羟基萘和3-羟基菲作为多环芳烃暴露标志物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
致突变和致癌性的多环芳烃(Polycyclic aromatic hydrocarbons, PAHs)的职业暴露是职业肺癌的主要原因,例如焦炉逸散物(Coke oven emission, COE)中含有的致突变和致癌性的多环芳烃(Polycyclic aromatic hydrocarbons, PAHs)是导致焦炉工肺癌的主要原因。焦化生产已被国际癌症研究署(International Agency for Research on Cancer, IARC)归为“1类致癌物”,即“明确的人类致癌物”。反应暴露水平的生物标志物在PAHs接触工人危险度评价的危害性鉴定、剂量-反应评定、接触评定等环节起重要作用。因此,以PAHs代谢为基础,研究其外暴露标志物,寻找PAHs新的暴露标志物,对于精确的定量评价PAHs暴露水平,评价接触标志物与生物效应之间的关系,以及进行PAHs暴露危险度评价具有重要意义。
     本论文建立了尿中羟基萘和3-羟基菲的液相色谱质谱检测方法,采用横断面分子流行病学设计探讨了147名PAHs暴露工人和58名非PAHs暴露工人尿中羟基萘和3-羟基菲与外暴露等级之间的关系,分析了与常用暴露标志物1-羟基芘之间的相关性;探讨了暴露标志物羟基萘和3-羟基菲与遗传损伤效应标志物(彗星Olive尾矩和基因组不稳定指标)和易感性生物标志物(外源性化学物代谢酶基因多态性)之间的关系。结果如下:
     一、羟基萘和3-羟基菲检测方法与暴露标志物研究
     建立了以氘代1-羟基萘为内标,用液相色谱质谱法同时测定尿中2-羟基萘、1-羟基萘和3-羟基菲的方法。本方法的检出限分别是0 .2μg/L、0.2μg/L和0.1μg/L;各指标的回收率在97.4%-103.0%范围内,批内精密度和批间精密度分别在1.4%-3.9%和1.8%-5.8%的范围内,该方法具有较高的准确度和精密度。
     用该方法检测147名PAHs暴露人群和58名非PAHs暴露人群尿中羟基萘和3-羟基菲,分析用肌酐水平校正后的尿中羟基萘和3-羟基菲等代谢产物浓度与作业环境中萘和菲的暴露等级关系。结果显示PAHs暴露人群尿中羟基萘和3-羟基菲浓度显著高于对照人群,并且与外暴露等级间存在一定的剂量反应关系,其浓度存在非焦炉工<炉底工<炉侧工<炉顶工的变化趋势。羟基萘和3-羟基菲与常用暴露标志物1-羟基芘之间具有很好的相关性,相关系数分别是0.593,P<0.01和0.772,P<0.01。对影响因素的分析发现吸烟不影响尿中3-羟基菲的浓度。
     本研究表明尿中羟基萘和3-羟基菲可较好的反映多环芳烃暴露的内剂量水平,可以作为常用暴露标志物1-羟基芘的有效补充。
     二、羟基萘和3-羟基菲与遗传损伤效应标志物的关联研究
     分析了羟基萘和3-羟基菲与反映染色体损伤的双核细胞中微核、核芽和核质桥总数以及反映DNA损伤的Olive尾距等遗传损伤效应标志物之间的相关性。
     将尿3-羟基菲浓度按照四分位法分为四个内暴露等级,基因组不稳定指标双核细胞中微核、核芽和核质桥总数有随内剂量水平增加而升高的趋势;Olive尾距也有随3-羟基菲水平增加而升高的趋势,但趋势不明显。在所有研究对象中,尿中3-羟基菲与基因组不稳定指标具有良好相关性(r=0.644,P<0.01),与Olive尾距有一定的相关性(r=0.253,P<0.01);但进一步分层分析仅在PAHs接触人群中发现3-羟基菲与基因组不稳定指标具有明显的相关性(r=0.295,P<0.01)。
     将尿羟基萘浓度按照四分位法分为四个内暴露等级,基因组不稳定指标双核细胞中微核、核芽和核质桥总数有随内剂量水平增加而升高的趋势;未发现Olive尾距随羟基萘水平增加而升高的趋势。在全体研究对象中,尿中羟基萘与基因组不稳定指标具有良好相关性(r=0.450,P<0.01),与Olive尾距具有一定的相关性(r=0.207,P=0.005)。
     三、羟基萘和3-羟基菲与外源性化学物代谢酶基因多态性的关系
     外源性化学物代谢酶中存在大量的单核苷酸多态性(SNPs),部分外源性化学物代谢酶的基因多态性可影响个体对PAHs的代谢能力。本研究分析了参与萘和菲代谢过程的CYP1A1、CYP2E1、mEH和GST、NQO1等Ⅰ相和Ⅱ相代谢酶常见基因多态性位点与PAHs暴露人群尿中3-羟基菲和羟基萘水平的关系。
     在PAHs暴露人群中具有细胞色素P450 1A1 (CYP1A1)基因Val462突变型的尿中3-羟基菲浓度显著高于野生型个体(P=0.035);未发现Ⅱ相代谢酶与尿中3-羟基菲浓度的相关性。环氧化物水化酶(mEH)外显子3基因His113突变型的尿中羟基萘浓度显著高于野生型个体(P=0.015),而在非PAHs暴露人群中mEH外显子3基因His113突变型的尿中羟基萘浓度低于杂合子型个体(P=0.049),可能mEH外显子3基因His113多态性在影响萘的代谢方面存在环境-基因交互作用;未发现Ⅱ相代谢酶与尿中3-羟基菲浓度的相关性。
     总之,本研究建立了液相色谱质谱法同时测定尿中2-羟基萘、1-羟基萘和3-羟基菲的方法,发展了新的生物标志物并进行了现场验证。分析了尿中羟基萘和3-羟基菲与外暴露环境中萘和菲的暴露等级关系,并探讨了影响其浓度的因素,表明羟基萘和3-羟基菲能够很好的反映萘和菲的暴露剂量,可作为新的多环芳烃暴露标志物应用。本研究还分析了新发现的暴露标志物与遗传损伤效应标志物的关系,进一步验证了其作为内暴露标志物的有效性。
There has been sufficient epidemiological evidence suggesting an etiological link between carcinogenic polycyclic aromatic hydrocarbons (PAHs) exposure and lung cancer risk in exposed workers.Chemicals produced in the coal-coking process has been classified as class 1 carcinogens by International Agency for Research on Cancer (IARC). Exposure biomarkers play an important roles in risk assessment process, such as dose-responds assessment and exposure assessment. Therefore, study on new biomarker of PAHs exposure will be beneficial for understanding of PAH carcinogenesis and improvement of risk assessment.
     In this cross-sectional molecular epidemiologically designed study, We establish an HPLC-MS/MS analysis method for simultaneous determination of urinary monohydroxy metabolites of PAHs. Base on this method, urinary monohydroxy metabolites were quantified among 147 PAHs exposed workers and 58 unexposed controls. We investigated the relationship between naphthol and 3-phenanthrol with exposure level, correlation with 1-hydroxypyrene. The relationship between naphthol and 3-phenanthrol with biomarkers of effect (Olive tail moment and genomic instability parameter) and biomarkers of susceptibility (genetic polymorphisms of metabolic enzymes) were investigated. The main results are as follows:
     Part 1. Naphthol and 3-phenanthrol determination method and study of exposure biomarker
     Use naphthol-d8 as the internal standard, establish an HPLC-MS/MS method for the simultaneous determination of urinary monohydroxy metabolites of PAHs, namely 1-naphthol,2-naphthol and 3-phenanthrol, the limits of quantification(LOQ) was 0.2μg/L for 1-naphthol,2-naphthol and 1-pyrenol, LOQ for 3-phenanthrol was O.1μg/L. Internal standard calibration help the method has good reproducibility and precision, recovery of target compounds range from 97.4%to 103.0%, intra-and inter-batch precision was 1.4%-3.9% and 1.8%-5.8% respectively.
     Urinary monohydroxy metabolites quantified among 147 PAHs-exposed workers and 58 unexposed controls was corrected by urinary creatinine.The geometric mean of urinary naphthol and 3-phenanthrol was significant higher in PAHs-exposed workers than in unexposed workers. It was found that Urinary monohydroxy metabolites were well correlated with extra PAHs exposure level. Naphthol (Pearson's r=0.593, P<0.01) and 3-phenanthrol (Pearson's r=0.772, P<0.01) have an significant correlation with 1-hydroxypyrene. Cigarettes smoking was not a confounding factor to affect the concentration of 3-phenanthrol in urine.
     The results showed that urinary naphthol and 3-phenanthrol were valid exposure biomarker of PAHs, can serve as an useful complement of the common exposure biomarker 1-hydroxypyrene.
     Part 2. Association between naphthol 3-phenanthrol and effective biomarkers of genetic damage induced by PAHs
     Urinary 3-phenanthrol were divided into four group according to quartile. Chromosomal damage or instability status (present as the total number of micronuleus, nucleoplasmic bridge and nuclear bud in one thousand binucleated cells) was significiantly increased with the increased concentration of 3-phenanthrol. Olive tail moment was also increased with the increased concentration of 3-phenanthrol but not significiant as instability status. Significiant correlation was found in total population between 3-phenanthrol with instability status(r=0.644, P<0.01) and in PAHs-exposed worker(r=0.295, P<0.01). Correlation between 3-phenanthrol and Olive tail moment was found in total studied population (r=0.295, P<0.01).
     Urinary naphthol were divided into four group according to quartile. Chromosomal damage or instability status was significiantly increased with the increased concentration of naphthol, while Olive tail moment was not found this trend. Significiant correlation was found in total population between naphthol with instability status(r=0.450, P<0.01), ther is a certain correlation between naphthol with Olive tail moment in total population (r=0.207, P=0.005).
     Part 3. Association between genetic polymorphisms of metabolic enzymes and levels of naphthol and 3-phenanthrol
     The gene encoding metabolic enzymes are highly polymorphic and can affect the metabolism of PAHs.We analysis the association between naphthol and 3-phenanthrol with common genetic polymorphisms of metabolic enzymes phaseⅠandⅡincluding cytochrome P450 1A1, cytochrome P450 2E1, microsomal epoxide hydrolase, glutathione S-transferase and NADP quinone oxidoreductasel.The enzymes are involving in the metabolic process of nathlene and phenanthrene.
     Among PAHs-exposed workers, there was a significant association between Val462 allele of CYP1A1 gene and increased urinary 3-phenanthrol level (P=0.035). We have not found significant association between 3-phenanthrol with polymorphism of phaseⅡenzymes.
     Among PAHs-exposed workers, the significant association was found between His113 allele on exon 3 of mEH gene and the level of naphthol was higher which has His/His genetype than which has Tyr/His genetype (P=0.015). However, among non PAHs-exposed workers, there was an association between His113 allele on exon 3 of mEH gene (P=0.049) and the naphthol level was lower which has His/His genetype than which has Tyr/His genetype. The different effects of genetic polymorphisms on naphthol level between PAHs-exposed workers and non-PAHs-exposed workers suggested the existence of genetic polymorphisms and gene-environment interactions. We have not found significant association between level of naphthol with polymorphism of phaseⅡenzymes.
     In summary, the HPLC-MS/MS method for simultaneous detecting urinary was established, The new new biomarker was developed and validated.We investigated the relationship between naphthol and 3-phenanthrol with environmental exposure level, and explored the factors of affecting their concentration.The results indicated that naphthol and 3-phenanthrol can reflecte the environmental exposure of PAHs well, can be used as new exposure biomarker. The study also explored the relationship between new exposure biomarker with effect biomarkers and genetic polymorphisms of metabolic enzymes, which further validated the effectiveness of naphthol and 3-phenanthrol as a new exposure biomarker.
引文
1. IARC. Monographs on the evaluation of the carcinogenic risk of chemicals to humans. Polycyclic aromatic hydrocarbons, part 1, chemical, environmental and experimental data. France:International Agency for Research on Cancer, 1983.
    2. IARC. Monographs on the evaluation of the carcinogenic risk of chemicals to humans. Polycyclic aromatic hydrocarbons, part 3, industrial exposure in aluminium production, coal gasification, coke production, and iron and steel founding. France:International Agency for Research on Cancer,1984.
    3. IARC. International Agency for Research on Cancer. Monographs on the evaluation of the carcinogenic risk of chemicals to humans. Supplement 7,France,1987.
    4. VanRooij J.G., M.M. Bodelier-Bade, and F.J. Jongeneelen. Estimation of individual dermal and respiratory uptake of polycyclic aromatic hydrocarbons in 12 coke oven workers. British Journal of Industrial Medicine,1993. 50(7):623-632.
    5. van Schooten F.J., F.J. Jongeneelen, M.J. Hillebrand, et al. Polycyclic aromatic hydrocarbon-DNA adducts in white blood cell DNA and 1-hydroxypyrene in the urine from aluminum workers:relation with job category and synergistic effect of smoking. Cancer Epidemiol Biomarkers Prev,1995.4(1):69-77.
    6. Serdar B., S. Waidyanatha, Y. Zheng, et al. Simultaneous determination of urinary 1-and 2-naphthols,3-and 9-phenanthrols, and 1-pyrenol in coke oven workers. Biomarkers,2003.8(2):93-109.
    7. Jongeneelen F.J., R.P. Bos, R.B. Anzion, et al. Biological monitoring of polycyclic aromatic hydrocarbons. Metabolites in urine. Scand J Work Environ Health,1986.12(2):137-43.
    8. 郑玉新,庄志雄.基因组时代生物标志物研究的机遇与挑战.中华预防医 学杂志,2005.39(3):155-156.
    9. Schulte P.A. Use of biological markers in occupational health research and practice. J Toxicol Environ Health,1993.40(2-3):359-66.
    10. 程元恺.致癌性多环芳烃.人民卫生出版社,1998:163-175.
    11. Daly A.K., S. Cholerton, W. Gregory, et al. Metabolic polymorphisms. Pharmacol Ther,1993.57(2-3):129-60.
    12. Rossella F., L. Campo, S. Pavanello, et al. Urinary polycyclic aromatic hydrocarbons and monohydroxy metabolites as biomarkers of exposure in coke oven workers. Occup Environ Med,2009.66(8):509-16.
    13. Mattarozzi M., M. Musci, M. Careri, et al. A novel headspace solid-phase microextraction method using in situ derivatization and a diethoxydiphenylsilane fibre for the gas chromatography-mass spectrometry determination of urinary hydroxy polycyclic aromatic hydrocarbons. J Chromatogr A,2009.1216(30):5634-9.
    14. Onyemauwa F., S.M. Rappaport, J.R. Sobus, et al. Using liquid chromatography-tandem mass spectrometry to quantify monohydroxylated metabolites of polycyclic aromatic hydrocarbons in urine. J Chromatogr B Analyt Technol Biomed Life Sci,2009.877(11-12):1117-25.
    15. Li Z., C.D. Sandau, L.C. Romanoff, et al. Concentration and profile of 22 urinary polycyclic aromatic hydrocarbon metabolites in the US population. Environ Res,2008.107(3):320-31.
    16. 岳强,王德超,于志强,等.人尿液中10种羟基多环芳烃同时检测.中国公共卫生,2009.25(4):443-444.
    17. Amorim L.C., J.M. Dimandja, and Z.D. Cardeal. Analysis of hydroxylated polycyclic aromatic hydrocarbons in urine using comprehensive two-dimensional gas chromatography with a flame ionization detector. J Chromatogr A,2008.
    18. Pan C.H., C.C. Chan, Y.L. Huang, et al. Urinary 1-hydroxypyrene and malondialdehyde in male workers in Chinese restaurants. Occup Environ Med, 2008.65(11):732-5.
    19. Jongeneelen F.J., R.B. Anzion, C.M. Leijdekkers, et al.1-hydroxypyrene in human urine after exposure to coal tar and a coal tar derived product. Int Arch Occup Environ Health,1985.57(1):47-55.
    20. Jongeneelen F.J. Benchmark guideline for urinary 1-hydroxypyrene as biomarker of occupational exposure to polycyclic aromatic hydrocarbons. Ann Occup Hyg,2001.45(1):3-13.
    21. 冷曙光,郑玉新,李晓华,等.焦炉工外暴露等级与尿中1-羟基芘水平的关系.工业卫生与职业病,2003.29(5):288-291.
    22. Jia Q.G. Detection of urinary 1-hydroxypyrene in coke oven workers and its clinical significance. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2008.26(7):424-5.
    23. Hansen A.M., L. Mathiesen, M. Pedersen, et al. Urinary 1-hydroxypyrene (1-HP) in environmental and occupational studies--a review. Int J Hyg Environ Health,2008.211(5-6):471-503.
    24. 李晓华,冷曙光,郭君,等.改良的高效液相色谱法测定尿中1-羟基芘.卫生研究,2003.32(6):616-617.
    25. Lu P.L., M.L. Chen, and I.F. Mao. Urinary 1-hydroxypyrene levels in workers exposed to coke oven emissions at various locations in a coke oven plant. Arch Environ Health,2002.57(3):255-61.
    26. Lee K.H., R. Vermeulen, V. Lenters, et al. Determinants of urinary 1-hydroxypyrene glucuronide in South Korean children. Int Arch Occup Environ Health,2008.
    27. Marie C., J.L. Ravanat, C. Badouard, et al. Urinary levels of oxidative DNA and RNA damage among workers exposed to polycyclic aromatic hydrocarbons in silicon production:comparison with 1-hydroxypyrene. Environ Mol Mutagen,2009.50(2):88-95.
    28. 线引林,陈宝生,王敢峰,等.气相色谱-质谱分析焦化厂空气中气相多环芳烃.中华劳动卫生职业病杂志,1988.6(2):97-99.
    29. IARC. IARC monographs on evaluation of carcinogenic risk to humans. Air Pollution. Part Ⅰ. Some Nonheterocyclic Aromatic Hydrocarbons andSomeRelated Industrial Exposures.2008. World Health Organization, Lyon, France.92.
    30. Raulf-Heimsoth M., J. Angerer, B. Pesch, et al. Biological monitoring as a useful tool for the detection of a coal-tar contamination in bitumen-exposed workers. J Toxicol Environ Health A,2008.71(11-12):746-50.
    31. 冷曙光,郑玉新,宋文佳,等.尿中萘及其代谢产物作为焦炉工生物监测指标的研究.工业卫生与职业病,2003.29(5):284-287.
    32. Serdar B., P.P. Egeghy, S. Waidyanatha, et al. Urinary biomarkers of exposure to jet fuel (JP-8). Environ Health Perspect,2003.111(14):1760-4.
    33. Preuss R., H.M. Koch, M. Wilhelm, et al. Pilot study on the naphthalene exposure of German adults and children by means of urinary 1-and 2-naphthol levels. Int J Hyg Environ Health,2004.207(5):441-5.
    34. Preuss R., H. Drexler, M. Bottcher, et al. Current external and internal exposure to naphthalene of workers occupational ly exposed to polycyclic aromatic hydrocarbons in different industries. Int Arch Occup Environ Health, 2005.78(5):355-62.
    35. Carmella S.G., M. Chen, H. Yagi, et al. Analysis of phenanthrols in human urine by gas chromatography-mass spectrometry:potential use in carcinogen metabolite phenotyping. Cancer Epidemiol Biomarkers Prev,2004. 13(12):2167-74.
    36. Jacob J., G. Grimmer, and G. Dettbarn. Profile of urinary phenanthrene metabolites in smokers and non-smokers. Biomarkers,1999.4(5):319-327.
    37. Wilhelm M., J. Hardt, C. Schulz, et al. New reference value and the background exposure for the PAH metabolites 1-hydroxypyrene and 1-and 2-naphthol in urine of the general population in Germany:basis for validation of human biomonitoring data in environmental medicine. Int J Hyg Environ Health,2008.211(3-4):447-53.
    38. Boogaard P.J. Urinary biomarkers in the risk assessment of PAHs. Occup Environ Med,2008.65(4):221-2.
    39. Toriba A., H. Nakamura, T. Chetiyanukornkul, et al. Method for determining monohydroxybenzo[a]pyrene isomers using column-switching high-performance liquid chromatography. Anal Biochem,2003.312(1):14-22.
    40. 段小丽,杨洪彪,张林,等.尿液中多环芳烃羟基代谢产物分析方法研究.环境科学研究,2004.17(3):62-65.
    41. Ariese F., M. Verkaik, G.P. Hoornweg, et al. Trace analysis of 3-hydroxy benzo[a]pyrene in urine for the biomonitoring of human exposure to polycyclic aromatic hydrocarbons. J Anal Toxicol,1994.18(4):195-204.
    42. 董德甫,王忠旭.职业流行病学研究方法与研究报告.北京:冶金工业出版社,1999.
    43. Waidyanatha S., Y. Zheng, B. Serdar, et al. Albumin adducts of naphthalene metabolites as biomarkers of exposure to polycyclic aromatic hydrocarbons. Cancer Epidemiol Biomarkers Prev,2004.13(1):117-24.
    44. Zhang J., M. Ichiba, T. Hanaoka, et al. Leukocyte 8-hydroxydeoxyguanosine and aromatic DNA adduct in coke-oven workers with polycyclic aromatic hydrocarbon exposure. Int Arch Occup Environ Health,2003.76(7):499-504.
    45. Bjorseth A., O. Bjorseth, and P.E. Fjeldstad. Polycyclic aromatic hydrocarbons in the work atmosphere:Determination of area-specific concentrations and job-specific exposure in a vertical pin Soderberg aluminum plant. Scand J Work Environ Health,1981.7(3):223-32.
    46. Bjoorseth A., O. Bjorseth, and P.E. Fjeldstad. Polycyclic aromatic hydrocarbons in the work atmosphere. Ⅱ. Determination in a coke plant. Scand J Work Environ Health,1978.4(3):224-36.
    47. Heikkila P., M. Luotamo, L. Pyy, et al. Urinary 1-naphthol and 1-pyrenol as indicators of exposure to coal tar products. Int Arch Occup Environ Health, 1995.67(3):211-7.
    48. Vaananen V., E. Elovaara, E. Nykyri, et al. Road pavers'occupational exposure to asphalt containing waste plastic and tall oil pitch. J Environ Monit, 2006.8(1):89-99.
    49. Bieniek G. Urinary naphthols as an indicator of exposure to naphthalene. Scand J Work Environ Health,1997.23(6):414-20.
    50. Windholz M. The MERCK INDEX. MERCK & CO.,1983.
    51. 王宇,董玉莲,范瑞芳,等.尿中多环芳烃代谢产物同时检测的高校液相色谱-荧光检测法.环境与健康杂志,2006.23(1):76-78.
    52. 徐伯洪,闫惠芳.工作场所有害物质监测方法.北京,中国人民公安大学出版社,2003:385-6.
    53. Lintelmann J., C. Hellemann, and A. Kettrup. Coupled-column high-performance liquid chromatographic method for the determination of four metabolites of polycyclic aromatic hydrocarbons,1-,4-and 9-hydroxyphenanthrene and 1-hydroxypyrene, in urine. Journal of Chromatography B:Biomedical Sciences and Applications 1994. 660(1):67-73.
    54. Campo L., F. Rossella, and S. Fustinoni. Development of a gas chromatography/mass spectrometry method to quantify several urinary monohydroxy metabolites of polycyclic aromatic hydrocarbons in occupationally exposed subjects. J Chromatogr B Analyt Technol Biomed Life Sci,2008.875(2):531-40.
    55. Smith C.J., W. Huang, C.J. Walcott, et al. Quantification of monohydroxy-PAH metabolites in urine by solid-phase extraction with isotope dilution-GC-MS. Anal Bioanal Chem,2002.372(1):216-20.
    56. Xu X., J. Zhang, L. Zhang, et al. Selective detection of monohydroxy metabolites of polycyclic aromatic hydrocarbons in urine using liquid chromatography/triple quadrupole tandem mass spectrometry. Rapid Commun Mass Spectrom,2004.18(19):2299-308.
    57. 朱鹏飞,韩燕,夏彦恺,等.人尿中多环芳烃代谢物的液相色谱-质谱测定法.中华劳动卫生职业病杂志,2009.27(8):504-507.
    58. White R.E. High-throughput screening in drug metabolism and pharmacokinetic support of drug discovery. Annu Rev Pharmacol Toxicol, 2000.40:133-57.
    59. Mei H., Y. Hsieh, C. Nardo, et al. Investigation of matrix effects in bioanalytical high-performance liquid chromatography/tandem mass spectrometric assays:application to drug discovery. Rapid Commun Mass Spectrom,2003.17(1):97-103.
    60. 向平,沈敏,卓先义.液相色谱-质谱分析中的基质效应.分析测试学报,2009.28(6):753-6.
    61. NIOSH. POLYNUCLEAR AROMATIC HYDROCARBONS by HPLC: METHOD 5506. NIOSH Manual of Analytical Methods (NMAM),1998. Fourth Edition.
    62. NIOSH. POLYCYCLIC AROMATIC COMPOUNDS, TOTAL:METHOD 5800. NIOSH Manual of Analytical Methods (NMAM),1998. Fourth Edition.
    63. 中华人民共和国卫生部.工作场所有害因素职业接触限值第1部分:化学有害因素.中环人民共和国国家职业卫生标准,2007.GBZ2.1-2007.
    64. Yang X., J. Zheng, Y. Bai, et al. Using lymphocyte and plasma Hsp70 as biomarkers for assessing coke oven exposure among steel workers. Environ Health Perspect,2007.115(11):1573-7.
    65. Unwin J., J. Cocker, E. Scobbie, et al. An assessment of occupational exposure to polycyclic aromatic hydrocarbons in the UK. Ann Occup Hyg, 2006.50(4):395-403.
    66. Lee C.Y., J.Y. Lee, J.W. Kang, et al. Effects of genetic polymorphisms of CYP1A1, CYP2E1, GSTM1, and GSTT1 on the urinary levels of 1-hydroxypyrene and 2-naphthol in aircraft maintenance workers. Toxicol Lett, 2001.123(2-3):115-24.
    67. 冷曙光,郑玉新,张文众,等.焦炉工外周血淋巴细胞遗传物质损伤水平的研究.中华劳动卫生职业病杂志,2004.22(01):29-32.
    68. 段化伟,冷曙光,潘祖飞,等.多环芳烃暴露与外周血淋巴细胞核质桥和核芽的关系研究.中华预防医学杂志,2008.42(6):391-394.
    69. Fenech M. Cytokinesis-block micronucleus cytome assay. Nat Protoc,2007. 2(5):1084-104.
    70. Fenech M. The in vitro micronucleus technique. Mutat Res,2000. 455(1-2):81-95.
    71. Fenech M., W.P. Chang, M. Kirsch-Volders, et al. HUMN project:detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res,2003.534(1-2):65-75.
    72. Umegaki K. and M. Fenech. Cytokinesis-block micronucleus assay in WIL2-NS cells:a sensitive system to detect chromosomal damage induced by reactive oxygen species and activated human neutrophils. Mutagenesis,2000. 15(3):261-9.
    73. Duan H., S. Leng, Z. Pan, et al. Biomarkers measured by cytokinesis-block micronucleus cytome assay for evaluating genetic damages induced by polycyclic aromatic hydrocarbons. Mutat Res,2009.677(1-2):93-9.
    74. 段化伟,冷曙光,潘祖飞,等.多环芳烃暴露与外周血淋巴细胞核质桥和核芽的关系研究.中华预防医学杂志,2008.42(6):391-394.
    75. 郑玉新,何凤生.遗传易感性研究在职业医学中的应用前景.工业卫生与职业病,1999.25:188-192.
    76. Elovaara E., J. Mikkola, H. Stockmann-Juvala, et al. Polycyclic aromatic hydrocarbon (PAH) metabolizing enzyme activities in human lung, and their inducibility by exposure to naphthalene, phenanthrene, pyrene, chrysene, and benzo(a)pyrene as shown in the rat lung and liver. Arch Toxicol,2007. 81(3):169-82.
    77. Miller E.C. and J.A. Miller. Mechanisms of chemical carcinogenesis. Cancer, 1981.47(5 Suppl):1055-64.
    78. Stiborova M., V. Martinek, H. Rydlova, et al. Expression of cytochrome P450 1A1 and its contribution to oxidation of a potential human carcinogen 1-phenylazo-2-naphthol (Sudan I) in human livers. Cancer Lett,2005. 220(2):145-54.
    79. Joseph P. and A.K. Jaiswal. NAD(P)H:quinone oxidoreductase 1 reduces the mutagenicity of DNA caused by NADPH:P450 reductase-activated metabolites of benzo(a)pyrene quinones. Br J Cancer,1998.77(5):709-19.
    80. Zhang J., M. Ichiba, K. Hara, et al. Urinary 1-hydroxypyrene in coke oven workers relative to exposure, alcohol consumption, and metabolic enzymes. Occup Environ Med,2001.58(11):716-21.
    81. Brescia G., L. Celotti, E. Clonfero, et al. The influence of cytochrome P450 1A1 and glutathione S-transferase M1 genotypes on biomarker levels in coke-oven workers. Arch Toxicol,1999.73(8-9):431-9.
    82. Hayashi S.I., J. Watanabe, K. Nakachi, et al. PCR detection of an A/G polymorphism within exon 7 of the CYP1A1 gene. Nucleic Acids Res,1991. 19(17):4797.
    83. Kato S., P.G. Shields, N.E. Caporaso, et al. Cytochrome P450IIE1 genetic polymorphisms, racial variation, and lung cancer risk. Cancer Res,1992. 52(23):6712-5.
    84. Stephens E.A., J.A. Taylor, N. Kaplan, et al. Ethnic variation in the CYP2E1 gene:polymorphism analysis of 695 African-Americans, European-Americans and Taiwanese. Pharmacogenetics,1994.4(4):185-92.
    85. Zhou W., G. Liu, S.W. Thurston, et al. Genetic polymorphisms in N-acetyltransferase-2 and microsomal epoxide hydrolase, cumulative cigarette smoking, and lung cancer. Cancer Epidemiol Biomarkers Prev,2002. 11(1): 15-21.
    86. Zhou W., S.W. Thurston, G. Liu, et al. The interaction between microsomal epoxide hydrolase polymorphisms and cumulative cigarette smoking in different histological subtypes of lung cancer. Cancer Epidemiol Biomarkers Prev,2001.10(5):461-6.
    87. Grando J.P., H. Kuasne, R. Losi-Guembarovski, et al. Association between polymorphisms in the biometabolism genes CYP1A1, GSTM1, GSTT1 and GSTP1 in bladder cancer. Clin Exp Med,2009.9(1):21-8.
    88. Zhong S., A.H. Wyllie, D. Barnes, et al. Relationship between the GSTM1 genetic polymorphism and susceptibility to bladder, breast and colon cancer. Carcinogenesis,1993.14(9):1821-4.
    89. Katoh T., N. Nagata, Y. Kuroda, et al. Glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) genetic polymorphism and susceptibility to gastric and colorectal adenocarcinoma. Carcinogenesis,1996.17(9):1855-9.
    90. Saarikoski S.T., A. Voho, M. Reinikainen, et al. Combined effect of polymorphic GST genes on individual susceptibility to lung cancer. Int J Cancer,1998.77(4):516-21.
    91. Chan P., M. DD, and J. XQ. Identification of an NAD(P)H:quinine oxidoreductase polymorphism and its association with Parkinson's disease. Movement Disorders,1997.12:26.
    92. Wu M.T., S.L. Huang, C.K. Ho, et al. Cytochrome P450 1A1 Msp1 polymorphism and urinary 1-hydroxypyrene concentrations in coke-oven workers. Cancer Epidemiol Biomarkers Prev,1998.7(9):823-9.
    93. Alexandrie A.K., M. Warholm, U. Carstensen, et al. CYP1A1 and GSTM1 polymorphisms affect urinary 1-hydroxypyrene levels after PAH exposure. Carcinogenesis,2000.21(4):669-76.
    94. Lee K.H., S.H. Cho, Y.C. Hong, et al. Urinary PAH metabolites influenced by genetic polymorphisms of GSTM1 in male hospital incinerator workers. J Occup Health,2003.45(3):168-71.
    [1]IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans.Monographys on the evaluation of the carcinogenic risk of chemicals to humans.Polycyclic aromatic hydrocarbons,part 3,industial exposure in aluminium production,coal gasification,coke,production,and iron and steel founding.1998. vol.34.
    [2]VanRooij J.G., M.M. Bodelier-Bade, and F.J. Jongeneelen. Estimation of individual dermal and respiratory uptake of polycyclic aromatic hydrocarbons in 12 coke oven workers. British Journal of Industrial Medicine,1993. 50(7):623-632.
    [3]van Schooten F.J., F.J. Jongeneelen, M.J. Hillebrand, et al. Polycyclic aromatic hydrocarbon-DNA adducts in white blood cell DNA and 1-hydroxypyrene in the urine from aluminum workers:relation with job category and synergistic effect of smoking. Cancer Epidemiol Biomarkers Prev,1995.4(1):69-77.
    [4]Serdar B., S. Waidyanatha, Y. Zheng, et al. Simultaneous determination of urinary 1-and 2-naphthols,3-and 9-phenanthrols, and 1-pyrenol in coke oven workers. Biomarkers,2003.8(2):93-109.
    [5]Jongeneelen F.J., R.P. Bos, R.B. Anzion, et al. Biological monitoring of polycyclic aromatic hydrocarbons. Metabolites in urine. Scand J Work Environ Health,1986.12(2):137-43.
    [6]Waidyanatha S., Y. Zheng, B. Serdar, et al. Albumin adducts of naphthalene metabolites as biomarkers of exposure to polycyclic aromatic hydrocarbons. Cancer Epidemiol Biomarkers Prev,2004.13(1):117-24.
    [7]Zhang J., M. Ichiba, T. Hanaoka, et al. Leukocyte 8-hydroxydeoxyguanosine and aromatic DNA adduct in coke-oven workers with polycyclic aromatic hydrocarbon exposure. Int Arch Occup Environ Health,2003.76(7):499-504.
    [8]Rossella F., L. Campo, S. Pavanello, et al. Urinary polycyclic aromatic hydrocarbons and monohydroxy metabolites as biomarkers of exposure in coke oven workers. Occup Environ Med,2009.66(8):509-16.
    [9]Mattarozzi M., M. Musci, M. Careri, et al. A novel headspace solid-phase microextraction method using in situ derivatization and a diethoxydiphenylsilane fibre for the gas chromatography-mass spectrometry determination of urinary hydroxy polycyclic aromatic hydrocarbons. J Chromatogr A,2009.1216(30):5634-9.
    [10]程元恺.致癌性多环芳烃.人民卫生出版社,1998:163-175.
    [11]Daly A.K., S. Cholerton, W. Gregory, et al. Metabolic polymorphisms. Pharmacol Ther,1993.57(2-3):129-60.
    [12]Jongeneelen F.J., R.B. Anzion, C.M. Leijdekkers, et al.1-hydroxypyrene in human urine after exposure to coal tar and a coal tar derived product. Int Arch Occup Environ Health,1985.57(1):47-55.
    [13]Jongeneelen F.J. Benchmark guideline for urinary 1-hydroxypyrene as biomarker of occupational exposure to polycyclic aromatic hydrocarbons. Ann Occup Hyg,2001.45(1):3-13.
    [14]冷曙光,郑玉新,李晓华,等.焦炉工外暴露等级与尿中1-羟基芘水平的关系.工业卫生与职业病,2003.29(5):288-291.
    [15]Jia Q.G. [Detection of urinary 1-hydroxypyrene in coke oven workers and its clinical significance]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2008.26(7):424-5.
    [16]Hansen A.M., L. Mathiesen, M. Pedersen, et al. Urinary 1-hydroxypyrene (1-HP) in environmental and occupational studies--a review. Int J Hyg Environ Health,2008.211(5-6):471-503.
    [17]Chen B., Y. Hu, L. Zheng, et al. Urinary 1-hydroxypyrene concentrations in Chinese coke oven workers relative to job category, respirator usage, and cigarette smoking. Am J Ind Med,2007.50(9):657-63.
    [18]段小丽,魏复盛,Z. Jim,等.用尿中1-羟基芘评价人体暴露PAHs的肺癌风险.中国环境科学,2005.25(3):275-278.
    [19]Zhao Z.H., W.Y. Quan, and D.H. Tian. Urinary 1-hydroxypyrene as an indicator of human exposure to ambient polycyclic aromatic hydrocarbons in a coal-burning environment. Sci Total Environ,1990.92:145-54.
    [20]Bouchard M. and C. Viau. Urinary 1-hydroxypyrene as a biomarker of exposure to polycyclic aromatic hydrocarbons:biological monitoring strategies and methodology for determining biological exposure indices for various work environments. Biomarkers,1999.4(3):159-187.
    [21]Freire C., A. Abril, M.F. Fernandez, et al. Urinary 1-hydroxypyrene and PAH exposure in 4-year-old Spanish children. Sci Total Environ,2009. 407(5):1562-9.
    [22]冷曙光,郑玉新,宋文佳,等.尿中萘及其代谢产物作为焦炉工生物监测指标的研究.工业卫生与职业病,2003.29(5):284-287.
    [23]Serdar B., P.P. Egeghy, S. Waidyanatha, et al. Urinary biomarkers of exposure to jet fuel (JP-8). Environ Health Perspect,2003. 111(14):1760-4.
    [24]Preuss R., H.M. Koch, M. Wilhelm, et al. Pilot study on the naphthalene exposure of German adults and children by means of urinary 1-and 2-naphthol levels. Int J Hyg Environ Health,2004.207(5):441-5.
    [25]Onyemauwa F., S.M. Rappaport, J.R. Sobus, et al. Using liquid chromatography-tandem mass spectrometry to quantify monohydroxylated metabolites of polycyclic aromatic hydrocarbons in urine. J Chromatogr B Analyt Technol Biomed Life Sci,2009.877(11-12):1117-25.
    [26]Carmella S.G., M. Chen, H. Yagi, et al. Analysis of phenanthrols in human urine by gas chromatography-mass spectrometry:potential use in carcinogen metabolite phenotyping. Cancer Epidemiol Biomarkers Prev,2004. 13(12):2167-74.
    [27]Jacob J., G. Grimmer, and G. Dettbarn. Profile of urinary phenanthrene metabolites in smokers and non-smokers. Biomarkers,1999.4(5):319-327.
    [28]Toriba A., H. Nakamura, T. Chetiyanukornkul, et al. Method for determining monohydroxybenzo[a]pyrene isomers using column-switching high-performance liquid chromatography. Anal Biochem,2003.312(1):14-22.
    [29]段小丽,杨洪彪,张林,等.尿液中多环芳烃羟基代谢产物分析方法研究.环境科学研究,2004.17(3):62-65.
    [30]Ariese F., M. Verkaik, G.P. Hoornweg, et al. Trace analysis of 3-hydroxy benzo[a]pyrene in urine for the biomonitoring of human exposure to polycyclic aromatic hydrocarbons. J Anal Toxicol,1994.18(4):195-204.
    [31]Wilhelm M., J. Hardt, C. Schulz, et al. New reference value and the background exposure for the PAH metabolites 1-hydroxypyrene and 1-and 2-naphthol in urine of the general population in Germany:basis for validation of human biomonitoring data in environmental medicine. Int J Hyg Environ Health,2008.211(3-4):447-53.
    [32]王宇,董玉莲,范瑞芳,等.尿中多环芳烃代谢产物同时检测的高校液相色谱-荧光检测法.环境与健康杂志,2006.23(1):76-78.
    [33]李晓华,冷曙光,郭君,等.改良的高效液相色谱法测定尿中1-羟基芘.卫生研究,2003.32(6):616-617.
    [34]李晓华,线引林,王敢峰,等.碱水解法测定尿中1-羟基芘的样品前处理技术.中华预防医学杂志,1994.28(4):228-229.
    [35]Campo L., F. Rossella, and S. Fustinoni. Development of a gas chromatography/mass spectrometry method to quantify several urinary monohydroxy metabolites of polycyclic aromatic hydrocarbons in occupationally exposed subjects. J Chromatogr B Analyt Technol Biomed Life Sci,2008.875(2):531-40.
    [36]Smith C.J., W. Huang, C.J. Walcott, et al. Quantification of monohydroxy-PAH metabolites in urine by solid-phase extraction with isotope dilution-GC-MS. Anal Bioanal Chem,2002.372(1):216-20.
    [37]Lintelmann J., C. Hellemann, and A. Kettrup. Coupled-column high-performance liquid chromatographic method for the determination of four metabolites of polycyclic aromatic hydrocarbons,1-,4-and 9-hydroxyphenanthrene and 1-hydroxypyrene, in urine. Journal of Chromatography B:Biomedical Sciences and Applications 1994. 660(1):67-73.
    [38]Xu X., J. Zhang, L. Zhang, et al. Selective detection of monohydroxy metabolites of polycyclic aromatic hydrocarbons in urine using liquid chromatography/triple quadrupole tandem mass spectrometry. Rapid Commun Mass Spectrom,2004.18(19):2299-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700