压力对酵母菌及其产海藻糖的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压条件下,酵母菌细胞受到刺激后发生应激性反应。海藻糖是很多生物体受环境胁迫所产生的重要的应激性代谢产物之一,它是由两个葡萄糖分子结合组成的非还原性双糖,由于它对生物大分子具有非特异性保护作用,从而在食品、医药、生物化学等领域得到了广泛的应用。本文研究主要内容为压力条件下酵母菌积累海藻糖最佳条件的确立、不同酵母菌积累胞内海藻糖随处理时间的变化和相应合成酶系活力的研究、不同酵母菌种及其他条件下细胞的变化等。
     首先本文以面包酵母为研究菌株,初步研究了压力条件下不同压力值、处理时间、反应温度、pH值、升降压速率、处理前培养时间、培养基等因素对菌体积累海藻糖所产生的影响。确定了压力为0.5~1.0MPa,反应处理时间为3h,反应温度为34℃,发酵液pH值调整为6.0,升降压速率为0.05~0.10MPa/min,选用复合培养基为酵母菌积累胞内海藻糖的最适条件。
     其次研究了六种不同酵母菌在1.0MPa的压力条件下,菌体积累海藻糖(可能还有其他低分子量的应激性代谢产物)与高压处理时间的关系,说明不同酵母菌种对压力具有不同的敏感性;它们之间的不同说明海藻糖的合成途径可能有多种方式,即便是同一种生物中,也有可能存在一种以上的合成途径。同时确立了一种测定海藻糖合成酶系活力的方法,以2%甲苯和0.2%EDTA溶液作为细胞渗透剂处理酵母细胞,以1.0%的葡萄糖溶液作为酶促反应的底物,采用生物传感仪—硫酸蒽酮显色法测定了相应的海藻糖合成酶系的活力。
     最后以扫描式电子显微镜拍摄图像,说明经过高压处理后酵母菌体细胞发生变形,胞质和内含物聚集两端,呈现纺锤形,细胞表面有收缩褶皱和塌陷。同时还有活细胞数减少、存活率的降低、菌体量减小以及pH值略微升高等各种现象,均与海藻糖含量高低有关系。还分别以CO_2和N_2作为加压气源,以面包酵母WR—5作为研究菌株,以溶液电导率值的变化来表示细胞的渗透性,分别研究了不同压力、升降压速率、处理时间和处理温度对细胞渗透性变化的影响。
Under the condition of high pressure, the irritative reaction occurred after being stimulated for the Yeast cells. Trehalose is one of the important irritative metabolic productions of plenty of microorganism , during they were intimidated by the environment, it is a nonreducing disaccharide with two glucose residues. Because trehalose exhibit protective action against damage of high molecular substances, it achieve widespread application in a variety of fields including foods , pharmaceutics and biochemistry etc. In this paper, the main research contents include establishing the optimum conditions of Yeast thalli accumulating trehalose in the high pressure circumstance, intracellular trehalose accumulated by different sorts of Yeasts varying from the precessing time and corresponding trehalose synthase system activity, the change of some parameter of different Yeast cells under other conditions.
    At first, by using Bakers Yeast (saccharomyces cerevisiae) as initial strain, the factors affecting the intracecellular trehalose production were studied in this paper, containing different pressure value, processing time, reaction temperature, pH value, pressing and decompressing rates, culture time before processing, culture medium and many factors. The optimum conditions of Yeast thalli accumulating trehalose in the high pressure circumstance was established , as they are, pressure value0.5~1.0MPa, processing time 3h, reaction temperature 34 C, pH6.0, pressing and depressing rates0.05~0.10MPa/min, selecting composite culture medium.
    Secondly, three sorts of Saccharomyces cerevisiae, six strains(Beer yeast GZH and USA, Baker yeast Saf and WR-5, Alcohol yeast AY-3 and AY-11) wre selected as our study objects under the condition of 1.0MPa. Thalli accumulating intracecellular trehalose varying from processing time wre studied. The results showed different sorts of yeasts had various sensitiveity for the high pressure, and further explained the synthesis path of intracecellular trehalose had possibly many kinds, as if the same sort had also probably more than one paths. Simultaneously the new method of determining trehalose synthase system activity was established. Yeast cells wre penetrated by 2% toluene and 0.2% EDTA solution as infiltration reagent, 1.0% glucose solution was used enzyme catalysis substrates. Corresponding trehalose synthase system activity was determined by
    
    
    using biosensor instrument-sulfate anthrone colorimetric.
    Finally the cell electron micrograph were taken by using scan electron microscope. The results showed Yeast cells distortion after high pressure processing, There were many shrinkage, drapes, pleats and dents on the cell surfaces, presented spindle shape. Simultaneously concomitant characters were the active cell quantity and survival rate deceasing, biomass reducing and pH appreciably rising etc. All of them had a relation with the intracecellular trehalose content. In addition, CO2 and N2 wre used as pressing gas and Baker's Yeast WR-5 was selected research strain, the cell penetrability was denoted by the conductance value variety of the solution. The factors affecting the cell penetrability including different pressure value, pressing and decompressing rates, processing time, reaction temperature wre studied in this paper.
引文
[1] 裴凌鹏,骆海朋.极端微生物浅谈[J].首都师范大学学报:自然科学版,2003,24(1):49~54.
    [2] 谢小军,袁红莉.地球生命不会弧独:极端微生物的昭示[J].百科知识,2000年第10期,24.
    [3] 马鸣.地下生命世界[J].海峡科技,2003年第6期,27
    [4] 越月.南极微生物,一睡三千年[J].科技短讯,2003年第2期,38
    [5] 陈寿鹏.高压在食品方面的应用[J].食品科学,1994,(3):3~7.
    [6] 林力丸.高压利用食品现状将来(1)[J].缶诘时报,1998,(2):4~11.
    [7] 梁峙.超高压致死微生物在饮料中的研究进展[J].广西轻工业,2008年第6期,6~7.
    [8] Balny, C., Hayashi, R., Heremans, K., & Masson, P., eds. (1992). (John Libbey Eurotex, London & Paris)
    [9] Hayashi, R. & Balny, C., eds. (1996). (Elsevier, Amsterdam)
    [10] Ludwig, H., ed. (1999). (Springer-Verlag, Berlin)
    [11] Prieur D, Marteinsson VT (1998) Prokaryotes living under elevated hydrostatic pressure. In: Antranikian G (ed) Biotechnology of extremophiles. (Advances in Biochemical Engineering/Biotechnology,vol 61) Springer, Berlin Heidelberg New York, pp. 23~35.
    [12] 柳耀建,林影,吴晓英.极端微生物的研究概况[J].工业微生物,2000,30(3):53~55.
    [13] 李琇.新的生命形式-极端微生物[J].阴山学刊,2000,15(3):32~35.
    [14] 王大珍.极端环境微生物及其应用[J].生态学进展,1989,6(2):77~81.
    [15] 李大卫等.极限环境中的生命生物学通报[J].1995.30(1)
    [16] 迟桂荣.极端环境微生物的研究概况[J].德州学院学报,2001,17(2):74~76.
    [17] Gola.S.et al.Inaction of bacterial spores in phosphate buffer and in vegetaable cream treated with high pressure [J]. High Pressure Bioscience and biotechnology.1996; vol228; 253
    [18] Aggi.A.et al.Use of high pressure for Inaction of butyric Cloetrodia in serum.Industria conserva.1995, 70 (3): 289
    [19] Silva, JL., Foguel, D., Da Poian, AT., & Prevelige, PE. (1996). The use of
    
    hydrostatic pressure as a tool to study viruses and other macromolecular assemblages Current Opin Struct Biol 6, 166~175.
    [20] Jurkiewicz, E., Villas-Boas, M., Silva, JL., Weber, G., Hunsmann, G., & Clegg, RM. (1995). Inactivation of simian immunodeficiency virus by hydrostatic pressure Proc Natl Acad Sci USA , 92, 6935~6937.
    [21] 赵春燕,李凡.超高压对微生物的影响及其应用[J].中国公共卫生,2000,16(3):283~284.
    [22] Osumi.M.et al. Pressure effects on yeast ,cell ultrastructure; change in the ultrastructure and cytoakeleton of the dimorphic yeast, Candida tropical. High pressure and bioteclmology.1992, 9
    [23] Paul Chilton et al. The effects of high hydrostatics pressure on bacteria[J].High Pressure Research in Biotechnology.1997,voL229: 225
    [24] Haas, G. J., J. R. Prescott, E. Dudley, R. Dik, C. Hintlian, and L. Keane. Inactivation of microorganisms by carbon dioxide under pressure [J] . J. Food Safety, 1989, 9: 253~265.
    [25] Lin, H.-M., Z. Yang, and L.-F. Chen. Inactivation of Leuconostoc dextranicum with carbon dioxide under pressure [J] .Chem. Eng. J. 1993, 52: B29~B34.
    [26] Lin, H.-M., N. Cao, and L.-F. Chen. Antimicrobial effect of pressurized carbon dioxide on Listeria monocytogenes [J]. J. Food Sci. 1994, 59: 657~659.
    [27] Wei, C. I., M. O. Balaban, S. Y. Fernando, and A. J. Peplow. Bacterial effect of high pressure CO_2 treatment on foods spiked with Listeria or Salmonella [J] . J. Food Prot. 1991, 54: 189~193.
    [28] E. Debs-Louka, N. Louka, G. Abraham, V. Chabot, and K. Allaf. Effect of Compressed Carbon Dioxide on Microbial Cell Viability [J] . Applied and EnvironmentalMicrobiology, February 1999, 65 (2): 626~631.
    [29] Fraser, D. Bursting bacteria by release of gas pressure [J]. Nature, 1951, 167: 33~34.
    [30] Lin, H.-M., E.-C. Chan, C. Chen, and L.-F. Chert. Disintegration of yeast cells by pressurized carbon dioxide [J]. Biotechnol. Prog. 1991, 7: 201~204.
    [31] Lin, H.-M., Z. Yang, and L.-E Chert. An improved method for disruption of microbial cells with pressurized carbon dioxide [J]. Biotechnol. Prog. 1992, 8: 165~166.
    [32] Abe, F., Kato, C., & Horikoshi, K. (1999). Pressure-regulated metabolism
    
    in microorganisms Trends Microbiol 7, 447~453.
    [33] Garcia-Graells, C., Hauben, KJA., & Michiels, CW. (1998).High-pressure inactivation and sublethal injury of pressure-resistant Escherichia coli mutants in fruit juices Appl Environ Microb 64, 1566~1568.
    [34] Mozhaev, VV., Heremans, K., Frank, J., Masson, P., & Balny, C. (1994). Exploiting the effects of high hydrostatic pressure in biotechnological applications Trends BiotechnoI 12, 493~501.
    [35] Mozhaev, VV., Heremans, K., Frank, J., Masson, P., & Balny, C. (1996). High pressure effects on protein structure and function Proteins Struct Func Gene 24, 81~91.
    [36] Kunugi, S. (1992). Enzyme reactions under high pressure and their applications Annu NY Acad Sci 672, 293~304
    [37] Kamat, SV., Beckman, EJ., & Russell, AJ. (1995). Enzyme activity in supercritical fluids. Crit Rev Biotechnol 15, 41~71.
    [38] T.Otake T, et al. Effect of high hydrostatic pressure on HIV infectivity [J].High pressure Bioscience and Biotechnology,1997, vol 229: 233.
    [39] Patrick Masson, Carole Tonello, Claude Balny. High-pressure biotechnology in medicine and pharmaceutical science[J]. J Biomed Biotechnol. 2001; 1 (2): 85~88
    [40] Kunugi, S., Kitayaki, M., Yanagi, Y., Tanaka, N., Lange, R., & Balny, C. (1997). The effect of high pressure on thermolysin Eur J Biochem 248, 567~574.
    [41] Rariy, RV., Bec, N., Klyachko, N., Levashov, AV., & Balny, C. (1998). Thermobarostability of á-chemotrypsin in reversed micelles of Aerosol OT in octane solvated by water-glycerol mixtures Biotechnol Bioengn 57, 552~556.
    [42] Butz, P. & Tauscher, B. (2000). Recent studies on pressure-induced chemical changes in food constituents High Pessure Res 19, 11~18.
    [43] 岳红.高压杀菌的特点及前景[J].四川食品与发酵 1997年第2期:15~17.
    [44] Gross, M. & Jaenicke, R. (1994). Proteins under pressure: the influence of high hydrostatic pressure on structure, function and assembly of proteins and proteins complexes Eur J Biochem 221, 617~630.
    [45] Ohlson. S., et al. Eur. J. Appl. Microbiol. Biotech. [J], 1980, (10): 1~9.
    [46] Schlesinger M.,et al.1982,Heat shock from bacteria to Man[M]. (Cold Spring Harbor, NY)
    
    
    [47] 邢达,谭石慈,唐永红,何永红,李德红.植物体应激反应中生物光子发射的实验观测[J].科学通报,1999,44(21):2299~2302.
    [48] Allen R C.Evidence for the generation of an electronic excitation state(s) in human polymomphonuclear leukoeytes and its participation in bactericidal activity.Biochem Biophys Res Commum[J].1972, 47: 679~694.
    [49] 马超颖,戚薇,杜连样.酿酒酵母氧化应激反应的研究进展[J].天津轻工业学院学报,2002,17(4):14~18.
    [50] Varela, J. C. S. Osmostress- induced changes in yeast gene expression[J].Mol. Microbiol, 1992, (6): 2183~2190.
    [51] Elbein AD. Metabolism of α,α-trehalose. Adv Carbohyd Chem Biochem,1974, 30: 227~256.
    [52] Storm AR, Kaasen I. Trehalose metabolism in E. coli: stress protection and regulation of gene expression. Molecular Microbiology, 1993, 8 (2): 205~210.
    [53] Attfield PV. Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents induce heat shock response. FEBS Letters,1987, 225: 259~263.
    [54] 乔长晟,徐旭,贾士儒,范志华.压力影响酵母海藻糖生成的初步研究[J].化工进展(投稿中)
    [55] 杉本利行.糖类新资源的开发现状和应用[J].食品工业,1994.34~38
    [56] Lee C K. Development in food carbohydrate[M]. London: Applied scienc publishers LTD, 1980, 1~10.
    [57] Jacqucline Lobat—Robott.(1982) Developments in Food carbohydrate-3, chapter4, p81~107. Applied Science Publishers, London
    [58] R.Bergoz, (1971)Gastronlerology, 60(5): 909~912
    [59] Laura C.S.,Nilson K.R.and—Hudson C.S. (1950) J.Am,Chom. See., 72: 2059~2061.
    [60] Barrtt, J.Adhydrobiotic nematodes. Agriculture alzoology Review 4. 161~176.
    [61] [林原]冈田藤秀,杉本利行.(1995)食品开发,30(9):49~52.
    [62] 黄平.奇妙的双络糖—海藻糖[J].生命的化学,1995,15(4):26~28.
    [63] Boni L T.Aggregation and fusion of unilamellar vesicles by polyethylene glycol(PEG) BBA, 1984, 775: 409
    [64] Jacobson K. phase transition and phase separations in phospholipid membranes induced by changes in temperature,pH and concentration of bivalent cation. Biochemistry,1975, 14: 152
    
    
    [65] Lucy LA. The fusion of biological membranes. Nature,1970, 227: 815
    [66] Crowe J H, Croe L M, Corpenter J F,etal. Interaction of sugers with membranes.Biochem Biophys Acta,1988, 947: 367~384.
    [67] 曾科,林克椿.海藻糖对聚乙二醇融合脂质体的防护[J].北京医科大学学报,1999,23(4):271~274.
    [68] 童桥,聂松奇,林克椿.海藻糖对载药脂质体在干燥——再水化过程中的保护作用.生物化学杂志,1992,8(6):711~714.
    [69] Leslie,S B.Trehalose lowers membrane phase transitions in dry yeast cells.Biochemica et Biophysica Acta, 1192: 7~13.
    [70] Mozhaev V V.structure-stability relationships in proteins:new approaches to stabilizing.Enzyme.Microb. Trchnol,1984, 6 (2): 50
    [71] 李浩明,高兰.海藻糖在生物制品干燥与保存中的应用研究[J].食品与发酵工业,1994(4):49~52
    [72] 罗明典.微生物生产海藻糖及其应用前景[J].微生物学通报,1996,23(4):252~254.
    [73] Otting G. Protein hydration in aqueons solution.Science, 1991, 254: 974
    [74] Franks F. Materials science and the production of shelf-stable biologicals.Biopharm,1991, 4: 38
    [75] Colaco C..Food packing and preservation.[M]. London: Applied science publishers LED, 1994, 123~139.
    [76] Y.M.Newman, S.G.Ring, C.Colaco. The role of trehalose and other carbohydrates in biopreservation[J].Biotechnology and Genetic Engineering Reviews,1993, 11 : 263~294.
    [77] 聂凌鸿,宁正祥.海藻糖的生物保护作用[J].生命的化学,2001,21(3):206~209.
    [78] Roser B. Trehalose drying-a novel replacement for freeze drying [J]. Biopharm. ,1991, 4 (8): 47~53.
    [79] 李伟年,用于生物医学的海藻糖和蔗糖的全氟烷基脂肪酸单脂[J].日用化学工业译丛.1993(2);1~6.
    [80] 陈炜,何秉旺.酶法合成海藻糖研究的新进展[J].微生物学通报,1998,25 (3)164~166.
    [81] Charlemagne-Gilles Hounsa, E. Vincent Brandt, Johan Thevelein. Role of trehalose in survival of Saccharowces cerevisiae under osmotic stress [J]. Microbiology, 1998, 144: 671~680.
    [82] Saito K, Yamazaki H,Ohnishi Y,et al. Production of trehalose synthase from a basidiomycere Grifola frondose in Escherichia coli. Appl Microbil
    
    Biotechnol,1998, 50(2): 193~198
    [83] Masaru KATO,Yutaka MiuRA, MasaKOKETTOKU,et al.Purification and characteriazation of NewTrehalose-producing Enzymes Isolated from the Hyperthermophilic Archae Sulfolobus solfataricus KM1. Bioscience,Biotechnology and Biochemistry, 1996, 60 (3): 546~550.
    [84] Kazuhiko MARUA,KazuKO HATTORI,Tetsuya NAKADA, et al. Coling and sequencing of Trehalose Biosynthesis Genes from Rhizobium sp,M-11. Bioscience,Biotechnology and Biochemistry, 1996, 60 (4): 717—720.
    [85] Behm,CA.The role of trehalose in the physiology of nematodes. International Journal for parasitology 27: 215~229.
    [86] 何明强.一种新型的天然防腐剂[J] .食品工业科技,1991(3):54~55
    [87] 裴炎,邓如福,王瑜宁等.海藻糖对冷冻和冷冻干燥后绿豆幼苗Mg~(2+)、K~+—ATPase以活性和TTC还原的影响[J].植物学报,1994,36(增刊):211~214.
    [88] 王三根,邓如福,裴炎等,海藻糖提高绵阳15号小麦幼苗耐盐能力的研究[J].西南农业大学学报,1992,14(2):182~185.
    [89] George kidd. Trehalose is a sweet target for agbiotech.biotechnology,1994, 12, 1328~1329
    [90] Kassen I,MeDougall J,Strom A R.Moiecular cioing and physical mapping of the OtsBA genes,which encode the osmoregulatory trehalose pathway of Escherichis coli.Journal of Bacteriol, 1992, 174: 889~898.
    [91] Bhandal I S.Trehalose as cryprotectant for freeze preservation of carrot and tobacco cell. Plant Physiol, 1985, 78: 430~432.
    [92] 肖冬光,丁匀成,邹海晏.酿酒活性干酵母的生产与应用技术[M].内蒙古:内蒙古人民出版社,1994.
    [93] 杜连祥.工业微生物学实验技术[M].天津:天津科学技术出版社,1992.
    [94] 葛宇,袁勤生.海藻糖定量分析方法比较[J].药物生物技术,2001,8(6):348~351.
    [95] 刘传斌,云战友,鲁济鲁.等.海藻糖的分折方法[J].食品与发酵工业,1998,24(5):40~42.
    [96] Little SH.Ringle JR. Reserved carbohydrate metabolism in Saccharomyces cerevisiae: Responses to nutrient limitation[J].joural of Bacterial,1980,143(3): 1384~1394
    [97] 刘洋,张红缨,张今,高俊芳.酵母菌中海藻糖的提取方法与糖代谢研究[J].吉林大学自然科学学报,1998,No.4:85~88
    [98] TreveLyan W E, Harrison J S. Studies on Yeast Metabolism[J]. Biochem
    
    J,1956,62:177-182.
    [99] 薛璐,马莺.透性化海藻糖合酶的研究[J].食品与发酵工业,2002,28(1):16~18.
    [100] 薛璐,马莺.产海藻糖合酶菌株发酵培养基的研究[J].食品与发酵工业,2002,28(7):34~36.
    [101] 薛璐,马莺.透性化海藻糖合酶特性的研究[J].食品科学,2003,24(3):26~29.
    [102] K. Hayakawa·Y. Ueno·S. KawamuraT. Kato·R. Hayashi. Microorganism inactivation using high-pressure generation in sealed vessels under sub-zero temperature[J]. Appl Microbiol Biotechnol ,1998,50: 415~418
    [103] F. Niehaus·C. Bertoldo·M. Kahler·G. Antranikian. Extremophiles as a source of novel enzymes for industrial application[J].Appl Microbiol Biotechnol 1999,51: 711~729.
    [104] R.Margesin.Fschinner.Biodegradation and bioremediation of hydrocarbons in extreme environments[J].Appl Microbiol Biotechnol 2001, 56: 650~663.
    [105] 李海根.数理统计[M].上海:同济大学出版社,1985.
    [106] 王兰.高产海藻糖菌种选育及生产工艺的研究[D].天津:天津科技大学博士学位论文,2002.
    [107] John M.Thevelein. Reglulation of trehalose mobilization in Fungi[J].Microbiological Reviews,1984,48(3): 42~59.
    [108] Elisa M.Miguelez,Monica Fernandez.Nitrogen starvation-induced glycogen synthesis deponds on the developmental stage of Streptomyces antibioticus myceliaum[J].FEMS Microbiology Letters,1997,153: 57~62.
    [109] Anita D.Panek,James R.Mattoon. Regulation of energry metabolism in Saccharomyces cerevisiae[J].Archives of Biochemistry and Biophysics,1977,183: 306~316.
    [110] 孙爱友.超临界相态下微生物活性的变化[D].天津:天津科技大学硕士学位论文,2002.
    [111] 荣绍丰,张海平,段作营,毛忠贵.合成海藻糖的新型非磷酸化酶[J]生物工程进展,2001,21(2):54~57.
    [112] Bell, W., Sun, W., Hohmann, S., Wera, S., Reinders, A., DeoVirgilio, C., Wiemken, A., Thevelein, J.M.. Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. [J]. J. Biol. Chem. 1998, 273, 3311~3319.
    [113] L. Plourde-Owobi, S. Durner, G. Goma, J. Franc ois. Trehalose reserve in
    
    Saccharomyces cerevisiae: phenomenon oftransport, accumulation and role in cell viability [J]. International Journal of Food Microbiology, 2000, 55: 33~40.
    [114] Thevelein, J.M. and Hohmann, S. Trehalose synthase: guard to the gate of glycolysis in yeast? [J]. Trends Biochem. Sci., 1995, 20: 3~10.
    [115] Teusink, B., Walsh, M.C., van Dam, K. and Westerhoff, H.V. The danger of metabolic pathways with turbo design [J]. Trends Biochem. Sci., 1998, 23: 162~169.
    [116] Peter J Eastmond and Ian A Graham .Trehalose metabolism: a regulatory role for trehalose-6-phosphate? [J]. Current Opinion in Plant Biology, 2003, 6: 231~235.
    [117] 唐传核,葛文光.海藻糖的开发现状及应用前景[J].中国食品用化学,1997,3:1~4.
    [118] 赵春燕,李凡.超高压对微生物的影响及其应用[J].中国公共卫生,2000,16(3):283~284.
    [119] Isaaacs N.S.et al. Microbial inactivation of microorganisms.High pressure processing of foods[M].D.A.Ledward(eds).Nottingharn, Uviv,Press. 1995, 65
    [120] Vadim V.Mozhaev,Karel Herernans, Johannes Frank et al. Exploiting the effects of high hydrostatic pressure in biotechnological applications [J].Trend Biotechnology, 1994, voL. 12: 493
    [121] 周德庆著.微生物学教程[M].北京,1996,高等教育出版社.
    [122] Dixon, N. M., and D. B. Kell. The inhibition by CO_2 of the growth and metabolism of micro-organisms [J]. J. Appl. Bacteriol., 1989, 67: 109~136.
    [123] Janet H.McCann,Keith R.Solomon. The effect of creosote on membrane ion leakage in Myriophyllum spicatum L [J]. Aquatic Toxicology, 2000,50: 275~284.
    [124] 晏琼.Ce~(4+)诱导红豆杉细胞生物学效应及相关信号分子的研究[D].天津大学化工学院生物化工专业硕士学位论文,2002,12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700