Ni-Cr-Fe合金高温氧化成膜特性及氧化/碳化临界条件下膜组织演变规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ni-Cr-Fe合金由于其表面可以形成一层均匀致密的Cr_2O_3保护膜,因此具有良好的耐氧化和抗渗碳性能,同时具有较好的高温蠕变强度,被广泛的应用于乙烯裂解炉的高温部件。随着乙烯裂解工艺的改进、裂解原材料的日渐复杂以及裂解深度的提高,裂解温度也随之有所提高,对乙烯裂解炉管材料的高温抗氧化/碳化性能也提出了更高的要求。Cr_2O_3保护膜在1000℃以下具有良好的稳定性和抗碳化性能,但当使用温度超过1000℃以后,Cr_2O_3容易分解为挥发性的CrO_3、CrO_2等氧化物,因此,单一的Cr_2O_3保护膜已经远远不能满足现代生产工艺的要求。通过合金化工艺加入其他合金元素,使合金表面形成一层稳定性更高的复合氧化膜成为当前抗碳化材料的研究热点之一。
     本文以添加适量Si、Mn合金元素的铸态Ni-Cr-Fe合金为实验合金,系统的研究了预氧化工艺(温度、氧分压)及合金元素对合金表层氧化膜的物相组成、微观结构的影响;分析了MnO、Cr_2O_3及MnCr_2O_4尖晶石在碳化环境中的稳定性;并研究了预氧化合金表面复合氧化膜的热力学性能及抗碳化性能。采用X-射线衍射(XRD)、扫描电镜(SEM)、能谱分析(EDS)等多种测试方法对氧化膜的物相结构、表面形貌等进行了测试表征。
     (1)通过改变预氧化温度及氧分压研究了预氧化工艺对氧化膜微观结构、成膜规律的影响。Ni-Cr-Fe合金在较低温度发生氧化时,共晶组织区域的相界可以为合金元素提供线状快速扩散通道,因此该区域形成的氧化膜较为发达主要以羽毛状为主;随着预氧化温度的提高,奥氏体的晶内扩散速率提高,该区域的合金元素主要通过表层Cr_2O_3氧化膜的缺陷向外扩散,逐渐有棒状Mn-Cr尖晶石生成,表层氧化膜趋向均匀。体系的氧分压对氧化膜的微观结构具有重要的影响,低氧分压时表层主要形成Cr_2O_3单一氧化膜,合金试样增重较大且氧化膜为多孔结构;随着氧分压的逐渐增大氧化膜也逐渐转变为致密的复合氧化膜,合金的氧化增重率降低。中等氧分压下复合氧化膜中Mn-Cr尖晶石含量最多。
     (2)Ni-Cr-Fe合金氧化膜的生长动力学与合金基体的微观结构及其相应的Si含量密切相关。氧化过程中,Si含量较低的合金无法在合金基体与表层氧化膜界面处形成连续的SiO_2非晶层,因此氧化后所形成的氧化膜较厚且均匀;而Si含量较高的合金,奥氏体组织之上可以形成一层连续的SiO_2非晶层,阻碍了合金元素的扩散,导致表层氧化膜较薄,而在共晶组织区域形成不了连续的SiO_2非晶层,因此比较发达的脊状氧化物形成于共晶组织之上。合金元素Mn具有较大的扩散系数,致使Mn-Cr尖晶石在氧化膜的最外层生成。合金中Mn含量较低时,表层形成少量颗粒细小的Mn-Cr尖晶石;随着Mn含量的提高,表层Mn-Cr尖晶石形貌转变为板条状;如果合金中Si的含量较低而Mn的含量较高,则在合金表面形成星状的尖晶石相。
     (3)通过对粉体MnO_2、Cr_2O_3及MnCr_2O_4尖晶石碳化性能的研究发现:MnO_2经高温烧结、碳化后转变为MnO,并在碳化过程中表现出较好的稳定性。Cr_2O_3在碳化初期表现出较好的稳定性,但随着碳化过程的进行Cr_2O_3转变为Cr_7C_3、Cr_(23)C_6和Cr_3C_2,表现为先失重后增重,组织结构也转变为多孔结构。MnCr_2O_4尖晶石在碳化过程中表现出极好的稳定性没有发生物相的转变。
     (4)研究了不同成分合金预氧化处理后复合氧化膜的抗碳化性能。复合氧化膜中MnCr_2O_4尖晶石可以阻碍C向合金基体内部的扩散,延缓Cr_2O_3的碳化;计算了复合氧化膜生成热力学和扩散动力学,证实在合金表面生成的复合氧化膜由外到内依次为MnCr_2O_4、Cr_2O_3、SiO_2。
Ni-Cr-Fe based alloys were widely used as high temperature oxidation-resistantmaterials in ethylene cracking industry due to the fast formation of dense chromiumoxide layer on the surface in oxidation environment. With continuingimprovement ofthe ethylene crackingprocess, the growingcomplexityof raw materials and the depthof cracking, the ethylene cracking temperature were increased. Betteroxidation/carburization-resistant properties for ethylene cracking tube materials arerequired. The chromium oxide can protect alloys from oxidation and carburization attemperature below 1000℃. When the temperature excess 1000℃, chromium oxidecan be easily decomposed to volatile CrO_3, CrO_2 phases, which could loss theprotectiveproperty.AsingleCr_2O_3protectivefilm couldnot meet therequirements ofmodern industrial technology. When alloying elements were added, more stablecompositeoxidefilm canbeformedonthe alloysurface,whichis aresearchfocus onanti-carburizationmaterials.
     In this paper, alloys were cast by adding Si and Mn elements to Ni-Cr-Febased alloys. The effects of alloy elements and the pre-oxidation conditions(temperature and oxygen partial pressure) on oxide film composition andmicrostructure were systematic studied. The stabilities of MnO、Cr_2O_3and MnCr_2O_4spinel were also analyzed in the carbonaceous environment. The thermodynamicproperties and carburization resistance of composite oxide film on the alloy surfacewere also studied. The oxide film structure and surface morphology werecharacterized using thin film X-ray diffraction (XRD), scanning electron microscopy(SEM),energyspectrumanalysis(EDS)andothermethods.
     (1) The influence of pre-oxidation temperature and oxygen partial pressure onthe microstructure of the oxide film was studied. When oxidation of Ni-Cr-Fe based alloys occurat lowertemperature,moredeveloped oxides forms intheeutecticregion,mainly because of the laminar structure of eutectic areas. The phase boundaries canprovide fast diffusion channel for alloying elements, therefore, the surface oxidemainlybased on feather-like growth in this region. With the increase of pre-oxidationtemperature, diffusion of alloying elements within the austenite phase increased,mainly through the defect of Cr_2O_3 film in austenite areas, so some rod-like Mn-Crspinel were formed in this area. It was found that oxygen partial pressure of thesystem has an important effect on the microstructure of oxide film. At lower oxygenpartial pressure, a thick and porous structured oxide film was formed, and thedominant phase of oxide film was Cr_2O_3. With the increases of oxygen partialpressure, the dominant phase of oxide film gradually transformed to composite oxidefilm. The micro-structure of oxide film becomes dense and thinner. A maximumcontentofspinelphasewasobtainedinthemiddleoxygenpartialpressure.
     (2) The growth kinetics of oxide film for Ni-Cr-Fe based alloy is closely relatedto the microstructure of the matrix and the corresponding Si content. During theoxidation process, a continuous amorphous layer of SiO_2 sub-layer in the low Sicontent alloys can not be formed, resulting in a thickand uniform oxide layer formedon the surface; while a continuous SiO_2 amorphous layer can be formed on thesub-surface in the higher Si content alloys, which can block the outside diffusion ofalloying elements from the substrate, resulting in a thinner outer oxide film. Moredeveloped oxide formed above this region due to a discontinuous of SiO_2sub-films.Higher diffusion coefficient of Mn ion is the reason of Mn-Cr spinel forms at theoutmost of the film. For lower Mn containing alloy, small particle Mn-Cr spinelwould to be formed. With increases of Mn content, the morphology of Mn-Cr spineltransforms tolath-shaped. LowerSi andhigherMn content ofthealloyresultedinthestellatemorphologyofMn-Crspinelonthealloysurface.
     (3) Study of MnO_2, Cr_2O_3 and MnCr_2O_4 spinel powder sample in carbonaceousenvironment shows that MnO_2 would transfer to MnO after high temperaturecarburization, and MnO shows a good stabilityin carbonization process. Cr_2O_3 wouldtransfer to Cr_7C_3, Cr_(23)C_6 and Cr_3C_2 in the carburization process, which shows the weight loss first and weight gain later. The micro-structure was also porous structure.MnCr_2O_4 spinel shows excellent stability and no structure transformation during thewholecarburization process.
     (4) The carburization resistance of composite oxide film for different alloysafter pro-oxidation were also studied. MnCr_2O_4 spinel in composite oxide filmcould hinder the diffusion of C to matrix, and delay the carburization of Cr_2O_3.Thermodynamics forming and diffusion dynamics of the composite oxide filmwere calculated, which confirm that the composite oxide film was in the order ofMnCr_2O_4, Cr_2O_3and SiO_2 from outmost to inner substrate.
引文
[1]郭建亭.高温合金材料学(上册).北京:科学出版社,2008.3
    [2]师昌绪.中国高温合金四十年.北京:中国科学技术出版社,1996.
    [3]师昌绪,仲增墉.中国高温合金40年.金属学报,1997,33(1):1
    [4] RebukR.B.Nickelalloysforcorrosiveenvironrnents.Adv.MaterProc,2000,157(2):37
    [5] Herda W. R. Evolutionary development in Ni alloys and stainless steel rnetallurgy forrneetingtheindustry’scorrosivechallenges:thelast50year.StainlessSteel’s,1999,(2):117
    [6]马国印.镍和镍合金耐腐蚀性分析.化工装备技术,2007,28(1):71
    [7]胡本芙.高温合金研究的新进展.北京科技大学学报,1981,(03):57
    [8] JosephR.D.MetalsHandbook,10thedition,Vol.I,PropertiesandSelection.1990
    [9]西姆斯C T.,斯特劳夫N S.,里格尔W C.高温合金(赵杰等译).大连:大连理工大学出版社,1991
    [10]殷克勤.我国航空涡轮高温材料及工艺发展.材料工程,1997,9:3
    [11]陈荣章.北京航空材料研究院铸造高温合金发展40年.材料工程,1998,10:3
    [12]陈荣章,王罗宝,李建华.铸造高温合金发展的回顾与展望.航空材料学报,2000,20(1):55
    [13] RohrbachK. P.高温合金的发展与选择.宇航材料工艺,2005,(01):61
    [14]周永军,王瑞丹.镍基超合金的发展和研究现状.沈阳航空工业学院学报,2006,2(01):84
    [15]天华化工机械及自动化研究设计院主编.腐蚀与防护手册.第1卷,腐蚀理论、试验及监测[M].北京:化学工业出版社,2008,6:297
    [16] Hodge F. G. The history of solid-solution-strengthened Nialloys for aqueous corrosionservice.JOM,2006,58(9):28
    [17] Paul Crook. Selecting nickel alloys for corrosive applications. Chen Eng Prog,2007,103(5):45
    [18] Shoemaker,LewisE,Smith,GaylordD.Acenturyofmonelmetal:1906-2006.JOM,2006,58(9):22
    [19]张琳,乐精华.耐蚀阀门用蒙乃尔合金.阀门,2002,(6):37
    [20]乐精华,盖广平,裴耀贵等.英康奈尔和英康洛依合金及其应用.阀门,2005,(4):21
    [21] Hastelloy.http://en.wikipedia.org/wiki/Hastelloy
    [22]王致宏.哈氏合金设备的设计与施工.化肥设计,2003,41(1):26
    [23]徐自立.高温金属材料的性能、强度设计及工程应用.北京:化学工业出版社,2006,3:72
    [24]李维银,刘红飞,王婷等.新型镍基高温合金长期时效后的组织稳定性及高温性能.机械工程材料,2008,32(7):62~67
    [25]林万明,段剑锋,王春龙等.镍基高温合金沉淀强化的研究.铸造技术,2008,29(5):607~609
    [26]谢锡善.我国高温材料的应用与发展.机械工程材料,2004,8(1):4
    [27]马国印.镍和镍合金耐腐蚀性分析.化工装备技术,2007,28(1):71
    [28] Welsch G. and Desai P. D. Oxidation and Corrosion of Intermetallic Alloys. MetalsInformationAnalysisCenterCINDAS.PurdueUniversity,1996,148:154
    [29] Stoosnijder M. F. Review of High Temperature Corrosion of Metals and Alloys inSulphidizing/Oxidizing Enviroments Corrosion of Alloys. High Temperature Technology,1986,4(3):146
    [30] Bonnet G. The Effect of Rare Earths Deposited on Steel Surfaces by Different Processes(Sol/Gel, Electrophoresis, OMCVD) on High Temperature Corrosion Behavior. CorrosionScience,1993,35(5-8):893
    [31] Kofstad P. International Workshop on“New Fundamentals of Scale Growth. Oxidation ofMetals,1989,32(1-2):125
    [32] Prescott R. The Formation of Aluminium Oxide Scales on High-Temperature Alloys.OxidationofMetals,1992,38(3-4):233
    [33] Chun-KanHou.Effectofsilicononthelossseparationandpermeabilityoflaminated steels.JournalofMagnetismandMagneticMaterials,1996,162(2-3):280
    [34] Yanxiang Li, Xiang Chen. Microstructure and mechanical properties of austempered highsiliconcaststeel.MaterialsScienceandEngineeringA,2001,308(1-2):277
    [35] Delagnes D., Lamesle P., Mathon M.H. Influence of silicon content on the precipitation ofsecondary carbides and fatigue properties of a 5%Cr tempered martensitic steel. MaterialsScienceandEngineeringA,2005,394(1-2):435
    [36] Pérez F. J., Otero E., Hierro M. P., et al. Corrosion Protection of 13CrMo 44 heat-resistantferritic steel by silicon and cerium ion implantation for high-temperature applications.SurfaceandCoatingsTechnology,1998,108-109(1-3):121
    [37] Moseley D., Hu Y., Randle V., Irons T.. Role of silicon content and final annealingtemperature on microtexture and microstructure development in non-oriented silicon steel.MateralsScienceandEngineering:A,2005,392(1-2):282
    [38] SuSil K. Putatunda Fracture toughness of a high carbon and high silicon steel. MateralsScienceandEngineeringA,2001,297(1-2):31
    [39] Chen N., Zaefferer S., Lahn L., er al. Effects of topology on abnormal grain growth insiliconsteel.ActaMaterialia,2003,51(6):1755
    [40] Zhu L. J., Wu D., and Zhao X. M. Effect of silicon addition on recrystallization and phasetransformation behavior of high-strength hot-rolled trip steel. Acta Metallurgica Sinica(EnglishLetters),2008,21(3):163
    [41] DouglassDL,ArmijoJS.TheeffectofsiliconandmanganeseontheoxidationmechanismofNi-20Cr.Oxid.Met.,1970,2(2):207
    [42]魏翔云,杨奇斌.Mn和Si对一种Fe-Ni基高温合金持久缺口敏感性的影响.金属学报,1984,20(6):A261
    [43]郭建亭.高温合金材料学(上册)[M].北京科学出版社,2008.3:184
    [44] StephenA.McCoy,etal.Corrosionperformanceandfabricabilityofthenewgenerationofhighlycorrosion-resistantNickel-Chromium-Molybdenumalloys. Special Metals.http//www.specialmetals.com
    [45] Sims T.,Stoloff S.,Magel C.Supperalloys.NewYork:Johnwhey,1987
    [46]李铁藩.金属高温氧化和热腐蚀[M].北京:化学工业出版社,2003,4:18
    [47] Wang Yonggang, He Yedong, Zhu Rizhang. Internal oxidation of Fe3Al during hightemperatureoxidation.TransactionsofNonferrousMetalsSocietyofChina,1998,8(1):52
    [48] Bouaouine H., Armanet F., Coddet C. Study of High-Temperature Oxidation of Fe-Cr-AlandFe-Ni-Cr-A1Alloys.NationalResearchCouncilofCanada,1984:379
    [49]崔彤,王介强,王晓轩等. GH4169合金高温氧化特征.腐蚀科学与防护技术,2004,16(4):192
    [50]叶长江,李铁藩,郭建亭等.含Mo的Ni-A1-Fe基合金在900-1100℃空气中的氧化行为.中国腐蚀与防护学报,1995,15(2):100
    [51] Inoue Tadashi Kobayashi Akio, Yamauchi Katsuhisa, Hosoya Yoshihiro. Effects ofalloyingelements on high temperature oxidation of 42% Ni iron-based alloy. Journal of the Iron andSteelInstituteofJapan,2007,93(6):409
    [52] EllinghamHJ.SocietyofchemistryIndustry,1944,63:125
    [53] Kutz M.材料选用手册[M].陈祥宝,戴圣龙等译.北京:化学工业出版社,2005,181-212
    [54] Formhold A T. Theory of metal oxidation. Vol.1, Fundaments, North-Holland publication,Amsterdam,NewYork,Oxford,1976.
    [55] LeonardJones.Transactionsoffaradaysociety.1932,28:333
    [56] TrapnellBMW.Chemisorption,BatterwortySciencePubliction.London:1955.
    [57] BrunauerS.TheAdorptionofGasesandVapours.ChemistryBurofPlanttIdustry,U.S.
    [58] Garner W E. Chemistry of the Solid State. London, Butterworth Science Publication, 1955:487
    [59]朱日彰,卢亚轩.耐热钢和高温合金[M].北京:化学工业出版社,1995,30
    [60]翟金坤.金属高温腐蚀.北京:北京航空航天大学出版社,1993,6:12
    [61]化学工业部化工机械研究院主编.腐蚀与防护手册:腐蚀理论?试验及监测[M].北京:化学工业出版社,1989,5:193
    [62]李铁藩.金属高温氧化和热腐蚀[M].北京:化学工业出版社,2003,4:15-214
    [63]徐祖耀,黄本立,鄢国强.材料表征与检测技术手册.北京:化学工业出版社,2009,6:594
    [64]化学工业部化工机械研究院.腐蚀与防护手册(第2版):腐蚀理论?试验及监测[M].北京:化学工业出版社,2008,6:303-312
    [65]孙跃,胡津.金属腐蚀与控制[M].哈尔滨:哈尔滨工业大学出版社,2003,4:124-157
    [66]曹铁梁.钇对Fe-Cr-Al合金在纯SO_2气氛中高温腐蚀行为的影响.中国腐蚀与防护学报,1992,2:116
    [67] Grünling H.W,BauerR. Theroleofsiliconincorrosion-resistanthightemperaturecoatings.ThinSolidFilms. 1982,95(1):3
    [68] Hsu H W, Tsai W T. High temperature corrosion behavior of siliconized 310 stainless steel.MaterChemPhys.2000,64:147-155
    [69] Bamba G, Wouters y, Galerie A, et al. Thermal oxidation kinetics and oxide scale adhesionofFe-15Cralloysasafunctionoftheirsiliconcontent.ActaMaterialia. 2006,54(15):3917
    [70]胡赓祥,蔡珣,戎咏华.材料科学基础(第二版).上海:上海交通大学出版社,2006:64
    [71]黄建中,左禹.材料的耐蚀性和腐蚀数据[M].北京:化学工业出版社,2002.274
    [72] REVIERW.尤利格腐蚀手册(原著第2版)[M].杨武,等译.北京:化学工业出版社,2005.635
    [73]夏天东,马宝玉,兰宝彤等.离心铸造HP-Nb高温合金炉管与1Cr5Mo法兰的焊接.焊接,1999,(3):15-18
    [74]关家锟.裂解炉管渗碳损伤的研究.石化技术,1997,4(4):216-220
    [75]谢飞.提高乙烯裂解炉管抗渗碳性能的表面改性技术.石油化工腐蚀与防护,2005,22(5):1
    [76]王学文,钟纪伟,韩万学等.乙烯裂解炉辐射段渗碳炉管焊接.焊接,1992,(1):21-23
    [77]林学东,孙源.乙烯裂解炉管材料高温渗碳行为研究.机械工程材料,1994,18(6):28-30
    [78]孙家孔主编.石油化工装置设备腐蚀与防护手册[M].北京:中国石化出版社出版,1996.286-316
    [79] FertilloA,PrmcipB.HydrocarbonProcess,1975,54:174
    [80]安运铮(主编).热处理工艺学.北京:机械工业出版社,1982.197
    [81] BennettMJ,PriceJB.JMaterSci,1981,16:170
    [82]吴欣强等.HP耐热钢裂解炉管服役弱化的组织特征及其成因.金属学报,1998,3(410):1043
    [83]朱日彰,何业东,齐慧滨.高温腐蚀及耐高温材料.上海:上海科学技术出版社,1998.221
    [84]涂善东.高温结构完整性原理[M].北京:科学出版社,2003
    [85]谢飞.乙烯裂解炉管的渗碳与抗渗碳.材料导报,2002,8(16):24-26
    [86] McGill W A, Weinbaum M J. Aluminum diffused steels resist high temperatures inhydrocarbon environments.Met.Prog,1979,115(2):26-31
    [87] Klower J. High temperature corrosion behaviour of iron alumindes andiron-aluminium-chromiumalloys.MaterialsandCorrosion.1996,47:649-685
    [88] Bangaru N V, Krutenat R C. Diffusion cartings of steels: Formation mechanism andmicrostructure of aluminized heat-resistant stainless steels. Vac. Sci. Technol, 1984, B2(4):806-816
    [89] Bennett M J. New coatings for high temperature materials protection. Vac. Sci. Technol,1984,B2(4):800
    [90] GanserB,WynnsKA,KurlekarA.Operationalexperiencewithdiffusioncoatingsonsteamcrackertubes.MaterialsandCorrosion. 1990,50:700-705
    [91] Albright I F, Mcgill W A. Aluminized ethylene furnace tubes extend operating life. Oil &GasJournal,1987,35:46
    [92]王松汉.乙烯装置技术[M].北京:中国石化出版社,1994.184
    [93] Grabke H. J. Adsorption, segregation and reactions of non-metal atoms on iron surfaces.MaterialsScienceandEngineering.1980,42:91
    [94] Hsu H. W., Tsai W. T., High temperature corrosion behavior of siliconized 310 stainlesssteel, Materials Chemistry and Physics,Volume 64, Issue 2, 2000, 147-155
    [95]郭守仁等,碳、硼、硅对GH761合金力学性能和组织的影响,“高温合金中微量元素的作用和控制”课题鉴定会论文集,北京:冶金工业出版社,1987,387页
    [96]郭建亭等,硅对GH135合金力学性能和组织结构影响,“高温合金中微量元素的作用和控制”课题鉴定会论文集,北京:冶金工业出版社,1987,412页
    [97] Wang Y. G., He Y. D., Zhu R. Z. Internal oxidation of Fe3Al during high temperatureoxidation.TransactionsofNonferrousMetalsSocietyofChina,1998,8(1):52
    [98] Inoue T., Kobayashi A., Yamauchi K., Hosoya Y.. Effects of alloying elements on hightemperature oxidation of 42% Ni iron-based alloy. Journal of the Iron and Steel Institute ofJapan,2007,93(6):409
    [99] Redmond T,BergeronMP.OilGas,1999,97:39
    [100]楼翰一.高温合金涂层与基体界面上的互扩散.中国腐蚀与防护学报,1997,17(增):464-469
    [101] Jolanta G W, Zbigniew Z, Joanna D. Diffusion of Chromium, Manganese, and Iron inMnCr_2O_4Spinel.JournalofPhaseEquilibriaandDiffusion,2005,6: 5
    [102] SchutzeM. Protective OxideScalesandTheirBreakdown.JohnWileyandSons,Chicheter,UK,1997
    [103] Birks N.,MeierG. H.Introduction to high temperature oxidation ofmetals. EdwardArnold,London,UK,1983
    [104] NishiyamaY,OtsukaN,NishizawaT.Corrosion,2003,59,688
    [105] SouthwellG,MacalpineS,YoungDJ.MaterialsScienceandEngineering,1987,88:81
    [106] Park S H, Lee YY,Lee Y D, KimKY. In:Newcomb SB, Little JA, editors. Microscopyofoxidation3.London:InstituteofMaterials, 1997
    [107] BambaG,Wouters Y,Galerie A,Charlot F,DellaliA.ThermaloxidationkineticsandoxidescaleadhesionofFe-15Cralloysasafunctionoftheirsiliconcontent.ActaMaterialia,2006,54:3917-3922
    [108] Kofstad P., High Temperature Corrosion, Elsevier Applied Science, New York, 1998:534.
    [109] Ostwald C., Grabke H.J. Initial oxidation and chromium diffusion. I. Effects of surfaceworking on 9–20%Cr steels [J].Corros. Sci. 2004, 46:1113–1127
    [110] Woerde H M, Barendregt S, Humblot F, et a1. Mitigate coke fonnation.Hydrocarbonprocessing. 2002,81(3):45
    [111] FairleyP.Westaimofferscokingtreatmentbutnocure.ChemWeek,1998, 160(34):65
    [112]王治春.范金钢.马乃金.结焦抑制技术的工业应用.石化技术,2005,12(01):63-67
    [113] Towfighi J, Sadraneli M, Niaei A. Coke fomation mechanism and coke irihibiting methodsinpyrolysisfumaces.JournalofChemcalEngineeringofJapan,2002,35(10):923-937
    [114] Grabke H. J, Ohla K., Peters J. and Wolf I. Radiotracer studies of carbon permeationthrough oxide scales on commercial high temperature alloys and model alloys, Werkst.Korros. 1983,34:495–500
    [115] Tempest P. A. and Wild R. K. Oxidation pretreatment to reduce corrosion of20%Cr-25%Ni-Nb stainless steel. I. Weight gain and oxide thickness measurements, Oxid.Met.1988,30: 209–230
    [116] Schnass A. and Grabke H. J. High-temperature corrosion and creep of Ni-Cr-Fe alloys incarburizingandoxidizingenvironments,Oxid.Met. 1978,12: 387–404
    [117] WolfI. andGrabke H.J.Astudyonthesolubilityanddistributionofcarboninoxides,SolidStateCommun.1985, 54(1):5–10
    [118] Wolf I., GrabkeH. Jand Schmidt P. Carbon transport through oxide scaleson Fe-Cr alloys,Oxid.Met. 1988,29:289–306
    [119] David J. H, Hossain K. M and Atkinson R. F. Carburisation behavious of HK40 steel infurnacesusedforethyleneproduction,HighTemp.HighPress. 1982,14: 527–539
    [120] Shinohara T., Kohchi L., Shibata K., Sugitani J. and Tsuchida K. Development ofnon-destructive technique for measuring carburization thickness and of a newcarburization-resistancealloy,Mater.Corros. 1986,37: 410–418
    [121] Holcomb G. R. and Alman D.E. The effect of manganese additions on the reactiveevaporationofchromiuminNi-Cralloys,ScriptaMater.2006,54: 1821–1825
    [122] Golightly F A. The Influence of Yttrium Additions on the Oxide Scale Adhension to aZr-Cr-A1Alloy.OxidionofMetals,1976,10(3):163
    [123] Niu Y, Wang S, Gao F, et al. Ultra-thin aluminum oxide as a thermal oxidation barrier onmetalfilms.ThinSolidFilms,2002,415:219
    [124] BenumL.,ObalaM.,PetroneS.,ChenW.,Pre-oxidizedSurfaceonaStainlessSteelMatrix,PatentNo.US6,824,883,April14,2005
    [125]彭兵,宋海琛,王佳等.Cr2O3含碳球团的还原过程.中南大学学报,2005,36(4):571-575
    [126]张家芸.冶金物理化学.北京:冶金工业出版社,2004:309
    [127]梁英教.无机物热力学手册[M].东北大学出版社,1993,8
    [128]王海涛.复合氧化膜对铁基高温合金抗氧化性能影响与机理研究[博士学位论文].山东大学,2010年
    [129] Wagner J B. ChemicalDiffusion in Oxidation of Metals and Association Mass Transport.Publication of the Metallugical Society, 1986:67
    [130] HaulR.,Dumngen G. Zeitachrift furElextrochemie. 1962, 66: 636

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700