, 1998,50(2):193~198
    84. Masaru KATO, Yutaka MiuRA, MasaKO KETTOKU et al. Purification and character iazation of New Trehalose-producing Enzymes Isolated from the Hyperthermophilic Archae Sulfolobus solfataricus KMI. Bioscience, Biotechnology and Biochemistry, 1996,60(3):546~550
    85.荣绍丰,张海平,段作营,毛忠贵.合成海藻糖的新型非磷酸化酶.生物工程进展,
    
    2001,21(2):54~57
    86. Holmstrom K O, Mantyla E. Welin B, et al. Drought tolerance in tobacco. Nature, 1996,379:683~684.
    87. Holmstrom K O. Engineering plant adaptation to water stress. Acta universitatis Agriculture sueciae Agraia, 1998,84:49.
    88. Holmstrom-KO, Mantyla-E, Welin-B et al. Drought tolerance in tobacco. Nature, 1996, 379(22):683~684.
    89. Goddijn O J M, Verwoerd T C, Voogd E, et al. Inhibition of trehalose activity enhances trehatose accumulation in transgenic plants. Plant Physiology, 1997,113:181~190.
    90. Romero C, Belles JM, Vaya J L, et al. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta, 1997,201:293~297.
    91.赵恢武,陈杨坚,胡鸢雷等.干旱诱导性启动子驱动的海藻糖-6-磷酸合酶基因载体的构建及转基因烟草的耐旱性.植物学报,2000,42(6):616~619.
    92.王忆琴,戴秀玉,王韫恂,周坚.大肠杆菌otsA基因的克隆和表达.微生物学报,2000(5):270~274.
    93. Yeo ET, Kwn HB, Han SE et al. Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phosphonte synthase (TPS1) gene from saccharamyces cerevisiae. Mol Cells, 2000,10(3):263~268.
    94. Ajay K. Garg, Ju-kon Kim, Thomas G. Owens et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc. Natl. Acad. Sci. USA, 2002:99(25):15898~15903.
    95.卢圣栋主编.现代分子生物学实验技术.北京:高等教育出版社,1993.
    96.J.萨姆布鲁克.分子克隆实验指南(第三版).科学技术出版社,2002.
    97.王关林,方宏筠主编.植物基因工程(第二版).科学技术出版社,2002.
    98.李向辉.植物遗传操作.高等教育出版社,1994.
    
    
    99.顾红雅.植物基因与分子操作.北京大学出版社,1995
    100. Biochemica Boehringer Mannheim, Dig DNA Labeling and Detection kit user's Guide
    101.张树珍,郑学勤,林俊芳等.海藻糖合酶基因的克隆及其转化甘蔗的研究,农业生物技术学报,2000,8(4):385~388.
    102.[美]J Frederick M. Ausubel等著.王海林译.精编分子生物学实验指南.北京:科学出版社,1998.
    103.魏泱,丁明玉.液相色谱/蒸发光散射测定转基因烟草提取液中的海藻糖.色谱.第19卷第3期:226~229.
    104.田波.植物病毒启动子.济南:山东科学出版社,1996:121~123.
    105. Omirulleh S, Abraham M, Golovkin M et al. Activity of a chimeric promoter with the doubled CaMV 35S enhancer element in protoplast-derived cells and transgenic plants in maize Plant Mol Biol, 1993,21:415~428.
    106. Saito K, Yamazaki H, Ohnishi Y et al. Production of trehalose synthase from a basidiomycete, Grifola frondosa in Escherichia Coli. Appl Microbio Biotechnol, 1998,50(2):193~198.
    107. Kassen I, MeDougall J, Strom A R. Molecular cloning and physical mapping of the OtsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli. Journal of Bacteriol 1992,174:889~898.
    108. Vuorio O E, Kalkkinen N, Londesborough J. Cloning of two related genes encoding the 56-kda and 123 kda subunits of trehalose synthase from the yeast saccharomyces Cerevisiae. European Journal of Biochemistry, 1993,216:849~861.
    109. Tachibana K, Watanabe T, Sekizawa T et al. Action mechanism of bialaphos. Ⅱ. Accumulation of ammonia in plants treated with bialaphos. J Pest Sic, 1986,11:33~37.
    110. Murakami T, Anzai H, Imai S, et al. The bialaphos biosynthetic genes of streptomyces hygroscopicus: molecular cloning and characterization of the gene chuster. Mol Gen Gent, 1986,205:42~50.
    
    
    111. Leo S Melchers and Marten H. Stuiver. Novel genes for disease-resistance breeding. Curr. Opin. Plant Biotechnology,2000, 147~152.
    112. Krebbers E. four genes in two diverged subfamilies encode the ribulose-1,5-bisphosphate carboxylase small subunit polypeptides of Arabidopsis thaliana. Plant Mol Biol, 1988,11:745.
    113. Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 1994,6:251~264.
    114. Spiker S,Thompson W F. Nuclear Matrix Attachment Regions and Transgene Expression in Plants. Plant Physiol, 1996, 110:15~21.
    115.苏金,Targolli J,吴乃虎等.在转基因植物中实现外源基因最佳表达的途径.生物工程进展,1999,19(4):3~6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700