弱信号环境下的GNSS信号捕获技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GNSS(Global Navigation Satellite System,全球卫星导航系统)已经在全世界范围内得到了广泛的应用,但是当GNSS接收机工作在室内,密集城区等各种信号条件恶劣的复杂信道环境中时, GNSS信号功率会受到严重衰减,信号幅度和相位也会受到多径衰落的影响变化剧烈,接收信噪比将会严重恶化,普通的GNSS接收机将难以正确的捕获和跟踪导航卫星信号。近年来,随着基于位置服务(LoeationBasedService,LBS)应用需求的增加,室内、城市环境等条件的定位已得到越来越广泛的关注,因此独立模块高灵敏度GNSS和辅助高灵敏度GNSS(Assisted GNSS,A-GNSS)定位技术已成为当前的研究热点。
     高灵敏度定位的接收机基带信号处理中,捕获是最为关键的接收机技术之一,基于这个背景,本论文重点对高灵敏度接收机的码和频率捕获算法进行了研究,尤其是针对国内学者研究较少的衰落信道下的GNSS捕获算法与捕获性能,进行了广泛深入的研究,其主要创新性工作及研究成果如下:
     1.对卫星信道的小尺度衰落特性进行了建模,量化分析了信道特征对相干积分检测性能的影响,指出相干积分长度不仅受频偏和数据比特翻转影响,还取决于信道相干时间,并据此给出了不同移动速度引起的多普勒扩展下的相干积分时间建议。同时,这一分析结论可用于解释近年来Broumandans等提出的合成天线(Synthetic antenna)等增益合并优于相干积分检测的结论。
     2.对于移动速度低的卫星信号捕获,针对频偏影响下的检测性能下降,结合PMF-FFT码捕获算法结构,提出了两种高精度的频偏估计方法,并用于码相位与多普勒频偏的联合捕获,还将基于FFT谱线差值的码和多普勒频偏联合捕获算法推广至虚拟天线和多天线。此外,结合频偏估计的CRLB下界,对频偏估计的概率密度分布进行了合理假设,建立了码和多普勒联合捕获的理论检测性能解析表达式,弥补了这一方向的理论检测性能研究缺失。理论分析和仿真结果表明本文的码相位和多普勒频偏的联合捕获算法可以有效改善频偏估计精度,提升检测概率,并且具有极低的复杂度。
     3.针对较小时频不确定性的卫星弱信号捕获,提出了一种结合离散余弦变换(DCT)的变换域滤波码捕获算法。利用同步与非同步码相位相关器输出矢量的不同时变特性,通过DCT变换域的滤波和IDCT重构,有效提高了检测信号的信噪比,从而提高了信号的捕获概率。此外,还将此算法推广至多天线,并建立了高斯和衰落信道下DCT变换域滤波捕获算法的理论检测性能解析表达式。理论分析和仿真结果表明,此检测算法可以在信号能量无损的情况下,有效降低噪声的能量,从而提升检测概率,并且在移动速度稍高的衰落信道下,可获得更大的增益。此外,它可以用于Broumandans等提出的合成天线(Synthetic antenna)等增益合并的算法改进,进一步提升衰落信道下的弱信号捕获性能。
     4.针对卫星信号强度差异较大时的弱信号捕获性能下降问题,分析了不同相干积分时间下的强弱信号下的互相关干扰强度,由此确定对于需要干扰消除的弱信号,只需考虑整数kHz附近的频偏,并基于这个结论,提出了一种基于预存的互干扰矢量,直接对弱信号的相干检测结果进行干扰消除的干扰消除算法。这种算法无需重构干扰信号,且避免了对互相关矢量的实时计算,大大降低了计算复杂度。仿真实现及仿真结果表明本文检测算法可以有效提升弱信号的检测概率,并且具有极低的复杂度。
     最后,本文结合实际弱信号参数,针对各种算法的适用场景和性能增益进行了总结,在给定信号强度、信道条件下提出了建议的捕获策略和捕获参数,并提出了捕获参数优选思路,用于捕获参数选择。
GNSS (Global Navigation Satellite System) has been widely used in the world, butwhen the signal conditions are not ideal, for example, in the interior, forests and urbanenvironment, multipath and interference will lead serious energy decline, normal GNSSreceiver will be difficult to capture and track navigation satellite signals. In recent years,with applications of location-based services (LBS),increased demand for indoor andurban positioning has been attracted more and more attention, and so high-sensitivityGNSS and Assisted-GNSS (A-GNSS) positioning technology has become a currentresearch focus.
     Signal capture is one of the most critical technologies in the baseband signalprocessing of high-sensitivity positioning receiver.Based on this background, this paperfocuses on code and frequency acquisition in the weak signal environment, the author’smajor contributions are outlined as follows:
     1. The satellite channel model with the small scale fading characteristics isestablished. Through the quantitative analysis of the relation between channel coherenttime and the coherent integration detection performance, we pointed out that thecoherence integration time not only depend on the frequency offset and the data bit flip,but also on the channel coherence time. Based on the conclusion, we also given thecoherent interation time recommendation under the different mobile speed. At the sametime, the conclusions can be used to explain Ali's Synthetic antenna gain.
     2. Focusing on the detection performance degradation caused by frequency offset,two improved code phase and Doppler shift united capture methods for low mobilityequipment is proposed. The method based on the difference of FFT spectrum line isalso popularize to synthetic and real antenna.Therefore,combined with the analysisof frequency offset estimated CRLB, the theoretical detection performance of jointcode and Doppler acquisition algorithm is derived. Simulation results show that thedetection algorithm can effectively improve the frequency estimation accuracy and thedetection probability, and has very low complexity.
     3.For the satellite signal acquisition with low time-frequency uncertainty, a codeacquisition algorithm based on discrete cosine transform (DCT) domain filtering isproposed. Based on the different time varied charistristic between the synchronous andnon-synchronous PMF output vector, the DCT transform domain filtering and IDCT reconstruction is used to improve the detection signal to noise ratio, thereby increasingthe signal detection probability. In addition, this algorithm is also popularize to themulti-antenna, and the theoretical detection performance under AWGN and flatRayleigh fading channel is also derived. The theoretical analysis and simulationresults show that the detection algorithm can effectively increase the probabilityof detection, especily in fading channel.
     4.Focusing on the problem that the weak signal’s code acquisition performancewill be decreased when there exists strong interference form other satellites, thequantitive cross-correlation interference analysis is done, and we concluded that theserious cross-correlation interference only occurred at about mKHz,where m isintergeral. Based on the conclusion, a code acquisition method based on eliminating theinterference from the correlation is proposed. The method only need to pre-store a smallcount of cross-correlation vectors with mKHz frequency diffrence, and with thecross-correlation vectors pre-stored,detecting error caused by interference signals canbe eliminated directly from the correlator, which avoid the interference signalsreconstruction and parameter reestimation process. Simulation results show that theproposed detection algorithm can effectively improve the detection probability of weaksignals, and has very low complexity.
     5. Finally, considering the actual weak signal parameters, this paper summarizedthe applicable scenarios and the performance gain for all the proposed algorithms. Inaddition, the proposed acquisition strategy and capture parameters is suggested underthegiven signal strength and channel conditions.
引文
[1] Mac G,Glenn D. High Sensitivity GPS Performance Analysis in Degraded SignalEnvironments[D]. Ottawa:PLAN Laboratory Calgary University,2003.
    [2] FCC. E911Fact Sheet[EB/OL].1996, Available from: www.fcc.gov/e911.
    [3] AndrewW. The European Programme for Global Navigation Serviees[M]. ESAPublications Division. Netherlands: European Space Ageney,2005.
    [4]宋洪涛. GPS接收机抗干扰技术研究[D].长沙:哈尔滨工程大学博士论文,2009.
    [5]郭艺. GPS接收机空时抗干扰理论与实现关键技术研究[D].长沙:国防科技大学博士论文,2007.
    [6]李明江,张一,张中兆.多径干扰下一种新的有效的弱GPS信号处理算法[J].南京理工大学学报.2009,33(1):64-68.
    [7]韩帅. GNSS系统弱信号捕获方法研究与应用[D].哈尔滨:哈尔滨工业大学博士论文,2011.
    [8]石斌斌.高自由度GNSS抗干扰技术研究[D].长沙:国防科学技术大学博士论文,2011.
    [9]宋成.辅助型GPS定位系统关键技术研究[D].长沙:国防科学技术大学博士论文,2009.
    [10]丁继成.弱信号条件下GPS接收机关键技术研究[D].哈尔滨:哈尔滨工程大学博士论文,2009.
    [11] Agarwal N,Basch J, Beckmann P. Algorithms for GPS OperationIndoors and Downtown[J]. GPS Solutions.2002,6(3):149-160.
    [12]刘海涛.高灵敏度GPS/Galileo双模导航接收机关键技术研究[D].长沙:国防科技大学博士论文,2006.
    [13]邱致和. AGPS和室内GPS-移动通信系统的新型定位技术[J].导航.2003,4:1-17.
    [14] TIA/EIA/IS-801-1. Position Determination Service Standards for DualMode Spread Spectrum System[R].2001.
    [15]3GPP2-C.S0022-A. Position Determination Service for CDMA2000Spread Spectrum System[R].2004.
    [16]3G-TS25.331.3rd Generation Partnership Project, Technical Specification GroupRadio Access Network, RRC Protocol Specification[R].1999.
    [17]3GPP-TS04.31.3rd Generation Partnership Project, Technical SpecificationGroup GSM/EDGE Radio Access Network, Location Services, Mobile Station-Serving Mobile Location Centre, Radio Resource LCS Protocol[R].2005.
    [18] SiRF. SiRF starIII datasheet[EB/OL]. Available from: www.sirf.com.
    [19] Global Locate. Mantaray chipset datasheet[EB/OL]. Availablefrom:www.globallocate.com.
    [20]顾国华. GNSS科学发展与前景[J],全球定位系统,2008,4:1-5.
    [21] Romay-Merino M M, Pulido J A, Cobo E. Design of High Performanceand Cost Efficient Constellations for a Future Global NavigationSatellite System[A]. Proceedings of the11th International Technical Meeting ofthe Satellite Division of The Institute of Navigation (ION GPS1998)[C].Nashville:ION,1998:1085-1095.
    [22] Pullen S, Parkinson B. Optimal Augmentation of GPS UsingInexpensive Geosynchronous Navigation Satellites[A]. Proceedings of the11thInternational Technical Meeting of the Satellite Division of The Institute ofNavigation (ION GPS1997)[C]. Kansas City:ION,1997:1271-1281.
    [23] Kogure S, Sawabe M,Kishimoto M. Status of QZSS Navigation Systemin Japan[A]. Proceedings of the19th International Technical Meeting of theSatellite Division[C]. Fort Worth:ION,2006:2092-2102.
    [24] Kawano I, Mokuno M, Kogure S.Japanese Experimental GPSAugmentation Using Quasi-Zenith Satellite System (QZSS)[A].Proceedings ofthe17th International Technical Meeting of the Satellite Division ofthe Institute of Navigation[C]. Long Beach: ION,2004:175-181.
    [25]刘芳.新一代卫星导航信号的同步新机理研究[D].南京:南京理工大学博士论文,2010.
    [26] Alkan R M, Karaman H, Sahin M. GPS,GALILEO and GLONASS SatelliteNavigation Systems&GPS Modemization[A].Proeeedings of2th IntemationaConference of Recent Advances in Space Teehnology[C],Turkey:IEEE,2005:390-394.
    [27]杨朝斌.低信噪比直序扩频导航信号的自适应捕获算法研究[J].四川大学学报.2009,41(5):217-220.
    [28] Polycloros A,Weber C L. A unified approach to serial search spread-spectrumcode acquisition part I&II [J]. IEEE Transactions on Communications.1984,COM-32(5):542-560.
    [29] Djr V N, Ajrm C. New fast GPS code-acquisition technique using FFT[J].Electronic Letters.1991,27(17):158-160.
    [30] Chawla K K, Sarwate D V. Parallel acquisition of PN sequences in DS/SSsystems[J]. IEEE Transactions on Communications.1994,42(5):2155-2164.
    [31] Gong G,Li S k. GPS signal cade phase measurement using FFT and circularconvolution [J]. Journal of Communication.2005,26(7):77-82.
    [32] James Bao-Yen T. Fundamentals of global positioning system receivers: Asoftware approach [M].2ed.John Wiley&Sons.Inc,2005.
    [33]覃新贤,韩承德,谢应科.GPS软件接收机中的一种实用高灵敏度快速捕获算法[J].电子学报.2010,38(1):99-104.
    [34] Elders-Boll H, Dettmar U. Efficient differentially coheren code/Doppleracquisition of weak GPS signals[A]. Sprea Spectrum Techniques and Applications,2004IEEE Eighth International Symposium[C]. Sydney:IEEE,2004:731-735.
    [35] Psiaki M L.Block acquisition of weak GPS signals in a software receiver[A].Proceedings of the14th International Technical Meeting of the Satellite Divisionof The Institute of Navigation (ION GPS2001)[C].Salt Lake:ION,2001:2838-2850.
    [36] Shanmugam S K.New enhanced sensitivity detection techniques for GPS L1C/Aand modernized signal acquisition[D].Canada:PLAN Laboratory CalgaryUniversity,2008.
    [37] Borio D.A statistical theory for GNSS signal acquisition[D].Torino,Italy:Polytecnico di Torino NavSAS Group,2008.
    [38] Zarrabizadeh M H, Sousa E S A. Differentially Coherent PN Code AcquisitionReceiver for CDMA Systems[J]. IEEE Transactions on Communications.1997,45(11):1456-1465.
    [39] Choi H,Cho D J,Yun S J. A Novel Weak Signal Acquisition Seheme forAssisted GPS[A]. Proceedings of the15th International Technical Meeting of theSatellite Division of The Institute of Navigation (ION GPS2002)[C]. Portland:ION,2002:177-183.
    [40] Park S H,Choi H,Lee S J,et,al. A Novel GPS Initial Synchroization SchemeUsing Decomposed Differential Matehed Filter[A]. Proceedings of The Instituteof Navigation[C]. San Diego:ION,2002:246-253.
    [41] Andreas S,Andr’e N. Performance Evaluation of Differential Correlation forSingle Shot Measurement Positioning[A]. Proceedings of the17th InternationalTechnical Meeting of the Satellite Division of The Institute of Navigation (IONGNSS2004)[C]. Long Beach:ION,2004:151-156.
    [42] Ayse S A. Analysis of Differential Acquisition Methods by Using Monte-CarloSimulations[A]. Proceedings of the18th International Technical Meeting of theSatellite Division[C]. Long Beach: ION,2005.
    [43] Yu W,Zheng B,Watson R. Differential Combining for Acquiring Weak GPSSignals[J]. Signal Processing.2007:824–840.
    [44] Surendran K,Shanmugam, Watson R. Gerard Lachapelle. Differential SignalProcessing Schemes for Enhanced GPS Acquisition[A]. ION GNSS18thInternational Technical Meeting of the Satellite Division[C].Long Beach:ION,2005.
    [45] Liu Y Z, Pan Y H, Yao F Q. A Modified Adaptive Filtering Acquisition Methodfor PN Code with Data Modulation[J]. IEEE Transcations On CommunicationsLetters.2011,15(8):869–871.
    [46] Chandrasekhar J, Murthy C R. Robust GNSS Signal detection in the presence ofnavigation Data Bits[J]. IEEE International Conference on Acoustics, Speech andSignal Processing (ICASSP)[C]. Prague:IEEE,2011:4344–4347.
    [47]皮亦鸣,张蜻,蔡昌听.GPS信号的差分相关捕获算法研究[J].全球定位系统.2006,31(4):1-4.
    [48] Ledvina B M,Mark L P,Steven P P. Bit-wise parallel algorithms for efficientsoftware correlation applied to a GPS software receiver[J].IEEE Transactions onWireless Communications.2004,3(5):1469-1473.
    [49] Tahir M, Fantino M, Presti L L.Sequential Bayesian Detection of GNSS Signals[J].International Conference on Localization and GNSS (ICL-GNSS)[C]. Tampere:IEEE,2011:87-92.
    [50] Cillian O’Driscoll B.E. Performance Analysis of the Parallel Acquisition of WeakGPS Signals[D]. Ph.D thesis. The National University of Ireland. January,2007.
    [51] Spangenberg S M, Scott I, McLaughlin S. An FFT-based approach for fastacquisition in spread spectrum communication systems[J]. Wireless PersonalCommunications.2000,13(1-2):27-56.
    [52] Dai L L, Wang Z C,Wang J. Joint Code Acquistion and Doppler FrequencyShift Estimation for GPS Signals[A]. IEEE Vehicular Technology Conference(VTC)[C]. Ottawa:IEEE,2010,1-5.
    [53] Hyeon S, Yun Y, Kim H.Phase diversity for an antenna array system with ashort interelement separation[J]. IEEE Transcations on Vechicular Technology.2008,57(1):206-214.
    [54] Kim S. Acquisition performance of CDMA systems with multiple antennas[J].IEEE Transcations on Vechicular Technology.2004,53(5):1341-1353.
    [55] Oh-Soon Shin, Kwang Bok Lee, Use of multiple antennas for DS/CDMA codeacquisition[J]. IEEE Transcations on Wireless Communications.2003,2(3):424-430.
    [56] Mohamed Abou-Khousa, Ali Ghrayeb,Mohamed El-Tarhuni, A MultipathDetection Scheme for CDMA Systems With Space–Time Spreading[J]. IEEETranscations on Vechicular Technology.2008,57(1):146-156.
    [57] Chang C L,Shou H N,Juang J C. Spatial Cooperative Diversity Technique inPerformance Enhancement of GNSS Receivers[J]. IEEE Transcations onVechicular Technology.2010,57(1):166-172.
    [58] Broumandan, A, Nielsen, J., Lachapelle, G. Indoor GNSS signal Acquisitionperformance using a synthetic antenna array[J]. IEEE Transactions on Aerospaceand Electronic Systems.2011,47(2):1337-1350.
    [59] Broumandan A, Nielsen J, Lachpelle G.Signal Detection Performance inRayleigh Fading Environments with a Moving Antenna[J]. IET Signal Proc.Trans.2010,4(2):117-129.
    [60] Broumandan A, Nielsen J, Lachpelle G. Enhanced Detection Performanceof Indoor GNSS Signals Based on Synthetic Aperture[J]. IEEE Transcations onVechicular Technology.2010,59(6):2711-2724.
    [61] Broumandan A, Nielsen J, Lachpelle G. Indoor GNSS Signal Acquisitionperformance using a Synthetic Antenna Array[J]. IEEE Trans. Aerosp.Electron.Syst.2011,47(2):1337-1350.
    [62] Broumandan A. Enhanced Narrowband Signal Detection and Estimation with aSynthetic Antenna Array for Location Applications[D]. Canada:PLANLaboratory Calgary University,2009.
    [63] Dehghanian V, Nielsen J, Lachapelle G. Diversity gain through synthesizingmultiple polarizations[A]. IEEE Canadian Conference on Electrical and ComputerEngineering[C]. Ottawa:IEEE,2010.
    [64] Friedlander B, Scherzer A.Beamforming versus transmit diversity in thedownlink of a cellular communications systems[J]. IEEE Transcations onVechicular Technology.2004,53(4):1023-1034.
    [65] Verdu S. Multiuser Detection[M]. NewYork:Universal,1998.
    [66] Morton Y T, Tsui J B, Lin D M, et al. Assessment and Handling of C/A Code Selfinterference During Weak GPS Signal Acquisition[A]. Proceedings of the16thInternational Technical Meeting of the Satellite Division of The Institute ofNavigation (ION GPS2003)[C]. Portland:ION,2003:646-653.
    [67] Qaisar S U,Dempster A G. Cross-correlation performance assessment of globalpositioning system (GPS) L1and L2civil codes for signal acquisition[J]. IET,Radar, Sonar&Navigation.2011,5(3):195–203.
    [68] M C罗赫.用在全球定位系统接收机中的互相关减轻方法和装置[P].中国:03820125.9,2005.
    [69] Glennon E P. A Review of GPS Cross Correlation Mitigation Techniques[A]. The2004International Symposium on GNSS/GPS[C]. Sydney:IEEE,2004:125-137.
    [70] Holtzman, J M. Wireless and Mobile Communications[M].1st Edition.Springer,1994.
    [71] Patel P, Holtzman J. Analysis of a Simple Successive Interference CancellationScheme in a DS/CDMA System[J]. IEEE Journal on Selected Areas inCommunications.1994,12(5):796-807.
    [72] Pedersen. Practical Implementation of Successive Interference Cancellation inDS/CDMA Systems[A]. IEEE International Conference on Universal PersonalCommunications[C]. Cambridge:IEEE,1996:321-325.
    [73] Zhao L, Amin M, Lindsey A. Mitigation of Periodic Interferers in GPSReceivers Using Subspace Projection Techniques[A]. Proceedings of theInternational Symposium on Signal Processing and its Applications[C]. KualaLumpur, Malaysia: IEEE,2001:497-500.
    [74] Wolfgang K, Aurora, John K Thomas, et al. GPS Near-Far Resistant Receiver.United States Patent.2003.
    [75] Behrens R T, Scharf L L. Signal Processing Applications of Oblique ProjectionOperators[J]. IEEE Transactions on Signal Processing.1994,42(6):1413-1423.
    [76]赵欣,赵琳,温明.一种新的GPS空时抗干扰方案[J].哈尔滨工程大学学报,2011,32(3):322-327.
    [77]项建弘,郭黎利,陈立明. GPS空时自适应抗干扰系统性能研究[J].系统工程与电子技术.2009,31(5):1022-1025.
    [78] Gustavo L O, Gonzalo S. Detection and Mitigation of Cross-CorrelationInterference in High-Sensitivity GNSS Receivers[A]. IEEE InternationalSymposium on Personal, Indoor and Mobile Radio Communications (PIMRC07)[C]. Athens:IEEE,2007:1-5.
    [79] Yu T, Morton, Mikel M, et al. GPS Civil Signal Self-Interference Mitigationduring Weak Signal Acquisition[J]. IEEE Transactions on Signal Processing.2007,55(12):5859-5863.
    [80] Madhani P H. Application of Successive Interence Cancellation to the GPSPseudolite Near-far Problem[J]. IEEE Transactions on Aerospace and ElectronicSystems.2003,39(2):481-488.
    [81] Morton, Yu.T., Miller, M., Tsui, J., Lin, D., Qihou Zhou, GPS Civil SignalSelf-Interference Mitigation During Weak Signal Acquisition[J]. IEEETransactions on Signal Processing.2007,55(12):5859–5863.
    [82]梁坤.高灵敏度GPS接收技术中几个关键问题的研究[D].北京:中国科学院研究生院博士学位论文,2007.
    [83]梁坤,王剑.高灵敏度GPS接收机中的互相关减轻算法研究[J].电子学报.2008,36(6):1098-1102.
    [84] Kodithuwakku J, Letzepis N, Grant A. Multi-user Decoder AssistedCode-Acquisition in CDMA Systems[A]. Communications Theory Workshop [C].Australian:IEEE,2011,83-88.
    [85]刘杨,秦红磊,金天.考虑互相关干扰的GPS信号捕获门限设定方法[J].北京航空航天大学学报.2011,37(3):269-273.
    [86]何文涛,徐建华,叶甜春.互相关干扰下的GNSS弱信号检测算法[J].电子学报.2011,39(2):471-475.
    [87] Yeom S, Jung Y, Lee S. An Adaptive Threshold Technique for Fast PN CodeAcquisition in DS-SS Systems[J]. IEEE Transcations on Vechicular Technology.2011,60(6):2870-2875.
    [88] Parkinson B W, Spilker J J. Global Positioning System:Theoryand Applications[M]. Washington DC:American Institute oAeronautics and Astronautics Inc,1996.
    [89] Niamh O’Mahony, Colin C.Murphy.Constrained Optimization of coincidenceDetector Parameters for GPS Acquisition[J]. IEEE Transactions onCommunications.2011,60(1):176-188.
    [90] Khan R,Khan SU, Zaheer R. Acquisition Strategies of GNSS Receiver[A].2011International Conference on Computer Networks and Information Technology(ICCNIT)[C]. Bara Gali:IEEE,2011:119-124.
    [91] Margaria D,Presti LL,Kassabian N.A new peer-to-peer Aided AcquisitionApproach Exploting C/N0Aiding[A]. Satellite Navigation Technologies andEuropean Workshop on GNSS Signals and Signal Processing[C]. Netherlands:IEEE,2010,1-10.
    [92] Presti L,Margaria D. A novel peer to peer aided acquisition strategy tailored toGalileo E1receivers[A].52nd International Symposium ELMAR-2010[C].Zadar:IEEE,2010:417-424.
    [93] Kassabian N,Presti L L. Technique for MAT analysis and performance assessmentof P2P acquisition engines[A].Position Location and Navigation Symposium(PLANS)[C]. Atlantic:IEEE/ION,2012:980–988.
    [94] Kassabian N, Presti L.L. Mean acquisition time of GNSS peer-to-peernetworks[A]. International Conference on Localization and GNSS(ICL-GNSS)[C]. Starnberg:IEEE,2012:1-6.
    [95] Stavrou, S.,S.R.Saunders.Factors Influencing Outdoor to Indoor Radio WavePropagation[A].12th International Conference on Antennas andPropagation(ICAP2003)[C]. London:IEEE,2003:581-585.
    [96] Aguirre S, Loew L H, Lo Y. Radio Propagation into Buildings at912,1920,and5990MHz Using Microcells[A]. International Conference on Universal PersonalCommunications[C]. NewYork:IEEE,1994:129-134.
    [97] Klukas R,Lachapella G,Ma C,Jee G I.GPS Signal Fading Model for UrbanCenters[J]. IEEE Transactions on communications,2006,1-8.
    [98] Loo C.A Statistical Model for a Land Mobile Satellite Link [J]·IEEE Transcationson Vechicular Technology,1985,34(3/8):122~127.
    [99] Corazza G E, Vatalaro F.A Statistical Model for Land Mobile Satellite Channelsand Its Application to Nongeostationary Orbit Systems[J]. IEEE Transcations onVechicular Technology,1994,43(3/8):738~742.
    [100] Lutz E, Cygan D, Dippold M,et al·The Land Mobile Satellite CommunicationChannel-Recording, Statistical, and Channel Model[J]. IEEE Transcations onVechicular Technology.1991,40(2/5):375~385.
    [101]李云龙,高晓锋.基于射线追踪法的卫星通信MIMO信道特性研究[J],现代电子技术.2010,13:72-77.
    [102] Lachapelle G. GNSS Indoor Location Technologies[J]. Joumal of Globalpositioning Systems.2004,3(l-2):2-11.
    [103] Lachapelle G, Kuusniemi H,Dao T H,et al. HSGPS Signal Analysis andPerformance Under Various Indoor Conditions [J]. NAVIGATION,2004,51(l):29-44.
    [104]韩帅.导航接收机在弱信号下C/A码捕获技术研究[D].哈尔滨:哈尔滨工业大学硕士论文,2007.
    [105] Maurizio Fantino,Fabio Dovis,JinlingWang. Quality Moitoring for MultipathAffected GPS Signals[J]. The2004International Symposium on GNSS/GPS[C].Sydney:ION,2004,151-159.
    [106]孔玲. MIMO信道建模及其性能分析[D].重庆:重庆邮电大学硕士论文,2007.
    [107]李玮.卫星移动通信信道模型研究及基带仿真实现[D].成都:电子科技大学,2002.
    [108] Zheng Y R,Xiao C.Simulation Models with Correct Statistical Properties forRayleigh Fading Channels [J]. IEEE Transactions on Communications.2003,51(6):920~928.
    [109] Patzold M,Killat U,Laue F and Li Y.On the Statistical Properties of DeterministicSimulation Models for Mobile Fading Channels[J]. IEEE Transcations onVechicular Technology.1998,47:254~269.
    [110] Pop M, Beaulieu N. Limitations of Sum-of-sinusoids Fading ChannelSimulators[J]. IEEE Transactions on Communications.2001,49(4):699~708.
    [111] Clarke R H. A statistical theory ofmobile-radio reception[J]. BellSysTech.1968,47(6):957-1000.
    [112] Jakes W C. Microwave Mobile Communications[M]. New York: Wiley-Interscience,1974.
    [113] Zheng Y R, Xiao C. Improved models for generation of multiple uncorrelatedRayleigh fading waveforms [J]. IEEE Commun Lettes.2002,6(6):256-258.
    [114] Li Y X, Huang X J. The Simulation of independent Rayleigh faders [J]. IEEETransactions on Communications.2002,50(9):1503-1514.
    [115] ZhengY R, Xiao C. Simulation Models With Correct Statistical Characteristics forRayleigh Fading Channels[J]. IEEE Transactions on Communications.2003,51(6):920-928.
    [116] Ertel R B,Ardieri P C,Sowerby K W,Et Al.Overview Of Spatial Channel ModelsFor Antenna Array Communication Systems[J]. Personal Communications.1998,5(1):10-22.
    [117] Ozcelik H, Herdin M, Weichselberger W. Deficiencies of Kronecker MIMOradio channel model[J].Electronics Letters.2003,39(16):1209-1210.
    [118] Geoffrey J B,Fambirai T. Spatially and temporally correlated MIMO channels:Modeling and capacity analysis [J]. IEEE Transcations on Vechicular Technology.2004,53(3):634-643.
    [119] Leong S Y,Zheng Y R,Xiao C S. Space-Time Fading Correlation Functions Of A3-D MIMO Channel Model[A]. IEEE Wireless Communications And NetworkingConference[C]. Atlanta: IEEE,2004:1127-1132.
    [120] Pedersen K I,Andersen J B,Kermoal J P,et al.A stochastic multiple input multipleoutput radio channel model for evaluation of space-time coding algorithms[A].IEEE Vehicular Technology Conference[C]. Tokyo:IEEE,2000:893-897.
    [121]张明.宽带多天线无线传播信道的特性_测量和建模研究[D],北京:北京邮电大学博士论文,2007,9.
    [122]方舒,李立华,张平.空间相关随机MIMO信道建模[J].电子科技大学学报.2008,37(1):27-30.
    [123] Tsui J. Fundamentals of Global Positioning System Receivers[M]. New York:Wiley Inter-science,2000.
    [124] Kaplan E D,Hegarty CJ. Understanding GPS: principle and Applications[M].Boston:Artech House,2006.
    [132] Hyung R P, Bub J k. On the performance of a Maximum-LikelihoodCode-Acquisition Technique for Preamble Search in a CDMA Reverse Link[J].IEEE Transcations on Vechicular Technology.1998,47(1):65-74.
    [126] Oh-Soon S,, Kwang B L. Use of multiple antennas for DS/CDMA codeacquisition[J]. IEEE Transcations on Wireless Communications.2003,2(3):424-430.
    [127] O Driscoll C. Performance analysis of the parallel acquisition of weak GPSsignals[D]. Cork:National University of Ireland,2007.
    [128] Sanjit K.Mitra.数字信号处理——基于计算机的方法[M].孙洪等译.第三版.北京:电子工业出版社,2006.
    [129] Mohamed A K, Ali G,Mohamed E T. A Multipath Detection Scheme for CDMASystems With Space–Time Spreading[J].IEEE Transcations on VechicularTechnology.2008,57(1):146-156.
    [130] Mteven M.Kay.统计信号处理基础——估值与检测理论[M].罗鹏飞,张文明,刘忠等译.第二版.北京:电子工业出版社,2006.
    [131]张颖光,保铮,廖桂生,张林让. DS-CDMA通信系统中使用阵列天线的码捕获和波束形成权值捕获[J].电子学报.2004,32(12):1954-1957.
    [132] Huang P,Zu B F. Performance Analysis of PN Code Acquisition Using FastFourier Transform[A]. International Conference on Wireless Communications,Networking and Mobile Computing[C]. Beijing:IEEE,2009:1-5.
    [133] Hua F,Pooi Y K. MAP/ML Estimation of the Frequency and Phase of aSingle Sinusoid in Noise[J]. IEEE Transactions on signal processing.2007,55(3):834-845.
    [134] Quinn B G. Estimation of Frequency,Amplitude,and Phase from the DFT of aTime Series[J]. IEEE Transactions on Signal Processing.1997,45(3):814-817.
    [135] Pilar M. Calvo, Juan F. Sevillano, Igone Velez..Enhanced Implementation of BlindCarrier Frequency Estimators for QPSK Satellite Receivers at Low SNR[J]. IEEETransactions on Consumer Electronics.2005,51(2):442-448.
    [136] Jacobsen E, Kootsookos P J. Fast, Accurate Frequency Estimators[J]. IEEESignal Processing Magazine.2007,24(3):123-125.
    [137] Belega, D. Dallet, D.Frequency estimation via weighted multipoint interpolatedDFT[J]. Science, Measurement&Technology, IET.2008.2(1):1-8.
    [138]周喜庆,赵国庆,王伟.实时准确正弦波频率估计综合算法[J],西安电子科技大学学报.2004,31(5):657-660.
    [139] S. A. Tretter. Estimating the frequency of a noisy sinusoid by linear regression[J].IEEE Transaction on Information Theory.1985,31(6):832-835.
    [140] Kay S. A Fast and Accurate Single Frequency Estimator[J]. IEEE Transcations onASSP.1989,37(12):1987-1990.
    [141] Volcker,Handel P. Frequency estimation from proper sets of correlations[J].IEEE Transactions on signal processing.2002,50(4):791-802.
    [142] Holm S. Optimum FFT-based frequency acquisition with application toCOSPAS-SARSAT[J]. IEEE Transaction on Aerospace and ElectronicSystem.1993,29(2):464-475.
    [143] Eirik R, Anders V. Frequency Estimation of a Single Complex Sinusoid Using aGeneralized Kay Estimator[J]. IEEE Transactions on Communications.2006,54(3):407-415.
    [144] Aboutanios E, Mulgrew B. Iterative frequency estimation by inter-polation onFourier coefficients[J]. IEEE Transactions on signal processing.2005,53(4):1237-1242.
    [145] E.Aboutanios.A modified dichotomous search frequency estimator[J]. IEEESignal Process.Lett.2004,11(2):186-188.
    [146] Reisenfeld S, Aboutanios E.A new algorithm for the estimation of the frequencyof a complex exponential in additive Gaussian noise[J].IEEE Commun.Lett.2003,7(11):549-551.
    [147] Zakharov Y V,Baronkin V M,Tozer T C. DFT-based frequency estimators withnarrow acquisition range[J]. Proc.Inst.Elect. Eng. Commun.2001,148(1):1–7.
    [148] Zakharov YV, Tozer T C. Frequency estimator with dichotomous search ofperiodogram peak[J]. Inst.Elect.Eng.Electron.Lett.1999,35(19):1608–1609.
    [149] Clarkson V, Kootsookos P J, Quinn B G. Analysis of the variance threshold ofKay’s weighted linear predictor frequency estimator[J]. IEEE Transactions onsignal processing.1994,42(9):2370–2379.
    [150] Leung S H, Xiong Y, Lau W H.Modified Kay’s method with improvedfrequency estimation[J]. Inst. Elect. Eng.Electron.Lett.2000,36(10):918–920.
    [151] B.G.Quinn.Estimation of frequency,amplitude and phase from the DFT of a timeseries[J]. IEEE Transactions on signal processing.1997,45(3):814–817.
    [152] Shanmugam S K, Watson R, Nielsen J. Differential signal processing schemesfor enhanced GPS acquisition[C]. in PROC.2005International Symposium onIEEE ION/GNSS. Sept.2005,212-222.
    [153] Fitz M P. Further Results in the Fast Estimation of a Single Frequency[J]. IEEETranscations on Communications.1994,42(2/3/4):862-864.
    [154] Luise M, Reggiannini R. Carrier Frequency recovery in all-digital modems forburst-mode transmissions[J]. IEEE Transcations on Communications.1995,43(2/3/4):1169-1178.
    [155] Simoens F, Moeneclaey M. Reduced Complexity Data-Aided and Code-AidedFrequency Offset Estimation for Flat-Fading MIMO Channels[J]. IEEETranscations on Wireless Communications.2006,5(6):1558–1567.
    [156]邓振森,刘渝. MPSK信号载频盲估计[J].通信学报.2007,28(2):94-100.
    [157]张仔兵,李立萍,肖先赐. MPSK信号的循环谱检测及码元速率估计[J].系统工程与电子技术.2005,27(5):803-806.
    [158]李小捷,许录平,陈佳.基于联合参数估计的最大似然调制识别算法[J].仪器仪表学报.2008,29(12):2509-2514.
    [159]李小捷,许录平.基于均值移位的载频盲估计算法[J].系统仿真学报,2008,21(3):285-289.
    [160] Morelli M, Andrea A N, Mengali U. Carrier-frequency estimation forspace-diversity reception over selective channels[J]. IEE ProceedingsCommunications.2002,149(1):58–64.
    [161] Rife D C,BOORSTYN. Single-Tone Parameter Estimation from Discrete-TimeObservations[J]. IEEE Transcations on Information Theory.1974,20(5):591-598.
    [162] Kumar A, Makur A. Improved coding-theoretic and subspace-based decodingalgorithms for a wider class of DCT and DST Codes[J]. IEEE Transactionson Signal Processing.2010,58(2):695–708.
    [163] Xiqi Gao,Bin Jiang,Xiaohu You. Efficient channel estimation for MIMOsingle-carrier block transmission with dual cyclic timeslot structure [J]. IEEETransactions on Communications.2007,55(11):2210-2223.
    [164]Kim S,Yu H k,Lee J,Hong D. Low bias frequency domain SNR estimatorusing DCT in mobile fading channels [J]. IEEE Transactions on WirelessCommunications.2009,8(1):45-50.
    [165]张颖光.直接序列扩谱通信系统中伪随机序列捕获技术研究[D].西安:西安电子科技大学博士论文,2004.
    [166] Mohamed A K, Ali G,Mohamed E T,A Multipath Detection Scheme for CDMASystems With Space–Time Spreading[J], IEEE Transcations on VechicularTechnology,2008,57(1):146-156.
    [167] Qaisar S U, Dempster A G. Cross-correlation performance assessment of globalpositioning system(GPS) L1and L2civil codes for signal acquisition[J]. IETRadar,Sonar and Navigation.2011,5(3):195-203.
    [168]齐国清,贾欣乐.插值FFT估计正弦信号频率的精度分析[J].电子学报.2004,32(4):625-629.
    [169]李小捷,许录平,杨莉.应用于适量量化的改进粒子群优化算法[J].模式识别
    与人工智能.2008,3,21(3):285-289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700