单向Cf/Al复合材料缺陷Chirplet参数表征及强度损伤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续碳纤维增强铝基复合材料(Cf/Al)以其高比强度、高比刚度等优良的空间特性,已经成为优异的航天器件备选材料,其产品缺陷检测及质量评价已成为不可缺少的环节。实际构件中缺陷的存在是不可避免的,因此其可靠性、服役损伤容限设计变得至关重要。本文利用传统超声波检测方法对超声波信号进行参数化Chirplet(线调频小波)分解,从而对Cf/Al复合材料缺陷进行高清晰识别和表征;利用金相显微镜、扫描电子显微镜(SEM)等手段对Cf/Al复合材料缺陷特征进行分析并分类;采用电子拉伸机及扫描电镜原位观察技术等分析测试方法,系统研究了层状缺陷(铝聚集层、夹杂、分层)和圆孔缺陷对Cf/Al复合材料的拉伸、压缩力学性能及损伤失效机理的影响,进一步通过有限元分析方法和剩余强度预测模型对含层状缺陷和圆孔缺陷的Cf/Al复合材料的剩余强度进行了预测。
     在Cf/Al复合材料内部制备了铝聚集层、夹杂和分层三种层状缺陷,对三种层状缺陷的超声波信号进行Chirplet分解,提取出Chirplet参数变化量(中心频率和相位)作为表征缺陷的特征参数。深入分析了层状缺陷类型、埋藏深度(埋深)、厚度和缺陷边边缘的Chirplet参数变化量的特征,发现三种类型层状缺陷的特征参数明显不同;随着层状缺陷埋深的增加,Chirplet参数变化量基本不变;随铝聚集层厚度增加,Chirplet参数变化量单调变化,但是存在一个临界厚度(0.27mm);层状缺陷的边界对Chirplet参数变化量的影响敏感。
     通过对缺陷信号的Chirplet分解,编制了计算软件,实现了缺陷的Chirplet幅度、埋深、中心频率和相位四种C扫描成像。结果表明,幅度C扫描能提高图像的对比度;埋深C扫描能给出缺陷在试件中的埋深分布;而中心频率C扫描和相位C扫描使缺陷的边界特征明显;相位C扫描提高了对缺陷细节特征的分辨率,更加准确的表征分层扩展过程。
     在实现对Cf/Al复合材料缺陷的超声波检测的基础上,研究了铝聚集层、夹杂、分层和圆孔对Cf/Al复合材料拉伸和压缩强度的影响。在本试验条件下,人工制备的铝聚集层和夹杂使Cf/Al复合材料的拉伸强度分别下降了15.8%和35.2%,压缩强度下降了23.1%、50.5%,分层使压缩强度下降了47.9%。Cf/Al复合材料的拉伸和压缩强度与圆孔直径呈指数关系下降。
     通过有限元分析对含层状缺陷Cf/Al复合材料的分析表明:在拉伸载荷下,夹杂边缘过渡区的轴向和剪切应力集中比铝聚集层更为严重;应力分布不随层状缺陷的横向尺寸的增加而变化,采用最大应力准则对含层状缺陷Cf/Al复合材料剩余拉伸强度进行估算,与试验结果相吻合。在压缩载荷下,夹杂边缘过渡区横向应力集中最严重,分层次之,铝聚集层最小;采用最大应力准则估算的剩余压缩强度结果与试验值基本吻合。
     采用点强度准则(PSC)、平均强度准则(AVC)、损伤区准则(DZC)和有效裂纹扩展模型(ECGM)对含圆孔Cf/Al复合材料试样的剩余拉伸强度进行预测,结果表明,圆孔直径与试样宽度之比(D/W)在0.05~0.5的整个测试范围内,ECGM和DZC预测结果与试验值一致;当D/W>0.2时,PSC和AVC的预测结果误差较大。对剩余压缩强度的预测结果表明,PSC和AVC在D/W>0.2时,预测结果也存在较大误差。
     采用扫描电镜原位观察了在拉应力下,含缺口、铝聚集层和夹杂单一缺陷Cf/Al复合材料的失效破坏过程。结果表明,铝聚集层具有较好的韧性和强度,能够缓解复合材料内部主裂纹前端的应力集中,从而阻碍裂纹的扩展,延缓了Cf/Al复合材料的失效破坏。夹杂因较低的强度使裂纹垂直传播,并穿过夹杂和复合材料的界面,造成复合材料的瞬间失效破坏。同时也原位观察了在压应力下,含铝聚集层、夹杂和分层三种单一缺陷Cf/Al复合材料的压缩失效过程。结果表明,Cf/Al复合材料的压缩失效机理主要包括纤维的微屈曲和界面分层。含夹杂和分层复合材料的压缩失效主要是屈曲分层。而含铝聚集层复合材料的压缩失效是纤维微屈曲破坏和屈曲分层两种失效机制的共同作用。
     超声波Chirplet参数C扫描实现了对含铝聚集层、夹杂和分层Cf/Al复合材料压缩载荷下损伤扩展过程的表征,相位C扫描对损伤扩展过程的表征更加清晰。
Continuous carbon fiber reinforced aluminum matrix composite (Cf/Al) becomes outstanding alternative material for space devices due to its good space characteristics,such as high specific strength and high stiffness. Thus, it is necessary to detect the anomaly and evaluate the quality of composite products. However, anomalies exist in component are inevitable, so the design of reliability and service damage tolerance becomes highly important. In this paper, by using parametric Chirplet decomposition to Ultrasonic signal based on ultrasonic detection method, anomalies of composite were identificated and characterized legibly. The effect of anomalies (e.g. Al-rich, inclusion, delamination and holes) on the tensile and compressive mechanical properties, damage failure mechanisms of Cf/Al composite was systematically studied through by electronic tensile machine and SEM in situ observation technique. Furthermore, residual strength of Cf/Al composite with layer anomalies and hole anomalies was obtained by finite element method and residual strength prediction model.
     The artificial anomalies were introduced into Cf/Al composite, which were able to simulate the layer anomalies of Al-rich, inclusion and delamination. The Chirplet parameters (center frequency and phase) variance was obtained through the Chirplet decomposition for ultrasonic signal of the above anomalies, which could be used as the characteristic parameters for the anomaly characterization. Furthermore, the effect of anomaly type, depth, thickness and anomaly boundaries on Chirplet parameters was deeply studied, the results show that the ultrasonic signal characteristic parameters of three types of anomalies were obviously different; the Chirplet parameters of the layer anomaly were essentially invariable with the anomaly depth, but they increased with increasing thickness of aluminum accumulation layer in less than the critical thickness (0.27mm); the Chirplet parameters could significantly improve the identification of anomaly boundary.
     The C scan imaging of Chirplet range, depth, center frequency and phase of anomalies was gained through the Chirplet decomposition of the anomaly signals. The results show that the C scan imaging of range could improve the contrast of C scan images; the C scan imaging of depth could show the depth distribution of anomalies in the samples; the center frequency and phase imaging made the anomaly border clear and distinct, which could improve the measurement accuracy of the anomaly size; the C scan imaging of phase could improve the resolution of the details and characteristics of the anomalies, so it made the characterization of delamination growth process more accuratly.
     The effect of Al-rich, inclusion, delamination and holes on the tensile and compressive strength of Cf/Al composite material was studied on the basis of the ultrasonic testing. The follwing results were obtained: the tensile and compressive strength respectively decreased by 15.8% and 23.1% for the composite containing Al-rich; the tensile and compressive strength respectively decreased by 35.2% and 50.5% for the composite containing inclusion anomaly; the compressive strength decreased by 47.9% for the the composite containing delamination; the tensile and compressive strength both decreased exponentially with the pore diameter.
     The finite element analysis results of the Cf/Al composite with the local layer anomalies show that the axial and shear stress concentration in the edge transition zone of the inclusions is more serious than that of composite with the Al-rich anomalies under the same tensile load conditions. Stress distribution of the composite with layered anomalies is changeless with the increase of transverse dimensions, the residual strength of the Cf/Al composite with the local layer anomalies were calculated under the axial maximum stress criterion, the obtained results have a good agree with the experimental results. Under the compressive load, the transverse stress concentration of inclusions in the edge transition area is the most serious, the delamination takes the second place, and Al-rich affects the minimum. The compression residual strength of Cf/Al composites with Al-rich, delamination or inclusions was estimated under transverse and axial maximum stress criteria, the estimated results of compression residual strength was slightly less than experimental results.
     The tensile residual strength of the Cf/Al composite with holes was predicted by using point strength criterion (PSC), average strength criterion (AVC), damaged zone criterion (DZC) and effective crack growth model (ECGM). Results show that in the whole test range of 0.05~0.5 (D/W), high predicted precision can be obtain from the ECGM and the DZC; when D/W > 0.2, the predicted result from the PSC and the AVC can't predict accurately the tensile residual strength because of the greater error. DZC and ECGM are not suitable for residual strength prediction of the Cf/Al composite with holes because of the different failure mechanisms between the tensile load and the compressive load.
     The failure process of notch contained Cf/Al composite with Al-rich layer and inclusion was observed by the SEM in suit observation technique. The results show that the Al-rich with good toughness and strength can release stress concentration in the front of the internal main crack of Cf/Al composite and make the crack spread around, which prevents the crack propagation and delays the damage failure of Cf/Al composite. However, the inclusion, which has lower strength, can make the cracks spread vertically, which results in the instantaneous destruction of composite materials and accelerats the crack propagation and failure of composite. Compression failure process of Cf/Al composite with layer anomalies (including Al-rich, inclusions and local delamination) was observed with the method of in-situ observation composite by scanning electron microscopy (SEM).
     The results show that the compression failure mechanism of Cf/Al composite mainly includes fiber micro-buckling and the interface delamination. And the compression failure mode of the composites containing inclusions or local delamination is mainly buckling delamination. The compression failure mode for the composite with the Al-rich is the combination of fiber micro- buckling failure and buckling delamination.
     The characterization of the damage extension of Cf/Al composite with anomalies (e.g. Al-rich, inclusions and local delamination) under the compressive load was realized by Ultrasonic Chirplet Parameter C Scan. It is more significant for Phase C Scans to obtain the characterization comparing with Ultrasonic Chirplet Parameter C Scan.
引文
1周履,范赋群.复合材料力学[M].北京:高等教育出版社, 1991: 6-7.
    2 Song S, Vaidya R, Zurek A, et al. Stacking Faults in Sic Particles and Their Effect on the Fracture Behavior of a 15 Vol Pct SiC/6061-Al Matrix Composite[J]. Metallurgical and Materials Transactions A, 1996, 27(2): 459-465.
    3王玉庆,郑久红,唐风军,周本濂.挤压铸造铝基复合材料[J].稀有金属材料与工程, 1994, 23(2): 64-68.
    4于琨,李成功.金属基复合材料的现状与发展[J].材料科学与工程, 1989, 1: 6-12.
    5 Cheng H M, Kitahara A, Kobayashi K, et al. Hybridization with Sic Particulates to Control the Fibre Volume Fraction and Improve the Longitudinal Tensile Strength of Carbon Fibre-Reinforced Aluminium Composites[J]. Journal of Materials Science Letters, 1991, 10(13): 795-797.
    6 Cheng H M, Kitahara A, Akiyama S, et al. Fabrication of Carbon Fibre-Reinforced Aluminium Composites with Hybridization of a Small Amount of Particulates or Whiskers of Silicon Carbide by Pressure Casting[J]. Journal of Materials Science, 1992, 27(13): 3617-3623.
    7 Mortensen A, Michaud V J, Flemings M C. Pressure-Infiltration Processing of Reinforced Aluminum Matrix Composite[J]. Journal of the Minerals Metals & Materials Society, 1993, 45(1): 36-43.
    8孙德伟,张广玉,张其馨,等.石墨纤维增强铝基复合材料在空间遥感器镜筒结构中的应用[J].光学精密工程, 2009, 17(2): 368-374.
    9 Rawal S. Metal-Matrix Composites for Space Applications[J]. Journal of the Minerals, Metals and Materials Society, 2001, 53(4): 14-17.
    10 Slaughter W S, Fleck N A, Budiansky B. Compressive Failure of Fiber Composites: The Roles of Multiaxial Loading and Creep[J]. Journal of Engineering Materials and Technology, 1993, 115(3): 308-313.
    11吴人洁.金属基复合材料的现状与展望[J].金属学报, 1997, 33(1): 78-84.
    12 Kainer K U. Metal Matrix Composites[M]. Weinheim: Wiley-VCH, 2003: 1-4.
    13刘玲,张博明,王殿富,等.聚合物基复合材料中孔隙率及层间剪切性能的实验表征[J].航空材料学报, 2006, 26(4): 115-118.
    14张立功,张佐光.先进复合材料中主要缺陷分析[J].玻璃钢/复合材料, 2001, 2: 42-45.
    15王小永,钱华.先进复合材料中的主要缺陷与无损检测技术评价[J].无损探伤, 2006, 30(4): 1-7.
    16 Cantwell W, Morton J. The Significance of Damage and Defects and Their Detection in Composite Materials: A Review[J]. Journal of Strain Analysis for Engineering Design, 1992, 27(1): 29-42.
    17成源.减少复合材料生产缺陷和周期[J].玻璃钢, 2007, 3: 31-34.
    18刘玲,张博明,王殿富.碳/环氧复合材料孔隙问题研究进展[J].宇航材料工艺, 2004, 6: 6-10.
    19 Baker A A, Jones R, Callinan R J. Damage Tolerance of Graphite/Epoxy Composites[J]. Composite Structures, 1985, 4(1): 15-44.
    20张国定,赵昌正.金属基复合材料[M].上海:上海交通大学出版社, 1996: 123-130.
    21陈华辉,邓海金,李明,等.现代复合材料[M].北京:中国物资出版社, 1998: 173-174.
    22于家康,闫庆,周尧和.金属液在连续纤维预制型中的横向补缩[J].特种铸造及有色合金, 2005, 25(2): 80-82.
    23 Nutt S R, Needleman A. Void Nucleation at Fiber Ends in Al-SiC Composites[J]. Scripta Metallurgica, 1987, 21(5): 705-710.
    24钟厉,韩西,周上祺.纤维增强铝基复合材料研究进展[J].机械工程材料, 2002, 26(12): 12-14.
    25 Stubbs D A, Russ S M, Maclellan P T. Examination of the Correlation between Nde-Detected Manufacturing Abnormalities in Mmcs and Ultimate Tensile Strength or Thermomechanical Fatigue Life[C]. Cyclic Deformation, Fracture, and Nondestructive Evaluation of Advanced Materials, Philadelphia, 1994: 315-334.
    26 Koráb J, Korb G, Stefánik P, et al. Effect of Thermal Cycling on the Microstructure of Continuous Carbon Fibre Reinforced Copper Matrix Composites[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(8): 1023-1026.
    27王春雨. Cf/Al复合材料表面稀土膜的表征及耐蚀特性研究[D].哈尔滨:哈尔滨工业大学博士学位论文, 2008: 1-3.
    28 Teagle P R. The Quality Control and Non-Destructive Evaluation of Composite Aerospace Components[J]. Composites, 1983, 14(2): 115-128.
    29 Huang Y D, Froyen L, Wevers M. Quality Control and Nondestructive Tests in Metal Matrix Composites[J]. Journal of Nondestructive Evaluation, 2001, 20(3): 113-132.
    30吴明复.纤维增强复合材料的应用及其缺陷检测[J].航天工艺, 1988, 1: 39-44.
    31李光浩.现代民用飞机复合材料的无损检测[J].无损检测, 2001, 23(5): 213-214.
    32刘继忠. CFRP孔隙率超声无损检测研究与系统实现[D].杭州:浙江大学博士学位论文, 2005: 2-3.
    33王峰,张扬.无损检测在复合材料中的应用[J].高科技纤维与应用, 2005, 30(3): 26-28.
    34唐桂云,王云飞,吴东辉,等.先进复合材料的无损检测[J].纤维复合材料, 2006, 33(1): 33-36.
    35李艳红,张存林,金万平,等.碳纤维复合材料的红外热波检测[J].激光与红外, 2005, 35(4): 262-264.
    36郭兴旺,刘颖韬,郭广平,等.脉冲相位法及其在复合材料无损检测中的应用[J].北京航空航天大学学报, 2005, 31(10): 1049-1053.
    37黄松岭,李路明,杨海青,等.复合材料胶接缺陷的红外热像检测[J].宇航材料工艺, 2002, 6: 43-46.
    38李路明,黄松岭,杨海青,等.复合材料分层缺陷的红外热像检测[J].航天制造技术, 2002, 2: 18-21.
    39 Bar-Cohen Y. NDE of Fiber-Reinforced Composite Materials-A Review[J]. Materials Evaluation, 1986 44(4): 446-454.
    40蒋福棠,翟金玲,伍颂,等.金属基复合材料的无损检测[J].稀有金属, 1999, 23(3): 220-223.
    41 Chang F H, Bell J R, Gardner A H, et al. A Laboratory Mock-up Ultrasonic Inspection System for Composites [J]. Materials Evaluation, 1982 40(6): 756-761.
    42 Stone D E W, Clarke B. Ultrasonic Attenuation as a Measure of Void Contentin Carbon-Fibre Reinforced Plastics[J]. Non-Destructive Testing, 1975, 8(3): 137-145.
    43 Srivastava V K, Prakash R. Prediction of Material Property Parameter of FRP Composites Using Ultrasonic and Acousto-Ultrasonic Techniques[J]. Composite Structures, 1987, 8(4): 311-321.
    44 Hashemi H N, Cohen M D, Zotos J, et al. Ultrasonic Characteristics of Graphite/Epoxy Composite Material Subjected to Fatigue and Impacts[J]. Journal of Nondestructive Evaluation, 1986, 5(4): 119-131.
    45 Williams J H, Nayeb-Hashemi H, Lee S S. Ultrasonic Attenuation and Velocity in AS/3501-6 Graphite Fiber Composite[J]. Journal of Nondestructive Evaluation, 1980, 1(2): 137-148.
    46 Guo N, Lim M K, Pialucha T. Measurement of Attenuation Using a Normalized Amplitude Spectrum[J]. Journal of Nondestructive Evaluation, 1995, 14(1): 9-19.
    47 Mott G, Aw P. Correlation of Mechanical and Ultrasonic Properties of Al-SiC Metal-Matrix Composite[J]. Metallurgical and Materials Transactions A, 1988, 19(9): 2233-2246.
    48 Grandia W A, Fortunko C M. Nde Applications of Air-Coupled Ultrasonic Transducers[C]. Proceedings of the IEEE Ultrasonics Symposium, Seattle, WA, USA, 1995: 697-709.
    49 Salazar J, Turo A, Chavez J A, et al. High-Power High-Resolution Pulser for Air-Coupled Ultrasonic NDE Applications[C]. 18th IEEE Instrumentation and Measurement Technology Conference, Budapest, Hungary, 2001: 1756-1760.
    50 Kazys R, Demcenko A, Zukauskas E, et al. Air-Coupled Ultrasonic Investigation of Multi-Layered Composite Materials[J]. Ultrasonics, 2006, 44(Supplement 1): e819-e822.
    51黄志刚,白基成,周正干,等.超声波C扫描系统研制及其关键技术[J].军民两用技术与产品, 2007, 12: 40-42.
    52魏勤,尤建飞.超声C扫描系统在颗粒增强型金属基复合材料无损检测中的应用[J].华东船舶工业学院学报(自然科学版), 2003, 17(3): 66-69.
    53 Wooh S C, Wei C. A High-Fidelity Ultrasonic Pulse-Echo Scheme for Detecting Delaminations in Composite Laminates[J]. Composites Part B: Engineering, 1999, 30(5): 433-441.
    54 Martin B G. Ultrasonic Attenuation Due to Voids in Fibre-Reinforced Plastics[J]. NDT International, 1976, 9(5): 242-246.
    55刘继忠,周晓军,华志恒.碳纤维复合材料孔隙率的脉冲反射法超声衰减测试模型[J].浙江大学学报(工学版), 2006, 40(11): 1878-1882.
    56周晓军,莫锦秋,游红武.碳纤维复合材料分布孔隙率的超声衰减检测方法[J].复合材料学报, 1997, 14(3): 107-114.
    57何方成,史亦韦.树脂基复合材料孔隙率超声表征技术研究[J].航空材料学报, 2006, 26(3): 355-356.
    58魏勤,尤建飞,彭如海,等.超声C扫描成像系统在铝基复合材料无损检测中的应用[J].华东船舶工业学院学报, 2000, 14(2): 31-34.
    59 Widrig J E, Mccabe D D, Conner R L. Nondestructive Evaluation of Fiber Fp Reinforced Metal Matrix Composites[C]. Testing Technology of Metal Matrix Composites, Philadelphia, 1988: 227-247.
    60 Jeong H. Effects of Voids on the Mechanical Strength and Ultrasonic Attenuation of Laminated Composites[J]. Journal of Composite Materials, 1997, 31(3): 276-292.
    61 Zhang M, Mason S E. The Effects of Contamination on the Mechanical Properties of Carbon Fibre Reinforced Epoxy Composite Materials[J]. Journal of Composite Materials, 1999, 33(14): 1363-1374.
    62 Stone D E W. Some Problems in the Non-Destructive Testing of Carbon- Fibre-Reinforced Plastics[C]. Proceedings of the 2nd International Conference on Carbon Fibres, London, 1974: 178-185.
    63张广明,马宏伟,王裕文,等.超声无损检测中的缺陷识别与噪声抑制[J].中国机械工程, 1999, 10(12): 1389-1391.
    64刘镇清.超声无损检测与评价中的信号处理及模式识别[J].无损检测, 2001, 23(1): 31-34.
    65 Legendre S, Goyette J, Massicotte D. Ultrasonic NDE of Composite Material Structures Using Wavelet Coefficients[J]. Ndt & E International, 2001, 34(1): 31-37.
    66张海燕,吴淼,孙智,等.小波变换和模糊模式识别技术在金属超声检测缺陷分类中的应用[J].无损检测, 2000, 22(2): 51-54.
    67 Mucciardi A N, Shankar R. Near-Surface Defect Detection [J]. Materials Evaluation, 1981 39(1): 74-77.
    68刚铁,吴林.超声检测中的多源信息融合技术与缺陷识别[J].机械工程学报, 1999, 35(1): 11-14.
    69 Gang T, Luan Y L, Zhao X M, et al. Characterisation of Interfacial Imperfections of TiAl and 40Cr Diffusion Bonding by Ultrasonic Amplitude and Phase[J]. Materials Science and Technology, 2009, 25(5): 680-686.
    70 John H. Cantrell J, Winfree W P, Man J S H. Profiles of Fatigue Damage in Graphite/Epoxy Composites from Ultrasonic Transmission Power Spectra[C]. Recent advances in composites in the United States and Japan: a symposium, Philadelphia, 1985: 197-206.
    71 Gericke O R. Determination of the Geometry of Hidden Defects by Ultrasonic Pulse Analysis Testing[J]. The Journal of the Acoustical Society of America, 1963, 35(3): 364-368.
    72 Adler L, Whaley H L. Interference Effect in a Multifrequency Ultrasonic Pulse Echo and Its Application to Flaw Characterization[J]. The Journal of the Acoustical Society of America, 1972, 51(3B): 881-887.
    73 Simpson W A. Time-Frequency-Domain Formulation of Ultrasonic Frequency Analysis[J]. The Journal of the Acoustical Society of America, 1974, 56(6): 1776-1781.
    74 Chen C H. High Resolution Spectral Analysis NDE Techniques for Flaw Characterization, Prediction and Discrimination[C]. Proceedings of a NATO Advanced Research Workshop Held within the Activities of the NATO Special Programme on Sensory Systems for Robotic Control on Signal Processing and Pattern Recognition in Nondestructive Evaluation of Materials, Lac Beauport, Quebec, Canada, 1988: 139-147.
    75 Nestleroth J B, Rose J L, Bashyam M, et al. Physically Based Ultrasonic Feature Mapping for Anomaly Classification in Composite Materials[J]. Materials Evaluation, 1985, 43(5): 541-546.
    76 Datia D, Venkatesh C V, Kishore N N. Application of Multi Dimensional Cluster Analysis in Identification of Defects in Fibre Composites[J]. Nondestructive Testing and Evaluation, 1995, 12(3): 197-210.
    77 Demirli R, Saniie J. Model-Based Estimation of Ultrasonic Echoes Part I: Analysis and Algorithms[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 2001, 48(3): 787-802.
    78 Demirli R, Saniie J. Model-Based Estimation of Ultrasonic Echoes Part II: Nondestructive Evaluation Applications[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2001, 48(3): 803-811.
    79 Demirli R, Saniie J. Model Based Time-Frequency Estimation of Ultrasonic Echoes for NDE Applications[C]. IEEE Ultrasonics Symposium Proceedings, San Juan, 2000: 785-788.
    80 Lu Y, Demirli R, Cardoso G, et al. Chirplet Transform for Ultrasonic Signal Analysis and NDE Applications[C]. Ultrasonics Symposium, Vancouver, 2005: 536-539.
    81 Lu Y F, Demirli R, Cardoso G, et al. A Successive Parameter Estimation Algorithm for Chirplet Signal Decomposition[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2006, 53(11): 2121-2131.
    82 Yufeng L, Demirli R, Saniie J. Efficiency and Sensitivity Analysis of Chirplet Signal Decomposition for Ultrasonic NDE Applications[C]. Ultrasonics Symposium, New York, 2007: 1590-1593.
    83 Yufeng L, Oruklu E, Saniie J. Ultrasonic Chirplet Signal Decomposition for Defect Evaluation and Pattern Recognition[C]. Ultrasonics Symposium, Rome, 2009: 2553-2556.
    84张建生,李明轩.多层粘接结构中脱粘界面的人工神经网络余弦变换谱特征识别[J].声学学报, 2001, 26(4): 349-354.
    85 Chen Y, Luo W, Fu D, et al. Research on F-Scan Acoustic Imaging of Composite Materials[J]. Journal of Intelligent Material Systems and Structures, 2001, 12(10): 701-708.
    86 Bar-Cohen Y, Crane R. Acoustic-Backscattering Imaging of Subcritical Defects in Composites[J]. Materials Evaluation, 1982, 40(9): 970-975.
    87陈以方,骆巍,陈玉宝,等.复合材料的特征扫描声成象检测[J].无损检测, 2001, 23(10): 427-431.
    88 Lee D A, Moran T J, Crane R L. Practical Considerations for Estimating Flaw Sizes from Ultrasonic Data[J]. Materials Evaluation, 1984, 42(8): 1150-1158.
    89陆铭慧,付德永,王海芳,等.复合材料层状薄板超声特征扫描成像检测[J].无损检测, 2005, 27(9): 449-453.
    90 Nestleroth J B, Rose J L, Bashyam M, et al. Physically Based Ultrasonic Feature Mapping for Anomaly Classification in Composite Materials[J].Materials Evaluation, 1985, 43(4): 541-545.
    91 Datta D, Venkatesh C V, Kishore N N. Application of Multi Dimensional Cluster Analysis in Identification of Defects in Fibre Composites[J]. Nondestructive Testing and Evaluation, 1995, 12(3): 197-210.
    92 Hsu D K,费冬,刘战捷.超声成像法检测复合材料层合板铺层方向[J].无损检测, 2004, 26(1): 6-12.
    93徐志辉,林莉,李喜孟,等.材料薄层超声无损测厚方法评述[J].理化检验(物理分册), 2004, 40(8): 407-410.
    94 Kinra V K, Iyer V R. Ultrasonic Measurement of the Thickness, Phase Velocity, Density or Attenuation of a Thin-Viscoelastic Plate. Part I: The Forward Problem[J]. Ultrasonics, 1995, 33(2): 95-109.
    95林莉,李喜孟,李继承.超声无损表征薄层结构研究进展[J].无损探伤, 2006, 30(5): 1-4.
    96 Maev R G, Shao H, Maeva E Y. Thickness Measurement of a Curved Multilayered Polymer System by Using an Ultrasonic Pulse-Echo Method[J]. Materials Characterization, 1998, 41(2-3): 97-105.
    97 Moreno E, Acevedo P. Thickness Measurement in Composite Materials Using Lamb Waves[J]. Ultrasonics, 1998, 35(8): 581-586.
    98 Lavrentyev A I, Rokhlin S I. Determination of Elastic Moduli, Density, Attenuation, and Thickness of a Layer Using Ultrasonic Spectroscopy at Two Angles[J]. The Journal of the Acoustical Society of America, 1997, 102(6): 3467-3477.
    99 Kinra V K, Iyer V R. Ultrasonic Measurement of the Thickness, Phase Velocity, Density or Attenuation of a Thin-Viscoelastic Plate. Part II: The Inverse Problem[J]. Ultrasonics, 1995, 33(2): 111-122.
    100 Fei D, Hsu D K, Warchol M. Simultaneous Velocity, Thickness and Profile Imaging by Ultrasonic Scan[J]. Journal of Nondestructive Evaluation, 2001, 20(3): 95-112.
    101郑世才.射线检测[M].北京:机械工业出版社, 2009: 1-3.
    102 Collins R M. NDE Chronology of Advanced Composites at Grumman Aerospace[J]. Materials evaluation, 1981, 39(11): 1126-1129.
    103 Nagem R J, Seng J M, Williams J H. Residual Life Predictions of Composite Aircraft Structures Via Nondestructive Testing, Part 1: PredictionMethodology and Nondestructive Testing[J]. Materials Evaluation, 2000, 58(9): 1065-1074.
    104 Nagem R J, Seng J M, Williams J H. Residual Life Predictions of Composite Aircraft Structures Via Nondestructive Testing, Part 2 : Degradation Modeling and Residual Life Prediction[J]. Materials Evaluation, 2000, 58(11): 1310-1318.
    105孙磊,张立同,梅辉,等. 2D C/SiC缺陷的无损检测与评价[J].复合材料学报, 2008, 25(5): 85-90.
    106梅辉,邓晓东,孙磊,等.陶瓷基复合材料无损检测研究进展[J].材料导报, 2009, 9: 82-87.
    107 Baaklini G Y, Bhatt R T, Eckel A J, et al. X-Ray Microtomography of Ceramic and Metal Matrix Composites[J]. Materials Evaluation, 1995, 53(9): 1040-1044.
    108 Bossi R H, Georgeson G E. Composite Structure Development Decisions Using X-Ray Ct Measurements[J]. Materials Evaluation, 1995, 53(10): 1198-1203.
    109袁振明.复合材料损伤与断裂的动态无损评价[J].材料工程, 1991, 2: 51-54.
    110郭艳阳.复合材料细观损伤实验研究及剩余强度预报[D].哈尔滨:哈尔滨工业大学博士学位论文, 1997: 97-101.
    111 Bhat C, Bhat M R, Murthy C R L. Acoustic Emission Characterization of Failure Modes in Composites with ANN[J]. Composite Structures, 2003, 61(3): 213-220.
    112 Huguet S, Godin N, Gaertner R, et al. Use of Acoustic Emission to Identify Damage Modes in Glass Fibre Reinforced Polyester[J]. Composites Science and Technology, 2002, 62(10-11): 1433-1444.
    113 Godin N, Huguet S, Gaertner R, et al. Clustering of Acoustic Emission Signals Collected During Tensile Tests on Unidirectional Glass/Polyester Composite Using Supervised and Unsupervised Classifiers[J]. NDT & E International, 2004, 37(4): 253-264.
    114 Pappas Y Z, Markopoulos Y P, Kostopoulos V. Failure Mechanisms Analysis of 2d Carbon/Carbon Using Acoustic Emission Monitoring[J]. NDT & E International, 1998, 31(3): 157-163.
    115方鹏,成来飞,张立同,等. C/SiC复合材料拉伸过程的声发射研究[J].无损检测, 2006, 28(7): 358-361.
    116方鹏,成来飞,张立同,等. C/SiC复合材料高温蠕变的声发射特性[J].无损检测, 2008, 30(2): 81-83.
    117杨璧玲,张慧萍,晏雄.模式识别在复合材料声发射信号分析中的应用[J].玻璃钢/复合材料, 2007, 2: 51-53.
    118 Awerbuch J, Bakuckas J G. On the Applicability of Acoustic Emission for Monitoring Damage Progression in Metal Matrix Composites[C]. Metal Matrix Composites: Testing, Analysis, and Failure Modes, Philadelphia, 1989: 68-99.
    119 Clough R, Biancaniello F, Wadley H, et al. Fiber and Interface Fracture in Singlecrystal Aluminum/SiC Fiber Composites[J]. Metallurgical and Materials Transactions A, 1990, 21(10): 2747-2757.
    120 Roman I, Aharonov R. Mechanical Interrogation of Interfaces in Monofilament Model Composites of Continuous SiC Fiber-Aluminum Matrix[J]. Acta Metallurgica et Materialia, 1992, 40(3): 477-485.
    121 Canumalla S, Pangborn R N, Tittmann B R, et al. Acoustic Emission for in Situ Monitoring in Metal-Matrix Composite Processing[J]. Composites Science and Technology, 1994, 52(4): 607-614.
    122梅辉,成来飞,邓晓东,等.材料表面下缺陷的红外热波成像检测[C].第十五届全国复合材料学术会议论文集,哈尔滨, 2008: 910-914.
    123邓晓东,成来飞,梅辉,等. C/SiC复合材料的定量红外热波无损检测[J].复合材料学报, 2009, 26(5): 112-119.
    124 Ray B C, Hasan S T, Clegg D W. Evaluation of Defects in FRP Composites by NDT Techniques[J]. Journal of Reinforced Plastics and Composites, 2007, 26(12): 1187-1192.
    125沈真,张子龙,王进,等.复合材料损伤阻抗和损伤容限的性能表征[J].复合材料学报, 2004, 21(5): 140-145.
    126吴成芸.无损检测技术在损伤容限设计试验中的应用[J].无损检测, 2003, 25(2): 88-91.
    127 Judd N C W, Wright W W. Voids and Their Effects on the Mechanical Properties of Composites- an Appraisal[J]. SAMPE Journal, 1978 14(1-2): 10-14.
    128 Tang J M, Lee W I, Springer G S. Effects of Cure Pressure on Resin Flow, Voids, and Mechanical Properties[J]. Journal of Composite Materials, 1987,21(5): 421-440.
    129 De Almeida S F M, Neto Z D S N. Effect of Void Content on the Strength of Composite Laminates[J]. Composite Structures, 1994, 28(2): 139-148.
    130习年生,于志成,陶春虎.纤维增强复合材料的损伤特征及失效分析方法[J].航空材料学报, 2000, 20(2): 57-63.
    131佟丽莉,梁军,杜善义.复合材料层板损伤后刚度衰退的实验研究[J].实验力学, 2005, 20(2): 259-263.
    132郭兆璞,陈浩然.含分层损伤复合材料层合板的压缩强度研究[J].固体力学学报, 2000, 21(2): 117-121.
    133 Kriz R D. Influence of Ply Cracks on Fracture Strength of Graphite/Epoxy Laminates at 76K[C]. Efects of defects in composite materials, Philadelphia, 1984: 250-265.
    134 Kellas S, Morton J, Curtis P T. The Effect of Hygrothermal Environments Upon the Tensile and Compressive Strengths of Notched CFRP Laminates. Part 2: Fatigue Loading[J]. Composites, 1990, 21(1): 52-62.
    135 Buarque E N, D'almeida J R M. The Effect of Cylindrical Defects on the Tensile Strength of Glass Fiber/Vinyl-Ester Matrix Reinforced Composite Pipes[J]. Composite Structures, 2007, 79(2): 270-279.
    136 Gillespie Jr J W, Pipes R B. Compressive Strength of Composite Laminates with Interlaminar Defects[J]. Composite Structures, 1984, 2(1): 49-69.
    137 Reeder J R, Song K, Chunchu P B, et al. Postbuckling and Growth of Delaminations in Composite Plates Subjected to Axial Compression[C]. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference Denver, Colorado, 2002: 1-10.
    138皇甫劭炜,童小燕,姚磊江.编织型复合材料低速冲击损伤及剩余压缩强度研究[J].机械制造与设计, 2009, 3: 120-122.
    139 Ghasemnejad H, Furquan A S M, Mason P J. Charpy Impact Damage Behaviour of Single and Multi-Delaminated Hybrid Composite Beam Structures[J]. Materials & Design, 2010, 31(8): 3653-3660.
    140 Bohm H J, Rammerstorfer F G, Weissenbek E. Some Simple Models for Micromechanical Investigations of Fiber Arrangement Effects in MMCs[J]. Computational Materials Science, 1993, 1(3): 177-194.
    141 Cantwell W J, Morton J, Curtis P T. A Study of the Impact Performance andSubsequent 0-Compression Fatigue Performance of Non-Woven and Mixed-Woven Composites[C]. Structural Impact and Crashworthiness, Oxford, 1984: 521-531.
    142 Van Dreumel W H M, Kamp H M. Non Hookean Behaviour in the Fibre Direction of Carbon-Fibre Composites and the Influence of Fibre Waviness on the Tensile Properties[J]. Journal of Composite Materials, 1977, 11(4): 461-469.
    143 Nakamura T, Suresh S. Effects of Thermal Residual Stresses and Fiber Packing on Deformation of Metal-Matrix Composites[J]. Acta Metallurgica et Materialia, 1993, 41(6): 1665-1681.
    144 Mei H, Xu Y, Cheng L, et al. Nondestructive Evaluation and Mechanical Characterization of a Defect-Embedded Ceramic Matrix Composite Laminate[J]. International Journal of Applied Ceramic Technology, 2007, 4(4): 378-386.
    145王震鸣,杜善义,张恒,等.复合材料及其结构的力学、设计、应用和评价[M].北京:北京大学出版社, 1998: 246-248.
    146 Backlund J. Fracture Analysis of Notched Composites[J]. Computers & Structures, 1981, 13(1-3): 145-154.
    147 Awerbuch J, Madhukar M S. Notched Strength of Composite Laminates: Predictions and Experiments—a Review[J]. Journal of Reinforced Plastics and Composites, 1985, 4(1): 3-159.
    148 Whitney J M, Nuismer R J. Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations[J]. Journal of Composite Materials, 1974, 8(3): 253-265.
    149 Nuismer R J, Whitney J M. Uniaxial Failure of Composite Laminates Containing Stress Concentrations[C]. Fracture Mechanics of Composites, Gaithersburg, Md., 1975: 117-142.
    150 Backlund J, Aronsson C-G. Tensile Fracture of Laminates with Holes[J]. Journal of Composite Materials, 1986, 20(3): 259-286.
    151 Aronsson C G, Backlund J. Tensile Fracture of Laminates with Cracks[J]. Journal of Composite Materials, 1986, 20(3): 287-307.
    152 Eriksson I, Aronsson C G. Strength of Tensile Loaded Graphite/Epoxy Laminates Containing Cracks, Open and Filled Holes[J]. Journal of CompositeMaterials, 1990, 24(5): 456-482.
    153 Waddoups M E, Eisenmann J R, Kaminski B E. Macroscopic Fracture Mechanics of Advanced Composite Materials[J]. Journal of Composite Materials, 1971, 5(4): 446-454.
    154 Kamala Kannan V, Murali V, Rajadurai A, et al. Tension and Compression Strength Evaluation of Composite Plates with Circular Holes[J]. Journal of Reinforced Plastics and Composites, 2010, 29(10): 1500-1514.
    155 Afaghi K A, Ye L, Mat Y-W. An Effective Crack Growth Model for Residual Strength Evaluation of Composite Laminates with Circular Holes[J]. Journal of Composite Materials, 1996, 30(2): 142-163.
    156 Sivashanker S, Osiyemi S. Uniaxial Compressive Failure of Unidirectional Composites with Small Imperfections[J]. Metallurgical and Materials Transactions A, 1999, 30(7): 1867-1876.
    157矫桂琼,杜凯,杨成鹏,等.含离散源损伤复合材料加筋板的压缩特性[J].航空学报, 2007, 28(6): 1383-1388.
    158 Pimenta S, Gutkin R, Pinho S T, et al. A Micromechanical Model for Kink-Band Formation: Part I--Experimental Study and Numerical Modelling[J]. Composites Science and Technology, 2009, 69(7-8): 948-955.
    159 Pimenta S, Gutkin R, Pinho S T, et al. A Micromechanical Model for Kink-Band Formation: Part II--Analytical Modelling[J]. Composites Science and Technology, 2009, 69(7-8): 956-964.
    160 Puhui C, Zhen S, Junyang W. A New Method for Compression after Impact Strength Prediction of Composite Laminates[J]. Journal of Composite Materials, 2002, 36(5): 589-610.
    161李道明,赵占国.金属基复合材料拉伸断裂过程及其分析模型[J].金属科学与工艺, 1990, 9(4): 17-25.
    162 Suresh S, Mortensen A, Needleman A. Fundenmental of Metal Matrix Composites[M]. Stoneham: Butterworth-Heinemann, 1993: 253-254.
    163 Jelf P M, Fleck N A. Compression Failure Mechanisms in Unidirectional Composites[J]. Journal of Composite Materials, 1992, 26(18): 2706-2726.
    164 Fleck N A, Compressive Failure of Fiber Composites[M]. Burlington: Elsevier, 1997: 43-117.
    165 Rosen B W. Mechanics of Composite Strengthening[C]. Fiber CompositeMaterials, Metals Park, Ohio, 1965: 37-75.
    166 Evans A G, Adler W F. Kinking as a Mode of Structural Degradation in Carbon Fiber Composites[J]. Acta Metallurgica, 1978, 26(5): 725-738.
    167 Schulte K, Minoshima K. Mechanisms of Fracture and Failure in Metal Matrix Composites[C]. 12th Riso Int. Symp on Materials Science: Metal Matrix Composites Processing, Microstructure, and Properties, New York, 1991: 123-147.
    168 Moncunill De Ferran E, Harris B. Compression Strength of Polyester Resin Reinforced with Steel Wires[J]. Journal of Composite Materials, 1970, 4(1): 62-72.
    169 Piggott M R, Harris B. Compression Strength of Carbon, Glass and Kevlar-49 Fibre Reinforced Polyester Resins[J]. Journal of Materials Science, 1980, 15(10): 2523-2538.
    170 Piggott M R, Wilde P. Compressive Strength of Aligned Steel Reinforced Epoxy Resin[J]. Journal of Materials Science, 1980, 15(11): 2811-2815.
    171 Bohm H J. Numerical Investigation of Microplasticity Effects in Unidirectional Long-Fiber Reinforced Metal Matrix Composites[J]. Material Science and Engineering, 1993, 1(5): 649-671.
    172 Spowart J E, D ve H E, Compressive Failure of Metal Matrix Composites[M]. Oxford: Pergamon, 2000: 221-245.
    173 Sivashanker S, Fleck N A, Sutcliffe M P F. Microbuckle Propagation in a Unidirectional Carbon Fibre-Epoxy Matrix Composite[J]. Acta Materialia, 1996, 44(7): 2581-2590.
    174赵昌正.碳纤维和石墨纤维增强铝基复合材料界面反应与性能的关系[J].航空学报, 1985, 6(3): 267-271.
    175王鸿华,李贤淦,张国定,等.基体和纤维的种类对复合材料热膨胀系数的影响[J].机械工程材料, 1990, 1: 14-18.
    176王玉庆.金属基复合材料的仿生梯度界面及其效果[D].沈阳:中科院金属所博士学位论文, 1993: 10-13.
    177 Lee W S, Sue W C, Chou S T. Effect of Reinforcement Orientation on the Impact Fracture of Carbon Fiber Reinforced 7075-T6 Aluminum Matrix Composite[J]. Materials Transactions, 2000, 41(8): 1055-1063.
    178王旭.合金元素对cf/Al复合材料微观组织及性能的影响[D].哈尔滨:哈尔滨工业大学博士学位论文, 2010: 72-73.
    179武恭,姚良均,李震夏,等.铝及铝合金材料手册[M].北京:科学出版社, 1994: 223-224.
    180张云鹤. Cf/Al复合材料界面特性及层间金属针穿刺强化机理研究[D].哈尔滨:哈尔滨工业大学博士学位论文, 2009: 27-28.
    181 Krautkr (a|¨)mer J, Krautkr?mer H. Ultrasonic Testing of Materials[M]. Berlin, Springer-Verlag, 1977: 26-30.
    182王浩全,韩焱,曾光宇.非金属复合材料超声波衰减系数测定研究[J].测试技术学报, 2002, 16(4): 249-251.
    183 ASTM. Standard Test Method for Determining the Compressive Properties of Polymer Matrix Composite Laminates Using a Combined Loading Compression (Clc) Test Fixture[S]. 2001, D 6641/D 6641M: 1-9.
    184 Spowart J E, Clyne T W. The Axial Compressive Failure of Titanium Reinforced with Silicon Carbide Monofilaments[J]. Acta Materialia, 1999, 7(2): 671-687.
    185吴德新,杨小林.超声检测中的波形识别与缺陷定性[J].无损检测, 2002, 24(7): 312-316.
    186 Wu G, Li Y, Su J. X-Ray Testing Sensitivity of Carbon Fiber Reinforced Aluminium Matrix Composite[C]. 17th World Conference on Nondestructive Testing, Shanghai, China, 2008: 243-245.
    187朱颐龄.复合材料力学[M].上海:上海科技出版社, 1981: 8-10.
    188 Lhermitte T D, Handley S M, Holland M R, et al. Anisotropy of the Frequency-Dependent Ultrasonic Attenuation in Unidirectional Graphite/Epoxy Composite Material[C]. Ultrasonics Symposium, IEEE, Orlando, 1991: 819-823.
    189 Wang Y, Wang Y J, Xianhua O, et al. Effect of the Cylindrical Interface Properties on Ultrasonic Transverse Wave Scattering[J]. Chinese Physics Letters, 1994, 11(4): 211-214.
    190段剑,王从科,于波,等.纤维增强复合材料声学性能检测方法研究[J].测试技术学报, 2004, 1: 39-42.
    191朱为勇,王耀俊,宁伟.纤维复合媒质中的超声衰减[J].物理学报, 1996, 45(1): 58-64.
    192 Chang J, Zheng C, Ni Q-Q. The Ultrasonic Wave Propagation in CompositeMaterial and Its Characteristic Evaluation[J]. Composite Structures, 2006, 75(1-4): 451-456.
    193 Jeong H, Hsu D K. Experimental Analysis of Porosity-Induced Ultrasonic-Attenuation and Velocity Change in Carbon Composites[J]. Ultrasonics, 1995, 33(3): 195-203.
    194 Mann S, Haykin S. The Chirplet Transform - Physical Considerations[J]. Ieee Transactions on Signal Processing, 1995, 43(11): 2745-2761.
    195 ASTM. Standard Practice for Measuring Ultrasonic Velocity in Materials[S]. 1995, E484-95: 1-13.
    196 Zhang G M, Zhang S Y, Wang Y W. Application of Adaptive Time-Frequency Decomposition in Ultrasonic NDE of Highly-Scattering Materials[J]. Ultrasonics, 2000, 38(10): 961-964.
    197李丽. Cu-Zr-Al系Cu基块状非晶合金弹性性能超声无损评价[D].大连:大连理工大学硕士学位论文, 2008: 21-24.
    198李靖,马羽宽,蔡清福,等.超声检测技术[M].广州:广东科技出版社, 1984: 223-224.
    199刘怀喜,张恒,马润香.复合材料无损检测方法[J].无损检测, 2003, 25(12): 631-634.
    200 Clyne T W, Withers P J. An Introduction to Metal Matrix Composites[M]. Cambridge: Cambridge University Press, 1993: 12-14.
    201 Chen A S, Bushby R S, Scott V D. Deformation and Damage Mechanisms in Fibre-Reinforced Aluminium Alloy Composites under Tension[J]. Composites Part A, 1997, 28(3): 289-297.
    202乔生儒.复合材料细观力学性能[M].西安:西北工业大学出版社, 1997: 22-23.
    203李建辉.金属基复合材料成形加工研究进展[J].材料科学与工艺, 2002, 10(2): 207-212.
    204 Richerson D W. Modern Ceramic Engineering[M]. New York: Marcel Dekker, 1982: 78-78.
    205西田正孝.应力集中[M].北京:机械工业出版社, 1986: 204-208.
    206 Tan S C. Finite-Width Correction Factors for Anisotropic Plate Containing a Central Opening[J]. Journal of Composite Materials, 1988, 22(11): 1080-1097.
    207 Yeh H Y, Murphy K S, Yeh H L. An Examination of Failure Criteria forNotched Orthotropic Ceramic Matrix Composite Laminates[J]. Journal of Reinforced Plastics and Composites, 2008, 27(8): 835-850.
    208 Aronsson C G, B?cklund J. Damage Mechanics Analysis of Matrix Effects in Notched Laminates[C]. Composite Materials: Fatigue and Fracture Dallas, Texas, 1986: 135-157.
    209 Timoskenko S P, Goodier J N. Theory of Elasticity[M]. New York: McGraw-Hill, 1951: 78-78.
    210 Afaghi K A, Ye L, Mai Y W. Evaluations of Effective Crack Growth and Residual Strength of Fibre-Reinforced Metal Laminates with a Sharp Notch[J]. Composites Science and Technology, 1996, 56(9): 1079-1088.
    211 Ye L, Afaghi K A, Lawcock G, et al. Effect of Fibre/Matrix Adhesion on Residual Strength of Notched Composite Laminates[J]. Composites Part A, 1998, 29(12): 1525-1533.
    212 Taya M, Daimaru A. Macroscopic Fracture Surface Energy of Unidirectional Metal Matrix Composites: Experiment and Theory[J]. Journal of Materials Science, 1983, 18(10): 3105-3116.
    213 Ba(?)ant Z P, Kazemi M T. Size Dependence of Concrete Fracture Energy Determined by Rilem Work-of-Fracture Method[J]. International Journal of Fracture, 1991, 51(2): 121-138.
    214 Wisnom M R. The Effect of Fibre Misalignment on the Compressive Strength of Unidirectional Carbon Fibre/Epoxy[J]. Composites, 1990, 21(5): 403-407.
    215 Ma A B, Fang F, Jiang J H, et al. In Situ Observation of Multiple Fractures of Alumina-Silica Short Fibers in an Aluminum Matrix Composite[J]. Journal of Materials Science Letters, 2003, 22(3): 175-177.
    216 Tanaka Y, Deng Z Y, Liu Y F, et al. In Situ Observation on Fatigue Crack Growth in SCS-6/Ti-15-3 Composite at Elevated Temperatures[J]. Acta Materialia, 2003, 51(20): 6329-6340.
    217 Li B S, Shang J L, Guo J, et al. In Situ Observation of Fracture Behavior of in Situ TiBw/Ti Composites[J]. Materials Science and Engineering A, 2004, 383(2): 316-322.
    218 Hojo M, Matsushita Y, Tanaka M, et al. In Situ Observation of Interfacial Crack Propagation in Gf/Epoxy Model Composite Using Bifiber Specimens in Mode I and Mode Ii Loading[J]. Composites Science and Technology, 2008, 68(13):2678-2689.
    219廖晓玲.三维编织C/C复合材料的疲劳行为以及损伤演变研究[D].西安: 西北工业大学博士学位论文, 2006: 80-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700