水生栖热菌海藻糖合酶体外定向进化及重组菌BL35细胞透性化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海藻糖是一种广泛分布于细菌、真菌和动植物体内的双糖。在生物体内,它不仅作为结构成分和能量物质存在,而且在热击和脱水等协迫条件下,对生物体和生物大分子起着良好的非特异性保护作用。由于其独特的生物学功能,使它广泛用于食品、医药、化妆品、农业、冷藏等方面,具有广阔的市场应用前景。
     海藻糖(Trehalose),α-D-(?)比喃葡糖基(1→1)α-D-吡喃葡糖苷,是由两个葡萄糖残基通过一个α,α(1→1)糖苷键连接而成的非还原双糖。海藻糖合酶通过分子内转糖基作用将α,α-1,4糖苷键连接的麦芽糖,转化为α,α-1,1糖苷键连接的海藻糖,是酶法生产海藻糖的关键酶。现有多数海藻糖合成酶转化效率不高、热稳定性较差、反应时间较长等。因此,对其的研究显得尤为重要。
     本研究首先克隆表达了海藻糖合酶基因,并从理性和非理性角度对海藻糖合酶进行了分子改造,以海藻糖合酶(trehalose synthase from Pyrococcus horikoshii)晶体结构为模板,在网站S WIS S-MODEL上对来自水生栖热菌FL-03(thermus aquaticus FL-03)海藻糖合成酶进行同源建模,结合分析不同来源的海藻糖合成酶基因的保守序列,选择了保守区的位点A197和H100进行定点(饱和)突变,并在保守区外的S547和H305,进行定点突变,获得高酶活突变体重组菌,并在此基础上进行细胞透性化技术的研究,促使重组菌细胞形成高效的固定化酶系统,大幅提高产率,同时简化工艺,降低生产成本,为工业化生产提供可行性依据。
     主要取得的结果表明:
     (1)采用巢式PCR法成功克隆并高效表达了水生栖热菌的海藻糖合酶基因TresC01。并通过同源建模获得了该重组酶的三维结构信息,预测了该酶的活性中心。
     (2)通过同源建模获得了该酶的三维结构信息,活性中心的与底物结合的4个氨基酸残基中的A197、H100、H305和S547与该酶的催化活性有关,通过三维建模后,初步分析4个氨基酸残基变化可能影响海藻糖合酶的酶学性质。
     (3)以克隆得到的海藻糖合酶基因T-TersC01为模板,通过PCR介导方法对海藻糖合酶基因进行饱和突变研究,结果显示A197和H100分别饱和突变为其它的19个氨基酸后,共获得了13个突变子,只有突变体pEA197H具有较高的活性其他均无活性;突变体pEA197H比酶活提高了1.52倍。
     (3)结合ProSa理性设计,对H305和S547进行了定点突变,结果显示对H305和S547定点突变氨基酸His→Cys和Ser→Cys后酶活下降,降低为野生型(WT)的66%.S547变体没有明显变化,pEH305C比活力与野生型(WT)相比提高1.40倍。
     (4)通过对野生型和突变型海藻糖合酶进行三维结构分析及将其与三维结构已知的海藻糖合酶(Pyrococcus horikoshii)进行比较,该海藻糖合酶同样具有(β/α)_8的桶状结构,符合大多数α/β桶酶的活性中心的定位;并探讨了它们酶学性质差异。推测酶活性中心处的催化氨基酸为A197、H305,同时具有α-淀粉酶家族的同源性。
     (5)海藻糖合酶高通量筛选体系
     采用高拷贝的克隆载体XL10-gold成功获得41个克隆载体,根据利用α互补法(蓝/白菌落筛选法)的直观反应,建立了一套海藻糖合酶高通量克隆载体筛选体系;同时采用DNS-ELISAM酶标法(糖化酶显色法)筛选在的高酶活突变酶,该方法可以大大降低背景的影响,简捷、高效。属于本实验室首创。
     (6)透性化细胞可省略酶的纯化和胞内酶的固定化。研究了不同表面活性剂曲拉通X-100(TRITON X-100)、二甲基亚砜(DMOS)和十六烷基三甲基溴化胺(CTAB)对海藻糖合酶重组菌LB35细胞壁通透性的影响,低分子量物质的渗透障碍被部分或完全解除。结果表明:CTAB、TRITON-X100、DMOS对透性化细胞合成海藻糖活性都有提高作用,高浓度时CTAB和TRITON-X100对海藻糖合酶重组菌LB35具有明显抑制作用,其中DMOS对海藻糖合酶重组菌LB35在1.0%浓度范围内菌体生长抑制作用不是很明显,CTAB抑制较明显。而在细胞培养20h加入0.8%浓度TRITON-X100处理的透性化细胞,海藻糖酶活力提高了2.25倍。TRITON X-100对提高细胞通透性有较好的影响,能较大程度的提高海藻糖合酶重组菌LB35的细胞膜的通透性,促使麦芽糖进入细胞内部更充分的与胞内分泌的海藻糖合酶接触反应,进一步提高海藻糖产量。
     通过对这些突变酶的性质变化分析和比较,进一步为研究海藻糖合成酶结构和功能的关系提供理论数据和信息,从而对海藻糖合成酶的分子改造提供理论依据。在国内外有关海藻糖合酶理性和非理性酶分子改性的系统研究还未见文献报道,本研究是首次开辟了这一领域的研究,为深入了解海藻糖合酶性质与结构的关系以及生物法高效生产海藻糖奠定了良好的基础。
Trehalose(α,α-trehalose) is a disaccharide formed byα,α-1,1 linkage of two D-glucose molecules. It occurs in a large variety of organisms, ranging from bacteria to invertebrate animals, where it serves as an energy source or stress protectant against the effects of freezing of dehydration. It also possesses physical and or chemical properties that are different than other sugars,which may make trehalose an attract ive ingredient in food, health and beauty and pharmaceutical products. This paper briefly reviews recent advances in the manufacture of trehalose, according to its biosynthetic pathways, and provides an overview of the maior applications of trehalose in food industry, biology, cosmetics,medical industry and agriculture.
     Trehalose synthase play the key role in enzymatic process produced trehalose. Maltose can be transfered from anα,α-1,4-glycosidic linkage into a trehalose withα,α-1,4-glycosidic linkage. There were some disadvantages in the existing trehalose synthase which the transform effciency is too low;,such as the thermostability is too low and the reaction time is long. Therefore, there is much interest in researches on the biological catalyse method. It is necessary for the yeild to perform mutagenesis on trehalose synthase so that the high levels of total trehalose synthase activity to improve the industrial capability.
     First of all,thermus aquaticus FL-03 chromosome genome DNA as a template, the trehalose synthase gene were cloned and high-expressed in E.coli by nested PCR amplification, was done with by PCR mediate genomic library screening. And more,trehalose synthase was evolved by PCR mediate and half-rational design. The three-dimensional model of TreS was from Pyrococcus horikoshii. It was constructed basis on the crystal structure of trehalose synthase from on the SWISS-MODEL Internet. United into analyzing the conserved region of trehalose synthase amio sequence from several different origin code and Site-directed Mutagenesis completely.In addtion, to improve the cellular permeability to better shadow, a greater degree of damage to treatment the cell, to promote endocrine cells of the trehalose synthase released into the extracellular by extracellular enzymes, through the centrifuge to separate this enzyme extracted from the supernatant, raising the yield of trehalose. The productivity was improved, the cost decreased and the technological process which offer the basis of commercial production.The experimenta 1 results indicate that:
     (1) the trehalose synthase gene TresC01 was cloned and high-expressed, and the 3D structure of the trehalose synthase was successful constructed by homology modeling,furthermore, the probable active site was forecasted.
     (2)The relationship between the function groups and catalytic activity of enzyme revealed that acquired the 3D structure information of the homology modeling, A197, H100, H305 and S547 in 4 amino acids remnants radicle of combining with the domains related to the catalyst activity of S547 and passing the 3D model, the initial analyzes 4 amino acidses remnants the radicle change may effect the TresS catalize activity.
     (3) T-TersC01 for mold plate, lie to lead through PCR the method matches TresC01 progress saturation to mutate a search to seaweed sugar, result display the A197 and H100 distinguish a saturated mutation for other of 19 amino acidses after, totally acquired 13 mutation, only wild-type pEA 197 H to have higher of activity other all have no activity; wild-type pEA197H lived to raise than TresC01 was 1.52 times.
     (4) High throughput screening method of expressing.The results pointed out hat the enzyme activity was lost after A197and H100 which were converted to other 19 kinds of amio acids,and that the mutants A197X and H100Q were also indicated no activities expect of A197H. The reason of activity lost probably was that these stucture positions were important to hold on the structure stability of the protein domains, and they possibly were crucial residues or active sites of the enzyme. The specific activity of the mutants H305 and S547 (His→Cys and Ser→Cys) were decreased largely and reduced to 66%,99%, the wild-type pEH305C respectively was shown that the activity was increased Compared with the wild-type,four degree approxately,It can not only give aid for useful data providing and information in studying the relation of the sturcture and function by Studying and analysis, these changes about the properties of the mutants but also can afford the theoretic basis to improve the molecule evolution on trehalose synthase in the future.
     (5) Directed evolution of trehalose synthase.The cloned that adoption higher-copies carries the body XL10-gold to successfully acquire 41 cloned to carry a body, according to the keeping of blue white spot view reaction, created the colon vector screening system; Adopt DNS-ELISA (diastatic enzyme) sieving at high enzyme activity, the method can consumedly lower the impact of background quickly and efficiently. Belong to this laboratory to found..
     (6) Use of permeabilized cells allows the conventional enzyme purification and immobilization steps to be omitted and simplifies the synthesis procedure. The study on recombinant escherichia coli cell wall permeability was carried out by different surfactants (Triton-X100, DMSO,cetyltrimethy-lammonium bromide (CTAB)) of water, the results show that of Triton-X-100 to improve the cellular permeability to better shadow, a greater degree of damage to treatment the cell, to promote endocrine cells of the trehalose synthase released into the extracellular by extracellular enzymes, through the centrifuge to separate this enzyme extracted from the supernatant, raising the yield of trehalose.
     The article is the first systematic study to improve the property of trehalose synthase successfully by rational and irrational design evolution. This studies beneficial to understanding the relationship between 3D structures and properties of trehalose synthase,as well as the researches of producing threhalose highly by the gene engineering strain.
引文
[1]Richards AB, Krakowka S, Dexter LB, et al. Trehalose:a review of properties, history of use and human tolerance, and results of multiple safety studies. Food and Chemical Toxicology,2002,40:871~ 898.
    [2]Elbein, A.D. The metabolism of a, a-trehalose. Adv.Carbohyd.Chem.Biochem.,1974,30,227-256.
    [3]Trevelyan, W.E., Harrison, J.S. Studies on yeast metabolism. The trehalose content of baker's yeast during anaerobic fermentation. Biochem.J.,1956,62,177-182.
    [4JNwaka, S., Mechler, B, Holzer H. Detection of the ATH 1 gene in Saccharomyces cerevesiae prevents growth on trehalose. FEBS Lett,1996,386,235-238.
    [5]Hounsa CG, Brandt EV, Thevelein J, et al. Role of trehalose in survival of Sacchromyces cerevisiae under osmotic stress.Microbiology,1998,144:671~680
    [6]Paul MJ, Primavesi LF, Jhurreea D, et al. Trehalose metabolism and signaling. Annu Rev Plant Biol, 2008,59:417~441.
    [7]胡宗利,夏玉先,陈国平,蔡绍皙.海藻糖的生产制备及其应用前景.中国生物工程杂志.2004,24(0期:44~48
    [8]Yumiyoshikawa, Extraction of trehalose from baker's yeast, [J]化学工学论文集,1991,17 (3):601-606.
    [9]Miwako Kinefuchi, Alira Yamazaki, Kouzi Yamamoto, J.Appl.Glycosci,1995,42(3):237-242.
    [10]张厚程,刘娟,迟振明,扣囊复膜酵母菌高产突变株可溶性淀粉生产海藻糖的研究[J],食品与发酵工业,2001,28(1):1-4.
    [11]Pascale de Donatella, Maria Paola Sasso, Isabella Ci Lernia, et al. Recombinant thermophilic enzymes for trehalose and trehalosyl dextrins production[J], Journal of Molecular Catalysis B:Enzymatic,2001, 11:777-786.
    [12]Yannick Gueguen, Jean-Luc Rolland, Silke Schroeck, et al. Characterization of the maltooligosyl trehalose synthase from the thermophilic archaeon Sulfolobus acidocaldarius[J], FEMS Microbiology Letters, 2001,1994:201-206.
    [13]西本友之,茶圆博人,杉本利行,三宅俊雄,麦芽糖、海藻糖转化酶及其制备和应用[J],日本,CN1106065.
    [14]陈伟等.酶法合成海藻糖研究的新进展.微生物学通报[J].1998.25(3):164-166
    [15]戴秀玉等.大肠杆菌海藻糖合成酶基因的克隆和表达[J].遗传学报.2000.27(2):158-164
    [16]Nishimoto lj, Chaen H., et al., Trehalose and its Production and Use. EP0069355A 1
    [17]Paiva, C.L.A. and Panek, A, D. Biotechnological applications of the disaccharide trehalose.Biotechnol. Annu. Rev.1996,2,293-314.
    [18]张厚程,刘娟,迟振明,扣囊复膜酵母菌高产突变株可溶性淀粉生产海藻糖的研究[J],食品与发 酵工业,2001,28(1):1-4.
    [19]Martin, M.C., Diaz, L.A., Manzanal, M.B., Hardisson, C. Role of trehalose in the spores of Streptomyces. FEMS Micro.Lett.,1986,35,49-54.
    [20]Elbein, A.D., Mitchell, M. Levels of glycogen and trehalose in Mycobacteriam smegmatis, and the purification and properties of the glycogen synthase. J.Bacteriol.,1973,113,863-873.
    [21]Shimakata, T., Minatagawa, Y Essential role of trehalose in the synthesis and subsequent metabolism of corynomycolic acid in Corynebacterium matruchotii. Arch.Biochem.Biophys.,2000,380, 331-338.
    [22]Kaasen, L, MeDougall, J., Strom, A.R. Analysis of the otsBA operon for osmoregulatory trehalose synthesis in Escherichia coli. Gene,1994,145,9-15.
    [23]Maruta, K., Hattori, K., Nakada, T., Kubota, M., Sugimoto, T., Kurimoto, M. Cloning and sequencing of trehalose biosynthesis genes from Rhizobium sp. M-11. Biosci.Biotechnol.Biochem.,1996, 60,717-720.
    [24]Maruta, K., Mitsuzumi, H., Nakada, T., Kubota, M., Chaen, H., Fukuda, S., Sugimoto, T., Kurimoto, M. Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Su 扣 lobus acidocaldarius. Biochim. Biophys.Acta,1996, 1291,177-181.
    [25]Nishimoto, T., Nakano, M., Bnakada, T, Chaen, H., Fukuda, S., Sugimoto, T., Kurimoto, M., Tsujisaka, Y. Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp. R48. Biosci.Biotechnol.Biochem.,1995,60,640-644.
    [26]Meleiro, C.R.M. et al. Patent 9303490, INPI, Brazil,1993.
    [27]Paiva, C.L.A. and Panek, A, D. Biotechnological applications of the disaccharide trehalose. Biotechnol. Annu. Rev.1996,2,293-314.
    [28]Doran, P.M., Bailey, J.E. Effects of the immobilization on growth, fermentation properties and macromolecular composition of Saccharomyces cerevisiae attached to gelatin. Biotechnol. Bioeng. 1986,28,73-77.
    [29]Parascandola, P et al. Invertase and acid 户 osphatase in free and gel immobilized cell of Saccharomyces cerevisiae grown under different cultural conditions. Enzyme Microb. Technol 1993,15, 42-49.
    [30]Gomes FC, Pataro C, Guerra JB, et al. Physiological diversity and trehalose accumulation in Schizosaccharomyces pombe strains isolated from spontaneous ferment ations during the product ion of the art isanal Brazilian cachaca. Can J Microbiol,2002,48(5):399-406
    [31]李于, 肖冬光, 王兰, 等.酵母海藻糖提取及精制工艺的研究.天津轻工业学院学报,2002,43(4):4-7(Charlady Colerain, et al,2002)
    [32]李滢冰, 冯梦醒, 徐继祖.海藻糖在灰树花深层发酵中的积累及多糖的提取.食品与发酵工业,2000,26(2):11~15
    [33]Allen ind. Isolation of trehaolse by alcohol crystallization trehalose purification from f ermentat ion broth. JP06269 288:02.02.93. or Derwent Biotechnol Abst,1995,14(2):01165
    [34]冯朴荪, 陈桂兵, 云战友, 等.从面包酵母中提取海藻糖工艺过程的研究.第七届全国生物化工学术会议论文集.1996.384
    [35]刘洋,张红缨, 高俊芳, 等.酵母中海藻糖的几种提取方法的比较.中国生化药物杂志,1999,20(1):15~16
    [36]Cabib, E., Leloir, L. The biosynthesis of trehalose-phosphate. J.Biol.Chem.,1958,231,259-275.
    [37]Maruta, K., Mitsuzumi, H., Nakada, T., Kubota, M., Chaen, H., Fukuda, S., Sugimoto, T., Kurimoto, M. Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Su 扣 lobus acidocaldarius. Biochim. Biophys.Acta, 1996,1291,177-181.
    [38]Ryu SI, Park CS, Cha J, Woo EJ, Lee SB. A novel trehalose-synthesizing glycosyltransferase from Pyrococcus horikoshii:molecular cloning and characterization. Biochem Biophys Res Commun,2005,329, 429-436.
    [39]Nishimoto, T., Nakano, M., Bnakada, T, Chaen, H., Fukuda, S., Sugimoto, T., Kurimoto, M., Tsujisaka, Y. Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp. R48. Biosci.Biotechnol.Biochem.,1995,60,640-644.
    [40]Maruta, K., Hattori, K., Nakada, T., Kubota, M., Sugimoto, T., Kurimoto, M. Cloning and sequencing of trehalose biosynthesis genes from Arthrobacter sp. Q36. Biochim.Biophys.Acta,1996, 1289,10-13.
    [41]NISHIMOTO T, NAKANO M, et al. Existence of a novel enzyme converting maltose into trehalose [J]. Biosci BiotechBiochem,1995,59 (11):2189-2190.
    [42]Tsusaki K, NishimotoT, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M. Cloning and sequencing of trehalose synthase gene from Thermos aquaticus ATCC 33923. Biochim Biophys Acta,1997,1334,28-32.
    [43]PanYT, Koroth Edavana V, Jourdian WJ, Edmondson R, Carroll JD, Pastuszak I, Elbein AD. Trehalose synthase of Mycobacterium smegmatis:purification, cloning, expression and properties of the enzyme. Eur J Biochem,2004,271,4259-4269.
    [44]吴秀丽,岳明,丁宏标.海藻糖合酶的研究进展.微生物学通报.2009,36(7):1067-1072
    [45]陈炜,何秉旺.酶法合成海藻糖研究的新进展.微生物学通报1998,25(3):164-166.
    [46]Kato M, Miura Y, Kettoku M, et al. Purificat ion and characterizat ion of new trehalose producing enzymes isolated from the hyperthermophilic archae, Sulf olobus solfataricus KM1. Biosciences, Biotechnology and Biochemistry,1996,60:546-550
    [47]Nakada T, Maruta K, Mitzuzumi H, et al. Purification and charact erization of a novel enzyme, maltooligosyl trehalose trehalohydrolase, from Arthrobacter sp. Q36. Biosciences, Biot echnology and Biochemistry,1995,59:2215-2218
    [48]Nakada T, Maruta K, Mitzuzumi H, et al. Purificat ion and propert ies of a novel enzyme, malt ooligosyl trehalose synthase, from Arthrobacter sp.Q36. Biosciences, Biotechnology and Biochemistry, 1995,59:2210-2214
    [49]萧风歧.1996.海藻糖生产技术的重大突破.淀粉与淀粉糖,6(2):42—45.
    [50]Martin S.1993. Biotech food and nocontroversy. Food processing,15(4):95-96.
    [51]Kim YH, Kwon TK, Park S, et al. Trehalose synthesis by sequential reactions of recombinant maltooligosyltrehalose synthase and maltooligosyltrehalose t rehalohydrolase from Brevibacterium helvolum. Applied andEnvironmental Microbiology,2000,66(11):4620~4624
    [52]de Pascale D, Di Lernia 1, Sasso MP, et al. A novel thermophilic fusion enzyme for trehalose production. Extremophiles,2002,6(6):463~468
    [53]Padilla L, Krmer R, Stephanopoulos G, et al. Overproduction of trehalose:heterologous expression of Escherichia coli trehalose-6-phosphate synthase and trehalose-6-phosphat e phosphatase in Corynebact erium glutamicum. Applied and Environmental
    [54]周春丽等.海藻糖合成酶基因(TPS)的研究进展.食品科技,2006(7):28-30.
    [55][16] Wei YT, Zhu QX, Luo ZF, et al. Cloning, expression and identification of a new trehalose synthase gene from Thermobifida fusca genome. Acta Biochimica et Biophysica Sinica,2004,36(7): 477-484.
    [56]Wang JH, Tsai MY, Lee GC, et al. Construction of a recombinant thermostable β-amylase-trehalose synthase biofunctional enzyme for facilitating the conversion of starch to trehalose. J Agric Food Chem, 2007a,55:1256-1263.
    [57]Chen YS, Lee GC, Shaw JF. Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophius torridus in Escherichia coli. J Agric Food Chem,2006.54: 7098-7104.
    [58]Lee JH, Lee KH, Kim CG, et al. Cloning and expression of a trehalose synthase from Pseudomonas stutzeri CJ38 in Escherichia coli for the production of trehalose. Appl Microbiol Biotechnol,2005,68: 213-219.
    [59]Pan YT, Koroth Edavana V, Jourdian WJ, et al. Trehalose synthase of Mycobacterium smegmatis: purification, cloning, expression, and properties of the enzyme. Eur J Biochem,2004,271 (21): 4259-4269.
    [60]Richards AB, Krakowka S, Dexter LB, et al.Trehalose:a review of properties, history of use and human t olerance, and results of mult iple safety studies. Food and Chemical Toxicology.2002,40:871~ 898
    [61]Nishimoto T., Nakada M, et al. Existence of a novel enzyme converting maltose into trehalose [J]. Biosci BiotechBiochem,1995,59(11):2189-2190.
    [62]Nishimoto T., Nakada T, chaen H, et al. Purification and characterization of a thermostable trehalose synthase from Thermus aquaticus [J]. Biosci Biotech Biochem,1996,60(5):835-839
    [63]KOH S, KIM J, SHIN J H, et al. Mechanistic study of the intramolecular conversion of maltose to trehalose by Thermus caldophilus GK24 trehalose synthase [J]. Carbo Res,2003,338(12):1339-1343.
    [64]Hiroto CHAEN, Studies on Novel Enzymes for Synthesis of Trehalose from Stach. [J].Appl.Glycosci, 40(1), p.77-82,1997.
    [65]Nishimoto T., Nakano M., Nakada T, et al. Purification and Properties of a Nonvel Enzyme Trehalose Synthase from Pimelobacter sp.R48[J], Biosci. Biotech. Biochem.,1996,60:640-644.
    [66]T.Nishimoto, M.Nakamura, H.Chaen, er al.Purification and Characterization of a Thermostable Trehalose Symthase from Thermus aquaticus[J], Biosci. Biotech. Biochem.,1996,60(5):835-839.
    [67]Masahiro Yoshida, Nobuyuki Nakamura, Koki Horikoshi, et al. Production of trehalose by a dual enzyme system of immobilized maltose phosphorylase and trehalose phosphorylase[J], Enzyme and Microbial Technology,1998,22:71-75.
    [68]Masaru Kato, Trehalose production with a new enzymatic system from Sulfolobus solfataricus KM1 [J], Journal of Molecular Catalysis B:Enzymatic 6,1999,223-233.
    [69]Pascale de Donatella, Maria Paola Sasso, Isabella Ci Lernia, et al. Recombinant thermophilic enzymes for trehalose and trehalosyl dextrins production[J], Journal of Molecular Catalysis B:Enzymatic,2001, 11:777-786.
    [70]薛璐,马莺.透性化海藻糖合酶的研究[J].食品与发酵工业,2001,28(1):16-18.
    [71]薛璐,马莺.透性化细胞海藻糖合酶特性的研究[OJ].食品科学,2003,24(3):26-29.
    [72]MA Y, XUE L, SUN D W. Characteristics of trehalose synthase from permeablized Pseudomonas putida cells and its application in converting maltose into trehalose [J]. J Food Eng,2006,77:342-347
    [73]陈杰,张佳星,叶兴国,何聪芬,董银卯,赵华,秦允荣.农杆菌介导法将海藻糖合成酶基因转入芦荟的研究.作物学报。2007,33(6):968-972
    [74]井瑞洁,王腾飞,王瑞明.海藻糖合酶研究进展[J].中国酿造,2008,192(15)
    [75]井瑞洁,马春玲,丁振,王腾飞,王瑞明.紫外—亚硝基胍复合诱变选育选育海藻糖合酶高产菌株的研究[J].食品科技,2009,34(5):16-20
    [76]张峻,陈晓云,陈颖,等.海藻酸锶凝胶固定化含海藻糖合酶细胞的研究[J].食品科学,2008,29(3):332-335.
    [77]陈红歌,冉夫来,王明道等,以淀粉为原料生产海藻糖研究初探[J],郑州粮食学院学报,2000,21 (1):57-59.
    [78]郑玉娟,张红缨,赵荧,张今,胶样菌CB39产海藻糖的研究[J],微生物学报,2000,40(2):204-209.
    [79]张海平,杨静,段作营等,酶法转化淀粉合成海藻糖的初步研究[J],中国食品添加剂,2000,2:61-65.
    [80]毛忠贵,朱利丹,徐万里,陆俊,由淀粉生物合成海藻糖途径的初步验证和环境条件影响的研究[J],食品与发酵工业,1998,23(6):20-23.
    [81]唐传核,葛文光,以活性干酵母提取海藻糖的工艺[J],无锡轻工大学学报,1998,17(3):36-40.
    [82]薛璐,马莺,产海藻糖合成酶菌株发酵培养基的研究[J],食品与发酵工业,2002,28(7):34-35.
    [83]李滢冰,冯梦醒,徐继祖,海藻糖在灰树花深层发酵中的积累及多糖的提取[J],食品与发酵工业,2000,26(2):11-15.
    [84]张长慧,袁其朋,周延,海藻糖生产过程种产酶发酵条件的研究[J], 工业微生物,2002,45(5):673-678.
    [85]韦宇拓,朱绮霞,罗兆飞等,耐放射异常球菌海藻糖合成酶基因的克隆及功能鉴定生物化学与生物物理进展[J],2004;31(11)
    [86]Nishimoto, T., Nakano,M., Bnakada,T, Chaen.H., Fukuda, S., Sugimoto, T., Kurimoto, M., Tsujisaka, Y. Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp. R48. Biosci.Biotechnol.Biochem.,1995,60,640-644.
    [87]Tsusaki K, Nishimoto T, Nakada T, Kubota M, Chaen H, Sugimoto T, Kurimoto M. Cloning and sequencing of trehalose synthase gene from Pimelobacter sp. R48. Biochim Biophys Acta,1996, 1290,1-3.
    [88]McIntyre HJ, Davies H, Hore TA, Miller SH, Dufour JP, Ronson CW. Trehalose biosynthesis in Rhizobium leguminosarum bv. trifolii and its role in desiccation tolerance. Appl Environ Microbiol.2007, 73,3984-3992
    [89]Pan YT, Carroll JD, Asano N, Pastuszak I, Edavana VK, Elbein AD. Trehalose synthase converts glycogen to trehalose. FEBS J.2008,275,3408-3420.
    [90]Lee JH, Lee KH, Kim CC} Lee SY, Kim GJ, Park YH, Chung SO. Cloning and expression of a trehalose synthase from Pseudomonas stutzeri CJ38 in Escherichia coli for the production of trehalose. Appl Microbiol Biotechnol,2005,68,213-219.
    [91]Chen YS, Lee GC, Shaw JF. Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophilus torridacs in Escherichia coli. J Agric Food Chem,2006, 54,7098-8104.
    [92]WeiYT, Zhu QX, Luo ZF, Lu FS, Chen FZ, Wang QY, Huang K, Meng JZ, Wang R, Huang RB. Cloning, expression and identification of a new trehalose synthase gene from Thermobifida.fusca genome. Acta Biochim Biophys Sin,2004,36,477-484
    [93]韦宇拓,黄日波,蒙健宗,卢福巢,庞中文,朱绮霞,陈发忠,罗兆飞,卢运馄,王青艳,黄鲤。耐放射性异常球菌海藻糖合成酶基因及海藻糖制造方法。中国:200410013008.8 0 2005.
    [94]韦宇拓,朱绮霞,罗兆飞,陈发忠,李桂媛,黄鲤,黄日波。耐放射异常球菌海藻糖合成酶基因的克隆及功能鉴定。生物化学与生物物理进展,2004,31,1018-1023.
    [95]Timmins J, Leiros HK, Leonard G, Leiros I, McSweeney S. Crystal structure of maltooligosyltrehalose trehalohydrolase from Deinococcus radiodurans in complex with disaccharides. J Mol Biol.2005 Apr 15; 347(5):949-63.
    [96]Pan YT, Koroth Edavana V, Jourdian WJ, Edmondson R, Carroll JD, Pastuszak I, Elbein AD. Trehalose synthase of Mycobacterium smegmatis:purification, cloning, expression, and properties of the enzyme. Eur J Biochem.2004 Nov; 271(21):4259-69. PubMed PMID:15511231.
    [97]Cardoso FS, Castro RF, Borges N, et al. Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii, and their role in stress response. Microbiology, 2007,153:270-280
    [98]Yu-Tuo WEI, Qi-Xia ZHU1, Zhao-Fei LUO1, et.Cloning, Expression and Identification of a New Trehalose Synthase Gene from Thermobifida fusca Genome.Acta Biochimica et Biophysica Sinica 2004,36(7):477-484
    [99]Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A et al. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res,2002,9:189-197
    [100]Morgenstern B, Freeh K, Dress A, Werner T. DIALIGN:Finding local similarities by multiple sequence alignment. Bioinformatics,1998,14:290-294
    [101]Morgenstern B. DIALIGN 2:Improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics,1999,15:211-218
    [102]Altschul SF, Madden TL, Sch?ffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST:A new generation of protein database search Programs. Nucleic Acids Res,1997, 25:3389-3402
    [103]MacGregor EA, Janecek S, Svensson B. Relationship of sequence and structure to specificity in the a-amylase family of enzymes. Biochim Biophys Acta.2001,1546,1-20.
    [104]Davies q Sinnott ML, Withers S 儿 Glycosyl transfer, in:M. Sinnott (Ed.), Comprehensive Biological Catalysis, Academic Press, New York,1998, pp.119-208.
    [105]Ly HD, Withers SG, Mutagenesis of glycosidases, Annu. Rev. Biochem.1999,68,487-522.
    [106]Arnold F H. Directed evolution:creating biocatalysts for the future. Chem Eng Sci,1996,51 (23): 5091~5102
    [107]徐卉芳,张先恩,张用梅,等.体外分子定向进化研究进展.生物化学与生物物理进展,200229(4):518~522
    [108]Xu H F, Zhang X E, Zhang Y M, et al. Prog Biochem Biophys,2002,29 (4):518~522
    [109]Stemmer W P C. Rapid evolution of a protein i n vit ro by DNA shuffling. Nature,1994,370(4): 389~391
    [110]Oue S, Okamoto A, Yano T, et al. Redesigning the substrate specificity of an enzyme by cumulative effects of the mutations of non2active site residues. J Biol Chem,1999,274 (4):2344 ~ 2349
    [111]Miyazaki K, Wintrode P L, Grayling R A, et al. Directed evolution study of temperature adaption in a psychrophilic enzyme. J Mol Biol,2000,297(4):1015-1026
    [112]Beauregard M, Hefford M A. Enhancement of essential amino acid contents in crops by genetic engineering and protein design.[J]. Plant Biotechnol J.2006,4(5):561-574.
    [113]王凡业, 薛文漪.酶活性设计的新方法——半理性设计[J].应用化工.2006,35(08):634-636.
    [114]郭凤娟, 郑培.蛋白质的定向进化及应用[J].中国生化药物杂志.2004,25(02):125-126
    [115]张红缨,孔祥铎,张令.蛋白质工程新策略——酶的体外定向进化[J].科学通报,1999,44(11)
    [116]袁勤生主编.现代酶学,华南理工大学出版社,上海,2001(7):103
    [117]刘欣毅, 张惠展, 袁勤生.一种新型的基因定点突变方法及其在DdsA突变研究中的应用[J].中国生物化学与分子生物学报.2007,23(05):415-418.
    [118]高川,韩维涛,宋云扬,et al.一种改进的快速PCR定点突变技术[J].生物技术通报.2006(03):99-103.
    [119]周赞虎, 张永祥, 陈枝华, et al.基因改造中快速PCR定点突变方法应用[J].中国公共卫生.2007,23(01):102-103.
    [120]何震宇, 李月琴, 林元藻.重叠延伸PCR对DNA片段进行定点双突变[J].氨基酸和生物资源.2007,29(03):78-82.
    [121]石陆娥,应国洁,唐振兴,等.酶膜/}—物反应器中酶的}占{定化力法训究及其应用进展药物生物技术,2006.13(4):310-314.
    [122]ZHOU Y, YUAN Q, CAO H, et al. Production oftrehalose by permeabi-lized Micrococcus QS412 cells [J].J Mol Catal,2006.43:137-141.
    [123]薛璐,马莺.透性化海藻糖合酶的}J(ufJ1食品与发酵}_业,2001.28(D:16-18
    [124]薛璐,马莺.透性化细胞海藻糖合酶特性的1})百研月.食品科学,2003,24(3):26-29[125]
    [125]MA Y, XUE L, SUN D W. Characteristics of trehalose synthase from permeablized Psendomonas pntida cells and its application in converting maltose into trehalose [J]. J Food Eng,2006.77:342-347
    [126]Oyekanmi Nashiru, Sukhoon Koh, Se-Yong Lee(?) and Dae-Sil Lee.Novel a-Glucosidase from Extreme Thermophile Thermus caldophilus GK24.Journal of Biochemistry and Molecular Biology, Vol.34, No.4, July 2001, pp.347-354Elbein AD, Pan YT, Pastuazak I, et al. New insights on trehalose:a multifunctional molecule. Glycobiology,2003,13 (4):17R-27R.
    [127]A Y, XUE L, SUN D W. Characteristics of trehalose synthase from permeablized Psendomonas pntida cells and its application in converting maltose into trehalose [J]. J Food Eng,2006.77:342-347
    [128李镭,丁宏标等。海藻糖酶法合成途径及其酶基因的重组表达研究,生物技术通报,2007(3)
    [129]Schiraldi C, Di Lernia I, De Rosa M. Trehalose production:exploiting novel approaches. Trends Biotechnol,2002,20(10):420-425.
    [130]陈颖,朱月明,张俊等.海藻糖合酶因工程菌诱导表达条件研究[J].食品工业科技,2009,11(30):178-179
    [131]Nishimoto T, Nakano M, Nakada T, et al. Purification and properties of a novel enzyme, trehalose synthase, fromPimelobacter sp. R48. Biosic Biotechnol Biochem,1996a,60(4):640-644.
    [132]邵引刚,李峰,孙辉,等.海藻糖的应用及基因工程研究[J].安徽农业科学.2008,36(3):857—859.
    [133]F.奥斯伯,R.布伦特,R.E.金斯顿等.[M]《精编分子生物学实验指南》(第四版)科学出版社.55-56
    [134]吴秀丽,岳明,丁宏标.海藻糖合酶的研究进展[J].微生物学通报.2009,36(7):1067~1072
    [135]Hirata T, et al.Thorac Cardiovasc Surg,1993,41:59.
    [136]Kitahara AK, et al.Surg Res,1996,62:130.
    [137]陈红歌,冉夫来,王明道等,以淀粉为原料生产海藻糖研究初探[J],郑州粮食学院学报,2000,21(1):57-59.
    [138]郑玉娟,张红缨,赵荧,张今,胶样菌CB39产海藻糖的研究[J],微生物学报,2000,40(2):204-209.
    [139]张海平,杨静,段作营等,酶法转化淀粉合成海藻糖的初步研究[J],中国食品添加剂,2000,2:61-65.
    [140]毛忠贵,朱利丹,徐万里,陆俊,由淀粉生物合成海藻糖途径的初步验证和环境条件影响的研究[J],食品与发酵工业,1998,23(6):20-23.
    [141]唐传核,葛文光,以活性干酵母提取海藻糖的工艺[J],无锡轻工大学学报,1998,17(3):36-40.
    [142]薛璐,马莺,产海藻糖合成酶菌株发酵培养基的研究[J],食品与发酵工业,2002,28(7):34-35.
    [143]李滢冰,冯梦醒,徐继祖,海藻糖在灰树花深层发酵中的积累及多糖的提取[J],食品与发酵工业,2000,26(2):11-15.
    [144]陈红漫, 祝令香, 董志扬.酿酒酵母海藻糖6-磷酸合成酶基因克隆及植物表达载体的构建[J].微生物学报,2001,41(1):54-58.
    [145]TSUSAKI K, NISHIMOTO T, NAKADA T, et al. Cloning and sequencingof trehalose synthase gene from Thermus aquaticus ATCC33923[J]. Biochim Biophys Acta,1997,1334:28-32.
    [146]奥斯伯F, 布伦特R, 金斯顿R E.精编分子生物学实验指南[M].黄培堂, 译,3版.北京:科学出版社,2007.
    [147]张树珍,郑学勤,林俊芳,等.海藻糖合酶基因的克隆及转化甘蔗的研究[J].农业生物技术学报,2000(8):385-388.
    [148]TSUSAKI K, NISHIMOTO T, NAKADA T, et al. Cloning and sequencingof trehalose synthase gene from Pimelobacter sp. R48[J].Biochimica et Biophysica Acta (BBA)-General Subjects,1996, 1290(1):1-3.
    [149]隋少飞, 陈松林.巴氏毕赤酵母表达系统的特点及其研究进展[J].生物技术通报,2004(3):1-4.
    [150]吴秀丽, 岳明, 丁宏标.海藻糖合酶的研究进展[J].微生物学通报,2009,36(7):1067-1072.
    [151]易绍萱, 吴军人.CTLA-4胞外区cDNA的克隆及1g融合蛋白表达载体的构建[J].第三军医大学学报,2000,22(9):834-837.
    [152]CREGG J M, VEDVICK T S, RASCHKE W C. Recent advances in theexpression of foreign genes in Pichia pastoris[J]. Nature Biotechnology,1993,11:905-910.
    [153]胡军.酶技术发展与酶定向进化[J].工业微生物.1999,29(04):37-42.
    [152]Alvizo O, Allen B D, Mayo S L. Computational protein design promises to revolutionize protein engineering.[J]. Biotechniques.2007,42(1):313335.
    [53]Guo R B, Rigolet P, Zargarian L, et al. Structural and functional characterizations reveal the importance of a Zinc Binding Domain in bloom's syndrome helicase, Nucleic Acids Res,2005, 33(10):3109-3124.
    [154]Mandecki W, Shallcross M A, Sowadski J, et al. Mutagenesis of conserved residues within the active site of Escherichia coli alkaline phosphatase yields enzymes with increased K}at. Protein Eng, 1991,4(7):801-804.
    [155]Ajayi W U, Chaudhuri M, Hill G C, Site-directed mutagenesis reveals the essentiality of the conserved residues in the putative diiron active site of the trypanosome alternative oxidase. J Biol Chem, 2002,277:8187-8193.
    [156]Hadonou A M, Wilkin J M, Varetto L, et al.Site-directed mutagenesis of the Streptomyces R61 DD-peptidase.catalytic function of the conserved residues around the active site and a comparison with class-A and class-C beta-lactamases. Eur J Biochem,1992,207(1):97-102.
    [84]Muller-Newen G, Stoffel W.Site-directed mutagenesis of putative active-site amino acid residues of 3, 2-trans-enoyl-CoA isomerase, conserved within the low-homology isomerase/hydratase enzyme family. Biochemistry,1993,32:11405 — 11412.
    [157]Zheng R L, Kemp R G. Site-directed mutagenesis of two highly conserved residues near the active site of phosphofructo 小 kinase. Biochem Biophys Res Commun,1994,199(2):577-581.
    [158]Doucet N, De Wals P Y, Pelletier J N. Site-saturation mutagenesis of Tyr-105 reveals its importance in substrate stabilization and discrimination in TEM-1 beta-lactamase. J BiolChem,2004, 279(44):46295-46303.
    [159]Kuiper G G, Klootwijk W, Visser T J. Substitution of cysteine for a conserved alanine residue in the catalytic center of type Ⅱ iodothyronine deiodinase alters interaction with reducing cofactor. Endocrinology, 2002,143:1190-1198.
    [160]Olcott M C, Andersson J, Sjoberg B M. Localization and characterization of two nucleotide-binding sites on the anaerobic ribonucleotide reductase from bacteriophage T4. J Biol Chem,1998, 273:24853-24860.
    [161]韦宇拓,朱绮霞,罗兆飞等.谷氨酸棒杆菌海藻糖合成酶基因的克隆及功能鉴定.工业微生物,2005,35(2):1-6.
    [162]J.萨姆布鲁克,,E.F.弗里奇,,T.曼尼阿蒂斯著,金冬雁译,分子克隆实验指南][M].第2版.北京:中国科学出版社,2002.
    [163]郭尧君,蛋白质电泳实验技术[M].北京:科学出版社,1999.j66]WEI Y T, ZHU Q X, LUO Z F, et al.Cloning, expression and identification of a new trehalose synthase from Thermobifids.Fusca genome. Acta Biochimica et Biophysica Sinica,2004,36(7):477-484.
    [164]Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem,1959, 31:426-428.
    [165]Pan Y T, Edavana V K, Jourdian W J, et al. Purification, cloning, expression and properties of the enzyme [J].Eur J Biochem,2004,271:4259-4269.
    [166]汪家政,范明.蛋白质技术手册[M].北京:中国科学出版社,2001.70』周丽萍,周政,袁中—青霉素酞化酶的定点突变及其稳定性研究[[J].工业微生物,2003,33:9-13.
    [167]颜思旭,蔡红玉.酶催化动力学原理与方法[M].厦门:厦门大学出版社,1987.[72]Ding D F,Tang H X, Zhang B H. Protein homology modeling system and its evaluation. Acta Biophysica Sinica,1995, 11:416-428.
    [168]Michael D. F, Yoichi K, Taro T. Crystal structure of glycosyltrehalose trehalohydrolase from the Hyperthermophiiic Archaeum Su 如 lobus Solfataricus. J. Mol. Biol,2000,301:451-464.
    [169]卡尔.布兰登,约翰.图兹.《蛋白质结构导论》(2005年).上海科学出版社,第42-43页.
    [170]Koppensteiner W A, Sippl M J. Knowledge-based potentials-back to the roots [J].Biochemistry (Mosc),1998,63(3):247-252.
    [171]Sippl M J. Knowledge-based potentials for proteins [J]. Curr Opin Struct Biol,1995,5(2):229-235.
    [172]Wiederstein M, Sippl M J.Protein sequence randomization:effcient estimation of protein stability using knowledge-based potentials. J Mol Biol,2005,345(5):1199-1212.
    [173]Gardebien F, Thangudu R R, Gontero B, et al.Construction of a 3d model of Cp12, a protein linker. J Mol Graph Model,2006,25(2):186-195.
    [174]ZHANG JI-HU.Dawes Glenn and Stemmer Willem P.C.Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening [J].Proc.Natl.Acad.Sci.USA,1997,94:4504-4509.
    [175]HARAYAMA SHIGEAKI.Artificial evolution by DNA shuffling[J].TIBTECH,1998,16:76-82.
    [176]CHEN K, ARNOLD F H.Enzyme engineering for nonaqueous solvents:random mutagenesis to enhance activity ofsubtilisin E inpolar organic media[J].Bio/Technology.1991,9:1073-1077.
    [177]CHEN K, ARNOLD F H.Tuning the activity of an enzymefor unusual environments:sequential random mutagenesis ofsubtilisin E for catalysis in dimethylformamide[J].Proc NatlAcad Sci USA,1993, 90:5618-5622.
    [178]STEMMER W P C.DNA shuffling by random fragmentationand reassembly in vitro recombination for molecular evolution[J].Proc Natl Acad Sci USA,1994,91:10747-10751.
    [179]STEMMER W P C.Rapid evolution of a protein in vitro by DNA shuffling [J].Nature.1994, 370:389-391.[7] NIXON A E, OSTERMEIER M, BENKOVIC S J, et al.Hybridenzyme:manipulating enzyme design[J].Trends Biotech.1998,16:258-264.
    [180]由德林,曲红,陈强等.次黄嚓吟—鸟嚓吟磷酸核糖转移酶突变体的基因构建、表达和性质[J].生物化学与生物物理学报,2003,35(9):853-858.
    [181]张玉华,凌沛学,籍保平.海藻糖的研究现状及其应用前景[J].食品与药品,2005,7(3):8—12.2005,7(3):8—12
    [182]葛宇,袁勤生.海藻糖对生物活性物质的保护作用机理研究进展[J].药物生物技术,2002,9(5):297—300
    [183]聂陵鸿.海藻糖研究进展[J].粮食与油脂,2002(8):44-45
    [184]NISHIMOTO T, NAKANO M, et al. Existence of a novel enzyme converting maltose into trehalose [J]. Biosci BiotechBiochem,1995,59 (11):2189-2190.
    [185]NISHIMOTO T, NAKADA T, CHAEN H, et al. Purification and characterization of a thermostable trehalose synthase from Thermus aquaticus [J]. Biosci Biotech Biochem,1996,60(5):835-839
    [186]水生嗜热菌FL-03海藻糖合酶的分离纯化及特性研究[J].吉林农业大学学报,2006(1):
    [187]薛璐,马莺.透性化海藻糖合酶的研究[J].食品与发酵工业,2002,28(1):16~18
    [188]朱彤波,陈写张,杨蕴刘等.提高三角酵母细胞DAO表观活力的透性化研究.生物工程学报,2001,17(1):73-77
    [189]高惠玲,袁其朋,周延,等.用透性化细胞技术合成海藻糖[J].微生物学通报,2004,31(3)92—96.
    [190]周延,袁其朋,冯金虎,等.海藻糖合成双酶体系酶性质及酶反应条件的研究[J].现代化工.2003,23(1):33—36.
    [191]王蕾,郑璞.DNS法定量测定海藻糖的研究[J].食品科技,2002,124(2):36-38.
    [192]周晓云.酶学原理与酶工程[M].北京:中国轻工业出版社,2005:87—93.
    [193]张峻,陈晓云,齐欣,等.透性化细胞海藻糖合酶的制备及其性质研究[J].南开大学学报,2005,38(5):93—96.
    [194]Wang Jun, Studies on Immobilization of Trehalose Synthesizing to Chitosan as Carrier[J]; Chemical Industry and Engineering Progress; 2004-10.
    [195]叶秀东, 周国燕, 华泽钊.DSC测量海藻糖溶液部分玻璃化转变温度.中国工程热物理学会传热传质学学术会议论文集.2006,11:703-706

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700