脂肪因子-visfatin及脂联素在骨关节炎中的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的1.分析visfatin在骨关节炎(OA)患者和正常对照组的血浆和关节液中的分布,探讨visfatin在OA中的作用;2.着重了解脂联素对OA软骨细胞的作用。
     方法ELISA方法测定30例女性OA患者和12例正常对照组血浆及关节液中visfatin,以及关节液中的软骨基质降解标记物,并对OA严重程度放射学分级,进行相关分析;应用细胞免疫荧光、Real-time PCR、western blotting技术,分析OA软骨细胞表达脂联素受体与对照组之间的差异;体外培养OA软骨细胞进行药物干预,观察脂联素对软骨细胞NO合成的影响。
     结果OA患者关节液visfatin浓度明显高于对照组,两组血浆visfatin浓度无统计学意义;相关分析显示,OA关节液visfatin与II型胶原降解标记物CTX-II及aggrecan降解标记物AGG1,AGG2水平正相关;脂联素受体在OA关节软骨细胞中的表达状况,发现与对照组相比,脂联素受体表达水平下调,其中AdipoRl下调最显著;体外实验证实脂联素能够活化NF-κB转录活性,引起iNOS启动子区域增强iNOS转录水平,最终导致iNOS蛋白表达增强,软骨细胞从而合成大量的NO水平,同时检测培养上清中细胞因子水平,发现脂联素能够明显增加细胞培养基中IL-6、TNF-α、MMP-3、MMP-9和TIMP-2水平,但不能增加IL-1β、TIMP-1、MCP-1、PGE2和MMP一13水平。
     结论1.visfatin是新发现的影响OA关节软骨代谢的又一脂肪因子,参与软骨基质的降解;2.脂联素能够促进软骨细胞合成释放某些炎症因子和l软骨基质代谢相关分子,可能是一种前炎症因子,发挥炎症效应,在OA病理生理过程中具有重要作用。这些结果表明了脂肪因子在OA中具有重要的代谢角色。
Objective 1. To analyze the distribution of visfatin between plasma and synovial fluid (SF) of patients with osteoarthritis (OA) and normal subjects, identify the role of visfatin in OA.2. Focus on the effects of adiponectin on the chondrocytes in OA.
     Methods Levels of visfatin were measured by a sandwich enzyme-linked immunosorbent assay in plasma and SF collected from 30 female OA patients and 12 normal subjects. Degradation markers of cartilage matrix in SF were also measured. The severity of OA was determined according to the Kellgren and Lawrence classification. Correlation analyses between visfatin and degradation markers or OA severity were performed. Immunofluorescence, Real-time PCR, western blotting techniques were evaluated for the difference of adiponectin receptors expression between OA chondrocytes and normal chondrocytes; OA chondrocytes were stimulated with some inhibitors; effects of adiponectin on niric oxide synthesis in OA chondrocytes were observed in vitro.
     Results Compared to controls, OA patients had higher SF visfatin concentration (8.95±2.5 vs.4.48±2.49 ng/ml, P< 0.001). Plasma visfatin levelswere higher inOApatients than those in control subjects, but not statistical significance (5.37±1.45 vs. 4.93±1.4 ng/ml, P= 0.466). SF visfatin positively correlated with degradation biomarker of collagenⅡ, CTX-Ⅱ(r= 0.497, P= 0.005), and degradation biomarker of aggrecan, AGG1 (r=0.451, P=0.012) and AGG2 (r= 0.434, P=0.017). We compared the expression of adiponectin receptors in primary chondrocytes from OA patients and normal subjects, but compared to normal chondrocytes, the three adiponectin receptors were down-regulated in osteoarthritic chondrocytes, especially AdipoRl. In vitro experiments confirmed that adiponectin can activate the transcriptional activity of NF-κB, enhance promoter region of iNOS transcription, lead to increased expression of iNOS protein, and OA chondrocytes synthesed a large number of NO. In addition, adiponectin is able to increase IL-6, TNF-α, MMP-3, MMP-9 and TIMP-2 by cultured OA chondrocytes in vitro, whereas it was unable to modulate IL-1β, MCP-1, PGE2, TIMP-1 and MMP-13 release.
     Conclusion 1. visfatin is a new discovery of another adipokines, regulating the degradation of cartilage matrix in OA.2. Adiponectin can release certain inflammatory cytokines and cartilage matrix metabolism molecules by OA chondrocytes, may be a proinflammatory factor, had an important role in the pathogenesis of OA. These results suggest that fat-derived adipokines have an important role in the metabolism of OA.
引文
1. 中华医学会骨科学分会.骨关节炎诊治指南(2007年版).中华骨科杂志,2007,27:793-796.
    2. Clockaerts S, Bastiaansen-Jenniskens YM, Runhaar J, et al. The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue:a narrative review. Osteoarthritis Cartilage,2010, 18(7):876-82.
    3. Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol,2007,213(3):626-34.
    4. Guilak F, Fermor B, Keefe FJ, et al. The role of biomechanics and inflammation in cartilage injury and repair. Clin Orthop Relat Res,2004,423:17-26.
    5. Englund M. Paradowski PT, Lohmander LS. Association of radiographic hand osteoarthritis with radiographic knee osteoarthritis after meniscectomy. Arthritis Rheum,2004,50(2):469-75.
    6. World Health Organization. See [http://wwwwhoint/mediacentre/factsheets/fs311/en/indexhtml].
    7. Newberry WN, Garcia JJ, Mackenzie CD, et al. Analysis of acute mechanical insult in an animal model of post-traumatic osteoarthrosis. J Biomech Eng,1998,120(6):704-9.
    8. Millward-Sadler SJ, Salter DM. Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann Biomed Eng,2004,32(3):435-46.
    9. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science,1993,260(5111):1124-7.
    10. Ajubi NE, Klein-Nulend J, Nijweide PJ, et al. Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes--a cytoskeleton-dependent process. Biochem Biophys Res Commun,1996,225(1):62-8.
    11. Anderson JJ, Felson DT. Factors associated with osteoarthritis of the knee in the first national Health and Nutrition Examination Survey (HANES Ⅰ). Evidence for an association with overweight, race, and physical demands of work. Am J Epidemiol,1988,128(1):179-89.
    12. Coggon D, Reading I, Croft P, et al. Knee osteoarthritis and obesity. Int J Obes Relat Metab Disord,2001,25(5):622-7.
    13. Cooper C, Snow S, McAlindon TE, et al. Risk factors for the incidence and progression of radiographic knee osteoarthritis. Arthritis Rheum,2000,43(5):995-1000.
    14. Toda Y, Toda T, Takemura S, et al. Change in body fat, but not body weight or metabolic correlates of obesity, is related to symptomatic relief of obese patients with knee osteoarthritis after a weight control program. J Rheumatol,1998,25(11):2181-6.
    15. Trayhurn P, Wood IS. Adipokines:inflammation and the pleiotropic role of white adipose tissue. Br J Nutr,2004,92(3):347-55.
    16. Lago F, Dieguez C, Gomez-Reino J, et al. The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine Growth Factor Rev,2007,18(3-4):313-25.
    17. Presle N, Pottie P, Dumond H, et al. Differential distribution of adipokines between serum and synovial fluid in patients with osteoarthritis. Contribution of joint tissues to their articular production. Osteoarthritis Cartilage,2006,14(7):690-5.
    18. Otero M, Lago R, Lago F, et al. Leptin, from fat to inflammation:old questions and new insights. FEBS Lett,2005,579(2):295-301.
    19. Ahima RS, Flier JS. Leptin. Annu Rev Physiol,2000,62:413-37.
    20. Dumond H, Presle N, Terlain B, et al. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum,2003,48(11):3118-29.
    21. Matarese G, Leiter EH, La Cava A. Leptin in autoimmunity:many questions, some answers. Tissue Antigens,2007,70(2):87-95.
    22. Lago R, Gomez R, Otero M, et al. A new player in cartilage homeostasis:adiponectin induces nitric oxide synthase type Ⅱ and pro-inflammatory cytokines in chondrocytes. Osteoarthritis Cartilage, 2008,16(9):1101-9.
    23. Chen TH, Chen L, Hsieh MS, et al. Evidence for a protective role for adiponectin in osteoarthritis. Biochim Biophys Acta,2006,1762(8):711-8.
    24. Lee SW, Kim JH, Park MC, et al. Adiponectin mitigates the severity of arthritis in mice with collagen-induced arthritis. Scand J Rheumatol,2008,37(4):260-8.
    25. Lee JH, Ort T, Ma K, et al. Resistin is elevated following traumatic joint injury and causes matrix degradation and release of inflammatory cytokines from articular cartilage in vitro. Osteoarthritis Cartilage,2009,17(5):613-20.
    26. Gosset M, Berenbaum F, Salvat C, et al. Crucial role of visfatin/pre-B cell colony-enhancing factor in matrix degradation and prostaglandin E2 synthesis in chondrocytes:possible influence on osteoarthritis. Arthritis Rheum,2008,58(5):1399-409.
    1. Schaffler A, Muller-Ladner U, Scholmerich J, et al. Role of adipose tissue as an inflammatory organ in human diseases. Endocr Rev,2006,27(5):449-67.
    2. Toussirot E, Streit G, Wendling D. The contribution of adipose tissue and adipokines to inflammation in joint diseases. Curr Med Chem,2007,14(10):1095-100.
    3. Gosset M, Berenbaum F, Salvat C, et al. Crucial role of visfatin/pre-B cell colony-enhancing factor in matrix degradation and prostaglandin E2 synthesis in chondrocytes:possible influence on osteoarthritis. Arthritis Rheum,2008,58(5):1399-409.
    4. Brentano F, Schorr O, Ospelt C, et al. Pre-B cell colony-enhancing factor visfatin, a new marker of inflammation in rheumatoid arthritis with proinflammatory and matrix-degrading activities. Arthritis Rheum,2007,56(9):2829-39.
    5. Otero M, Lago R, Gomez R, et al. Changes in plasma levels of fat-derived hormones adiponectin, leptin, resistin and visfatin in patients with rheumatoid arthritis. Ann Rheum Dis,2006, 65(9):1198-201.
    6. 中华医学会骨科学分会.骨关节炎诊治指南(2007年版).中华骨科杂志,2007,27:793-796.
    7. Ding H SS, Vehmasa T, et al. Association between overweight and dip osteoarthritis among middle-aged Finnish female dentists and teachers. Obes Res Clin Prac,2008,2(1):61-68.
    8. Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin:a protein secreted by visceral fat that mimics the effects of insulin. Science,2005,307(5708):426-30.
    9. Berndt J, Kloting N, Kralisch S, et al. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes,2005,54(10):2911-6.
    10. Busso N, Karababa M, Nobile M, et al. Pharmacological inhibition of nicotinamide phosphoribosyltransferase/visfatin enzymatic activity identifies a new inflammatory pathway linked to NAD. PLoS One,2008,3(5):e2267.
    11. Tan BK, Chen J, Digby JE, et al. Increased visfatin messenger ribonucleic acid and protein levels in adipose tissue and adipocytes in women with polycystic ovary syndrome:parallel increase in plasma visfatin. J Clin Endocrinol Metab,2006,91(12):5022-8.
    12. Haider DG, Schindler K, Schaller G, et al. Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. J Clin Endocrinol Metab,2006,91(4):1578-81.
    13. Ye SQ, Simon BA, Maloney JP, et al. Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am J Respir Crit Care Med,2005,171(4):361-70.
    14. Jia SH, Li Y, Parodo J, et al. Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest,2004,113(9):1318-27.
    15. Clockaerts S, Bastiaansen-Jenniskens YM, Runhaar J, et al. The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue:a narrative review. Osteoarthritis Cartilage,2010, 18(7):876-82.
    16. Rho YH, Solus J, Sokka T, et al. Adipocytokines are associated with radiographic joint damage in rheumatoid arthritis. Arthritis Rheum,2009,60(7):1906-14.
    17. Bae SK, Kim SR, Kim JG, et al. Hypoxic induction of human visfatin gene is directly mediated by hypoxia-inducible factor-1. FEBS Lett,2006,580(17):4105-13.
    18. Segawa K, Fukuhara A, Hosogai N, et al. Visfatin in adipocytes is upregulated by hypoxia through HIF1alpha-dependent mechanism. Biochem Biophys Res Commun,2006,349(3):875-82.
    19. Amin AR, Dave M, Attur M, et al. COX-2. NO, and cartilage damage and repair. Curr Rheumatol Rep,2000,2(6):447-53.
    20. Aigner T, Fundel K, Saas J, et al. Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum,2006, 54(11):3533-44.
    21. Kapoor M, Martel-Pelletier J, Lajeunesse D, et al. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol,2011,7(1):33-42.
    22. Schwab W, Schulze-Tanzil G, Mobasheri A, et al. Interleukin-1 beta-induced expression of the urokinase-type plasminogen activator receptor and its co-localization with MMPs in human articular chondrocytes. Histol Histopathol,2004,19(1):105-12.
    23. Kobayashi M, Squires GR, Mousa A, et al. Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum,2005,52(1):128-35.
    24. Muir H. The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. Bioessays,1995,17(12):1039-48.
    25. Nagase H, Kashiwagi M. Aggrecanases and cartilage matrix degradation. Arthritis Res Ther, 2003,5(2):94-103.
    26. Mort JS, Billington CJ. Articular cartilage and changes in arthritis:matrix degradation. Arthritis Res,2001,3(6):337-41.
    27. Goldring MB. The role of the chondrocyte in osteoarthritis. Arthritis Rheum,2000, 43(9):1916-26.
    28. Cremer MA, Rosloniec EF, Kang AH. The cartilage collagens:a review of their structure, organization, and role in the pathogenesis of experimental arthritis in animals and in human rheumatic disease. J Mol Med,1998,76(3-4):275-88.
    29. Bruckner P, van der Rest M. Structure and function of cartilage collagens. Microsc Res Tech, 1994,28(5):378-84.
    30. 肖军,邱贵兴.骨关节炎软骨细胞表型异常分子机制的蛋白组学研究.2008,12-13.
    31. Roughley PJ, Lee ER. Cartilage proteoglycans:structure and potential functions. Microsc Res Tech,1994,28(5):385-97.
    32. Roughley PJ. The structure and function of cartilage proteoglycans. Eur Cell Mater,2006, 12:92-101.
    33. Martel-Pelletier J, Welsch DJ, Pelletier JP. Metalloproteases and inhibitors in arthritic diseases. Best Pract Res Clin Rheumatol,2001,15(5):805-29.
    34. Billinghurst RC, Dahlberg L, Ionescu M, et al. Enhanced cleavage of type Ⅱ collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest,1997,99(7):1534-45.
    35. Mitchell PG, Magna HA, Reeves LM, et al. Cloning, expression, and type Ⅱ collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest,1996, 97(3):761-8.
    36. Fosang AJ, Last K, Neame PJ, et al. Neutrophil collagenase (MMP-8) cleaves at the aggrecanase site E373-A374 in the interglobular domain of cartilage aggrecan. Biochem J,1994,304 (Pt 2):347-51.
    37. Zhen EY, Brittain IJ, Laska DA, et al. Characterization of metalloprotease cleavage products of human articular cartilage. Arthritis Rheum,2008,58(8):2420-31.
    38. Tortorella M, Pratta M, Liu RQ, et al. The thrombospondin motif of aggrecanase-1 (ADAMTS-4) is critical for aggrecan substrate recognition and cleavage. J Biol Chem,2000,275(33):25791-7.
    39. Wang B, Chen P, Jensen AC. et al. Suppression of MMP activity in bovine cartilage explants cultures has little if any effect on the release of aggrecanase-derived aggrecan fragments. BMC Res Notes,2009,2:259-67.
    1. Tsao TS, Tomas E, Murrey HE, et al. Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways. J Biol Chem, 2003,278(50):50810-7.
    2. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev,2005, 26(3):439-51.
    3. Hug C, Wang J, Ahmad NS, et al. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci U S A,2004. 101(28):10308-13.
    4. Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature,2003,423(6941):762-9.
    5. Kharroubi I, Rasschaert J, Eizirik DL, et al. Expression of adiponectin receptors in pancreatic beta cells. Biochem Biophys Res Commun,2003,312(4):1118-22.
    6. Ranscht B, Dours-Zimmermann MT. T-cadherin, a novel cadherin cell adhesion molecule in the nervous system lacks the conserved cytoplasmic region. Neuron,1991,7(3):391-402.
    7. Takeuchi T, Ohtsuki Y. Recent progress in T-cadherin (CDH13, H-cadherin) research. Histol Histopathol,2001,16(4):1287-93.
    8. Huang ZY, Wu Y, Hedrick N, et al. T-cadherin-mediated cell growth regulation involves G2 phase arrest and requires p21(CIP1/WAF1) expression. Mol Cell Biol,2003,23(2):566-78.
    9. Takeuchi T, Misaki A, Liang SB, et al. Expression of T-cadherin (CDH13, H-Cadherin) in human brain and its characteristics as a negative growth regulator of epidermal growth factor in neuroblastoma cells. J Neurochem,2000,74(4):1489-97.
    10. Lago R, Gomez R, Otero M, et al. A new player in cartilage homeostasis:adiponectin induces nitric oxide synthase type Ⅱ and pro-inflammatory cytokines in chondrocytes. Osteoarthritis Cartilage, 2008,16(9):1101-9.
    11. Choi HM, Lee YA, Lee SH, et al. Adiponectin may contribute to synovitis and joint destruction in rheumatoid arthritis by stimulating vascular endothelial growth factor, matrix metalloproteinase-1, and matrix metalloproteinase-13 expression in fibroblast-like synoviocytes more than proinflammatory mediators. Arthritis Res Ther,2009,11(6):R161.
    12. Tomizawa A, Hattori Y, Kasai K, et al. Adiponectin induces NF-kappaB activation that leads to suppression of cytokine-induced NF-kappaB activation in vascular endothelial cells:globular adiponectin vs. high molecular weight adiponectin. Diab Vasc Dis Res,2008,5(2):123-7.
    13. Lara-Castro C, Luo N, Wallace P, et al. Adiponectin multimeric complexes and the metabolic syndrome trait cluster. Diabetes,2006,55(1):249-59.
    14. Fruebis J, Tsao TS, Javorschi S, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A,2001,98(4):2005-10.
    15. Waki H, Yamauchi T, Kamon J, et al. Generation of globular fragment of adiponectin by leukocyte elastase secreted by monocytic cell line THP-1. Endocrinology,2005,146(2):790-6.
    16.郝东升,邱贵兴.脂肪因子在女性骨关节炎患者血浆和关节液中的分布及脂联素在骨关节炎中的作用.2010,P34-34.
    17. Waki H, Yamauchi T, Kamon J, et al. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J Biol Chem, 2003,278(41):40352-63.
    18. Kobayashi H, Ouchi N, Kihara S, et al. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ Res,2004,94(4):e27-31.
    19. Pajvani UB, Hawkins M, Combs TP, et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J Biol Chem,2004,279(13):12152-62.
    20. Ouchi N, Kihara S, Arita Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation,1999,100(25):2473-6.
    21. Yamauchi T, Hara K, Kubota N, et al. Dual roles of adiponectin/Acrp30 in vivo as an anti-diabetic and anti-atherogenic adipokine. Curr Drug Targets Immune Endocr Metabol Disord, 2003,3(4):243-54.
    22. Ouchi N, Kihara S, Arita Y, et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation,2001,103(8):1057-63.
    23. Tong KM, Chen CP, Huang KC, et al. Adiponectin increases MMP-3 expression in human chondrocytes through adiporl signaling pathway. J Cell Biochem,2011,112(5):1431-40.
    24. Chen TH, Chen L, Hsieh MS, et al. Evidence for a protective role for adiponectin in osteoarthritis. Biochim Biophys Acta,2006,1762(8):711-8.
    25. Hao D, Li M, Wu Z, et al. Synovial fluid level of adiponectin correlated with levels of aggrecan degradation markers in osteoarthritis. Rheumatol Int,2010, DOI:10.1007/s00296-010-1516-0.
    26. Lee SW, Kim JH, Park MC, et al. Adiponectin mitigates the severity of arthritis in mice with collagen-induced arthritis. Scand J Rheumatol,2008,37(4):260-8.
    27. Tsuchida A, Yamauchi T, Ito Y, et al. Insulin/Foxol pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem,2004,279(29):30817-22.
    1. Goldring SR, Goldring MB. The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin Orthop Relat Res,2004,427 (Suppl):S27-36.
    2. Vuolteenaho K, Moilanen T, Knowles RG, et al. The role of nitric oxide in osteoarthritis. Scand J Rheumatol,2007,36(4):247-58.
    3. Farrell AJ, Blake DR, Palmer RM, et al. Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann Rheum Dis,1992, 51(11):1219-22.
    4. Lotito AP, Muscara MN, Kiss MH, et al. Nitric oxide-derived species in synovial fluid from patients with juvenile idiopathic arthritis. J Rheumatol,2004,31(5):992-7.
    5. Karan A, Karan MA, Vural P, et al. Synovial fluid nitric oxide levels in patients with knee osteoarthritis. Clin Rheumatol,2003,22(6):397-9.
    6. Spreng D, Sigrist N, Schweighauser A, et al. Endogenous nitric oxide production in canine osteoarthritis:Detection in urine, serum, and synovial fluid specimens. Vet Surg,2001,30(2):191-9.
    7. Davis KL, Martin E, Turko IV, et al. Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol, 2001,41:203-36.
    8. Charles IG, Palmer RM, Hickery MS, et al. Cloning, characterization, and expression of a cDNA encoding an inducible nitric oxide synthase from the human chondrocyte. Proc Natl Acad Sci U S A, 1993,90(23):11419-23.
    9. Hauselmann HJ, Stefanovic-Racic M, Michel BA, et al. Differences in nitric oxide production by superficial and deep human articular chondrocytes:implications for proteoglycan turnover in inflammatory joint diseases. J Immunol,1998,160(3):1444-8.
    10. Del Carlo M, Schwartz D, Erickson EA, et al. Endogenous production of reactive oxygen species is required for stimulation of human articular chondrocyte matrix metalloproteinase production by fibronectin fragments. Free Radic Biol Med,2007,42(9):1350-8.
    11. Wu GJ, Chen TG, Chang HC, et al. Nitric oxide from both exogenous and endogenous sources activates mitochondria-dependent events and induces insults to human chondrocytes. J Cell Biochem, 2007,101(6):1520-31.
    12. Abramson SB. Nitric oxide in inflammation and pain associated with osteoarthritis. Arthritis Res Ther,2008,10 Suppl 2(S2.
    13. Amin AR, Di Cesare PE, Vyas P, et al. The expression and regulation of nitric oxide synthase in human osteoarthritis-affected chondrocytes:evidence for up-regulated neuronal nitric oxide synthase. J Exp Med,1995,182(6):2097-102.
    14. Vuolteenaho k. regulation of inducible Nitric Oxide synthase expression and nitric oxide production in osteoarthritic cartilage and chondrocytes.2005, P30-31.
    15. Geller DA, Lowenstein CJ, Shapiro RA, et al. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci U S A,1993,90(8):3491-5.
    16. Vallance P LJ. Blocking NO synthsis:how, where and why? Nat Rev Drug Discov,2002,1: 939-950.
    17. KM R. Molecular mechanism regulating iNOS expression in various cell types. J Tioxicol Environ Health B Crit Rev,2000,3:27-58.
    18. Taylor BS GD. Molecular regulation of the human inducible nitric oxide synthase (iNOS) gene. Shock,2000,13:413-424.
    19. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases:structure, function and inhibition. Biochem J,2001,357(Pt 3):593-615.
    20. Gonzalez-Gay MA LJ, Sanchez E, Lopez-Nevot MA, Amoli MM, Garcia-Porrua C, Ollier WE and Martin J. Inducible but not endothelial nitric oxide synthases polymorphism is associated with suscepitibility to rheumatoid arthritis in northwest Spain. Rheumatology 2004,43:1182-1185.
    21. Tatemichi M, Sawa T, Gilibert I, et al. Increased risk of intestinal type of gastric adenocarcinoma in Japanese women associated with long forms of CCTTT pentanucleotide repeat in the inducible nitric oxide synthase promoter. Cancer Lett,2005,217(2):197-202.
    22. Albrecht EW, Stegeman CA, Heeringa P, et al. Protective role of endothelial nitric oxide synthase. J Pathol,2003,199(1):8-17.
    23. Gao PS, Kawada H, Kasamatsu T, et al. Variants of NOS1, NOS2, and NOS3 genes in asthmatics. Biochem Biophys Res Commun,2000,267(3):761-3.
    24. Lee MS, Trindade MC, Ikenoue T, et al. Effects of shear stress on nitric oxide and matrix protein gene expression in human osteoarthritic chondrocytes in vitro. J Orthop Res,2002,20(3):556-61.
    25. Korhonen R, Lahti A, Kankaanranta H, et al. Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy,2005,4(4):471-9.
    26. Kleinert H, Schwarz PM, Forstermann U. Regulation of the expression of inducible nitric oxide synthase. Biol Chem,2003,384(10-11):1343-64.
    27. Melchiorri C, Meliconi R, Frizziero L, et al. Enhanced and coordinated in vivo expression of inflammatory cytokines and nitric oxide synthase by chondrocytes from patients with osteoarthritis. Arthritis Rheum,1998,41(12):2165-74.
    28. Ridnour LA, Windhausen AN, Isenberg JS, et al. Nitric oxide regulates matrix metalloproteinase-9 activity by guanylyl-cyclase-dependent and -independent pathways. Proc Natl Acad Sci U S A,2007,104(43):16898-903.
    29. Boileau C, Martel-Pelletier J, Moldovan F, et al. The in situ up-regulation of chondrocyte interleukin-1-converting enzyme and interleukin-18 levels in experimental osteoarthritis is mediated by nitric oxide. Arthritis Rheum,2002,46(10):2637-47.
    30. Bezerra MM, Brain SD, Greenacre S, et al. Reactive nitrogen species scavenging, rather than nitric oxide inhibition, protects from articular cartilage damage in rat zymosan-induced arthritis. Br J Pharmacol,2004,141(1):172-82.
    31. Maneiro E, Lopez-Armada MJ, de Andres MC. et al. Effect of nitric oxide on mitochondrial respiratory activity of human articular chondrocytes. Ann Rheum Dis,2005,64(3):388-95.
    32. Cherng YG, Chang HC, Lin YL, et al. Apoptotic insults to human chondrocytes induced by sodium nitroprusside are involved in sequential events, including cytoskeletal remodeling, phosphorylation of mitogen-activated protein kinase kinase kinase-1/c-Jun N-terminal kinase, and Bax-mitochondria-mediated caspase activation. J Orthop Res,2008,26(7):1018-26.
    33. Del Carlo M, Jr., Loeser RF. Nitric oxide-mediated chondrocyte cell death requires the generation of additional reactive oxygen species. Arthritis Rheum,2002,46(2):394-403.
    34. Mansfield K, Rajpurohit R, Shapiro IM. Extracellular phosphate ions cause apoptosis of terminally differentiated epiphyseal chondrocytes. J Cell Physiol,1999,179(3):276-86.
    35. Ouchi N, Kihara S, Funahashi T, et al. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation,2003,107(5):671-4.
    36. Ouchi N, Kihara S, Funahashi T, et al. Obesity, adiponectin and vascular inflammatory disease. Curr Opin Lipidol,2003,14(6):561-6.
    37. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev,2005, 26(3):439-51.
    38. Chen TH, Chen L, Hsieh MS, et al. Evidence for a protective role for adiponectin in osteoarthritis. Biochim Biophys Acta,2006,1762(8):711-8.
    39. Lago R, Gomez R, Otero M, et al. A new player in cartilage homeostasis:adiponectin induces nitric oxide synthase type Ⅱ and pro-inflammatory cytokines in chondrocytes. Osteoarthritis Cartilage, 2008,16(9):1101-9.
    40. Ehling A, Schaffler A, Herfarth H, et al. The potential of adiponectin in driving arthritis. J Immunol,2006,176(7):4468-78.
    41. Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell,1986,46(5):705-16.
    42. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination:the control of NF-[kappa]B activity. Annu Rev Immunol,2000,18:621-63.
    43. Blackwell TS, Christman JW. The role of nuclear factor-kappa B in cytokine gene regulation. Am J Respir Cell Mol Biol,1997,17(1):3-9.
    44. Haugen F, Drevon CA. Activation of nuclear factor-kappaB by high molecular weight and globular adiponectin. Endocrinology,2007,148(11):5478-86.
    45. Abramson SB. Osteoarthritis and nitric oxide. Osteoarthritis Cartilage,2008,16 (Suppl 2): 15-20.
    46. Roman-Blas JA, Jimenez SA. NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage,2006,14(9):839-48.
    47. Tang CH. Chiu YC. Tan TW, et al. Adiponectin enhances IL-6 production in human synovial fibroblast via an AdipoRl receptor, AMPK, p38, and NF-kappa B pathway. J Immunol,2007, 179(8):5483-92.
    48. Tong KM, Chen CP, Huang KC, et al. Adiponectin increases MMP-3 expression in human chondrocytes through adiporl signaling pathway. J Cell Biochem,2011,112(5):1431-40.
    49. Hao D, Li M, Wu Z, et al. Synovial fluid level of adiponectin correlated with levels of aggrecan degradation markers in osteoarthritis. Rheumatol Int,2010, DOI:10.1007/s00296-010-1516-0.
    1. World Health Organization. See [http://wwwwhoint/mediacentre/factsheets/fs311/en/indexhtml].
    2. Iannone F, Lapadula G. Obesity and inflammation--targets for OA therapy. Curr Drug Targets, 2010, 11(5):586-98.
    3. Felson DT, Anderson JJ, Naimark A, et al. Obesity and knee osteoarthritis. The Framingham Study. Ann Intern Med,1988,109(1):18-24.
    4. Anderson JJ, Felson DT. Factors associated with osteoarthritis of the knee in the first national Health and Nutrition Examination Survey (HANES I). Evidence for an association with overweight, race, and physical demands of work. Am J Epidemiol,1988,128(1):179-89.
    5. Hart DJ, Spector TD. The relationship of obesity, fat distribution and osteoarthritis in women in the general population:the Chingford Study. J Rheumatol,1993,20(2):331-5.
    6. Szoeke C, Dennerstein L, Guthrie J, et al. The relationship between prospectively assessed body weight and physical activity and prevalence of radiological knee osteoarthritis in postmenopausal women. J Rheumatol,2006,33(9):1835-40.
    7. Hart DJ, Doyle DV, Spector TD. Incidence and risk factors for radiographic knee osteoarthritis in middle-aged women:the Chingford Study. Arthritis Rheum,1999,42(1):17-24.
    8. Sharma L, Lou C, Cahue S, et al. The mechanism of the effect of obesity in knee osteoarthritis: the mediating role of malalignment. Arthritis Rheum,2000,43(3):568-75.
    9. Felson DT, Goggins J, Niu J, et al. The effect of body weight on progression of knee osteoarthritis is dependent on alignment. Arthritis Rheum,2004,50(12):3904-9.
    10. Lievense AM, Bierma-Zeinstra SM, Verhagen AP, et al. Influence of obesity on the development of osteoarthritis of the hip:a systematic review. Rheumatology (Oxford),2002, 41(10):1155-62.
    11. Reijman M, Pols HA, Bergink AP, et al. Body mass index associated with onset and progression of osteoarthritis of the knee but not of the hip:the Rotterdam Study. Ann Rheum Dis,2007, 66(2):158-62.
    12. Lohmander LS, Gerhardsson de Verdier M, Rollof J, et al. Incidence of severe knee and hip osteoarthritis in relation to different measures of body mass:a population-based prospective cohort study. Ann Rheum Dis,2009,68(4):490-6.
    13. Vingard E. Overweight predisposes to coxarthrosis. Body-mass index studied in 239 males with hip arthroplasty. Acta Orthop Scand,1991,62(2):106-9.
    14. Karlson EW, Mandl LA, Aweh GN, et al. Total hip replacement due to osteoarthritis:the importance of age, obesity, and other modifiable risk factors. Am J Med,2003,114(2):93-8.
    15. Carman WJ, Sowers M, Hawthorne VM, et al. Obesity as a risk factor for osteoarthritis of the hand and wrist:a prospective study. Am J Epidemiol,1994,139(2):119-29.
    16. Grotle M, Hagen KB, Natvig B, et al. Obesity and osteoarthritis in knee, hip and/or hand:an epidemiological study in the general population with 10 years follow-up. BMC Musculoskelet Disord, 2008,9:132.
    17. Yusuf E, Nelissen RG, Ioan-Facsinay A, et al. Association between weight or body mass index and hand osteoarthritis:a systematic review. Ann Rheum Dis,2010,69(4):761-5.
    18. Haara MM, Manninen P, Kroger H, et al. Osteoarthritis of finger joints in Finns aged 30 or over: prevalence, determinants, and association with mortality. Ann Rheum Dis,2003,62(2):151-8.
    19. Dahaghin S, Bierma-Zeinstra SM, Koes BW, et al. Do metabolic factors add to the effect of overweight on hand osteoarthritis? The Rotterdam Study. Ann Rheum Dis,2007,66(7):916-20.
    20. Hochberg MC, Lethbridge-Cejku M, Scott WW, Jr., et al. Obesity and osteoarthritis of the hands in women. Osteoarthritis Cartilage,1993,1(2):129-35.
    21. Sayer AA, Poole J, Cox V, et al. Weight from birth to 53 years:a longitudinal study of the influence on clinical hand osteoarthritis. Arthritis Rheum,2003,48(4):1030-3.
    22. Szoeke CE, Cicuttini FM, Guthrie JR, et al. Factors affecting the prevalence of osteoarthritis in healthy middle-aged women:data from the longitudinal Melbourne Women's Midlife Health Project. Bone,2006,39(5):1149-55.
    23. Fogarty AW, Glancy C, Jones S, et al. A prospective study of weight change and systemic inflammation over 9 y. Am J Clin Nutr,2008,87(1):30-5.
    24. Kim CS, Park US, Kawada T, et al. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int J Obes (Lond),2006, 30(9):1347-55.
    25. Carter KW, Hung J, Powell BL, et al. Association of Interleukin-1 gene polymorphisms with central obesity and metabolic syndrome in a coronary heart disease population. Hum Genet,2008, 124(3):199-206.
    26. Straczkowski M, Kowalska I, Nikolajuk A, et al. Increased serum interleukin-18 concentration is associated with hypoadiponectinemia in obesity, independently of insulin resistance. Int J Obes (Lond),2007,31(2):221-5.
    27. Cartier A, Lemieux I, Almeras N, et al. Visceral obesity and plasma glucose-insulin homeostasis: contributions of interleukin-6 and tumor necrosis factor-alpha in men. J Clin Endocrinol Metab,2008, 93(5):1931-8.
    28. Fontana L, Eagon JC, Trujillo ME, et al. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes,2007,56(4):1010-3.
    29. Rooney T, Murphy E, Benito M, et al. Synovial tissue interleukin-18 expression and the response to treatment in patients with inflammatory arthritis. Ann Rheum Dis,2004,63(11):1393-8.
    30. Futani H, Okayama A, Matsui K, et al. Relation between interleukin-18 and PGE2 in synovial fluid of osteoarthritis:a potential therapeutic target of cartilage degradation. J Immunother,2002,25 Suppl 1:S61-4.
    31. Dai SM, Shan ZZ, Nishioka K, et al. Implication of interleukin 18 in production of matrix metalloproteinases in articular chondrocytes in arthritis:direct effect on chondrocytes may not be pivotal. Ann Rheum Dis,2005,64(5):735-42.
    32. Pola E, Papaleo P, Pola R, et al. Interleukin-6 gene polymorphism and risk of osteoarthritis of the hip:a case-control study. Osteoarthritis Cartilage,2005,13(11):1025-8.
    33. Engstrom G, Gerhardsson de Verdier M, Rollof J, et al. C-reactive protein, metabolic syndrome and incidence of severe hip and knee osteoarthritis. A population-based cohort study. Osteoarthritis Cartilage,2009,17(2):168-73.
    34. Juge-Aubry CE, Somm E, Pernin A, et al. Adipose tissue is a regulated source of interleukin-10. Cytokine,2005,29(6):270-4.
    35. Kobayashi T, Yoshihara Y, Yamada H, et al. Procollagen HC-peptide as a marker for assessing mechanical risk factors of knee osteoarthritis:effect of obesity and varus alignment. Ann Rheum Dis, 2000,59(12):982-4.
    36. Loeser RF. Integrin-mediated attachment of articular chondrocytes to extracellular matrix proteins. Arthritis Rheum,1993,36(8):1103-10.
    37. Millward-Sadler SJ, Wright MO, Davies LW, et al. Mechanotransduction via integrins and interleukin-4 results in altered aggrecan and matrix metalloproteinase 3 gene expression in normal, but not osteoarthritic, human articular chondrocytes. Arthritis Rheum,2000,43(9):2091-9.
    38. Blain EJ, Gilbert SJ, Wardale RJ, et al. Up-regulation of matrix metalloproteinase expression and activation following cyclical compressive loading of articular cartilage in vitro. Arch Biochem Biophys,2001,396(1):49-55.
    39. Lin PM, Chen CT, Torzilli PA. Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage. Osteoarthritis Cartilage,2004,12(6):485-96.
    40. Newberry WN, Garcia JJ, Mackenzie CD, et al. Analysis of acute mechanical insult in an animal model of post-traumatic osteoarthrosis. J Biomech Eng,1998,120(6):704-9.
    41. Guilak F, Fermor B, Keefe FJ, et al. The role of biomechanics and inflammation in cartilage injury and repair. Clin Orthop Relat Res,2004,423:17-26.
    42. Millward-Sadler SJ, Salter DM. Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann Biomed Eng,2004,32(3):435-46.
    43. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science,1993,260(5111):1124-7.
    44. Ajubi NE, Klein-Nulend J, Nijweide PJ, et al. Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes--a cytoskeleton-dependent process. Biochem Biophys Res Commun,1996,225(1):62-8.
    45. Blum WF, Englaro P, Hanitsch S, et al. Plasma leptin levels in healthy children and adolescents: dependence on body mass index, body fat mass, gender, pubertal stage, and testosterone. J Clin Endocrinol Metab,1997,82(9):2904-10.
    46. Shamsuzzaman AS, Winnicki M, Wolk R, et al. Independent association between plasma leptin and C-reactive protein in healthy humans. Circulation,2004,109(18):2181-5.
    47. Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell,2001, 104(4):531-43.
    48. Dumond H, Presle N, Terlain B, et al. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum,2003,48(11):3118-29.
    49. Miller GD, Nicklas BJ, Davis CC, et al. Is serum leptin related to physical function and is it modifiable through weight loss and exercise in older adults with knee osteoarthritis? Int J Obes Relat Metab Disord,2004,28(11):1383-90.
    50. Canavan B, Salem RO, Schurgin S, et al. Effects of physiological leptin administration on markers of inflammation, platelet activation, and platelet aggregation during caloric deprivation. J Clin Endocrinol Metab,2005,90(10):5779-85.
    51. Otero M, Gomez Reino JJ, Gualillo O. Synergistic induction of nitric oxide synthase type Ⅱ:in vitro effect of leptin and interferon-gamma in human chondrocytes and ATDC5 chondrogenic cells. Arthritis Rheum,2003,48(2):404-9.
    52. Otero M, Lago R, Lago F, et al. Signalling pathway involved in nitric oxide synthase type II activation in chondrocytes:synergistic effect of leptin with interleukin-1. Arthritis Res Ther,2005, 7(3):R581-91.
    53. Simopoulou T, Malizos KN, Iliopoulos D, et al. Differential expression of leptin and leptin's receptor isoform (Ob-Rb) mRNA between advanced and minimally affected osteoarthritic cartilage; effect on cartilage metabolism. Osteoarthritis Cartilage,2007,15(8):872-83.
    54. Roach HI, Yamada N, Cheung KS, et al. Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum,2005,52(10):3110-24.
    55. Iliopoulos D, Malizos KN, Tsezou A. Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes:possible molecular target for osteoarthritis therapeutic intervention. Ann Rheum Dis,2007,66(12):1616-21.
    56. Kume K, Satomura K, Nishisho S, et al. Potential role of leptin in endochondral ossification. J Histochem Cytochem,2002.50(2):159-69.
    57. Griffin TM, Huebner JL, Kraus VB, et al. Extreme obesity due to impaired leptin signaling in mice does not cause knee osteoarthritis. Arthritis Rheum,2009,60(10):2935-44.
    58. Tong KM, Shieh DC, Chen CP, et al. Leptin induces IL-8 expression via leptin receptor, IRS-1, PI3K, Akt cascade and promotion of NF-kappaB/p300 binding in human synovial fibroblasts. Cell Signal,2008,20(8):1478-88.
    59. Busso N, So A, Chobaz-Peclat V, et al. Leptin signaling deficiency impairs humoral and cellular immune responses and attenuates experimental arthritis. J Immunol,2002,168(2):875-82.
    60. Steppan CM, Crawford DT, Chidsey-Frink KL, et al. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept,2000,92(1-3):73-8.
    61. Gordeladze JO, Drevon CA, Syversen U, et al. Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization:Impact on differentiation markers, apoptosis, and osteoclastic signaling. J Cell Biochem,2002,85(4):825-36.
    62. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev,2005, 26(3):439-51.
    63. Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature,2003,423(6941):762-9.
    64. Whitehead JP, Richards AA, Hickman IJ, et al. Adiponectin--a key adipokine in the metabolic syndrome. Diabetes Obes Metab,2006,8(3):264-80.
    65. Ouchi N, Kihara S, Funahashi T, et al. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation,2003,107(5):671-4.
    66. Ouchi N, Kihara S, Funahashi T, et al. Obesity, adiponectin and vascular inflammatory disease. Curr Opin Lipidol,2003,14(6):561-6.
    67. Ouchi N, Walsh K. A novel role for adiponectin in the regulation of inflammation. Arterioscler Thromb Vasc Biol,2008,28(7):1219-21.
    68. Chen TH, Chen L, Hsieh MS, et al. Evidence for a protective role for adiponectin in osteoarthritis. Biochim Biophys Acta,2006,1762(8):711-8.
    69. Lago R, Gomez R, Otero M, et al. A new player in cartilage homeostasis:adiponectin induces nitric oxide synthase type II and pro-inflammatory cytokines in chondrocytes. Osteoarthritis Cartilage, 2008,16(9):1101-9.
    70. Ehling A, Schaffler A, Herfarth H, et al. The potential of adiponectin in driving arthritis. J Immunol,2006,176(7):4468-78.
    71. Giles JT, Allison M, Bingham CO,3rd, et al. Adiponectin is a mediator of the inverse association of adiposity with radiographic damage in rheumatoid arthritis. Arthritis Rheum,2009, 61(9):1248-56.
    72. Hao D, Li M, Wu Z, et al. Synovial fluid level of adiponectin correlated with levels of aggrecan degradation markers in osteoarthritis. Rheumatol Int,2010, DOI:10.1007/s00296-010-1516-0.
    73. Lee SW, Kim JH, Park MC, et al. Adiponectin mitigates the severity of arthritis in mice with collagen-induced arthritis. Scand J Rheumatol,2008,37(4):260-8.
    74. Lewicki M, Kotyla P, Kucharz E. Etanercept increases adiponectin level in woman with rheumatoid arthritis. Clin Rheumatol,2008,27(10):1337-8.
    75. Filkova M, Liskova M, Hulejova H, et al. Increased serum adiponectin levels in female patients with erosive compared with non-erosive osteoarthritis. Ann Rheum Dis,2009,68(2):295-6.
    76. Harsch IA. Koebnick C, Wallaschofski H, et al. Resistin levels in patients with obstructive sleep apnoea syndrome--the link to subclinical inflammation? Med Sci Monit,2004,10(9):CR510-5.
    77. Reilly MP, Lehrke M, Wolfe ML, et al. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation,2005,111(7):932-9.
    78. Lee JH, Ort T, Ma K, et al. Resistin is elevated following traumatic joint injury and causes matrix degradation and release of inflammatory cytokines from articular cartilage in vitro. Osteoarthritis Cartilage,2009,17(5):613-20.
    79. Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin:a protein secreted by visceral fat that mimics the effects of insulin. Science,2005,307(5708):426-30.
    80. Berndt J, Kloting N, Kralisch S, et al. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes,2005,54(10):2911-6.
    81. Brentano F, Schorr O, Ospelt C, et al. Pre-B cell colony-enhancing factor/visfatin, a new marker of inflammation in rheumatoid arthritis with proinflammatory and matrix-degrading activities. Arthritis Rheum,2007,56(9):2829-39.
    82. Gosset M, Berenbaum F, Salvat C, et al. Crucial role of visfatin/pre-B cell colony-enhancing factor in matrix degradation and prostaglandin E2 synthesis in chondrocytes:possible influence on osteoarthritis. Arthritis Rheum,2008,58(5):1399-409.
    83. Busso N, Karababa M, Nobile M, et al. Pharmacological inhibition of nicotinamide phosphoribosyltransferase/visfatin enzymatic activity identifies a new inflammatory pathway linked to NAD. PLoS One,2008,3(5):e2267.
    84. Segawa K, Fukuhara A, Hosogai N, et al. Visfatin in adipocytes is upregulated by hypoxia through HIF1alpha-dependent mechanism. Biochem Biophys Res Commun,2006,349(3):875-82.
    85. Jia SH, Li Y, Parodo J, et al. Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest,2004,113(9):1318-27.
    86. Kunduzova O, Alet N, Delesque-Touchard N, et al. Apelin/APJ signaling system:a potential link between adipose tissue and endothelial angiogenic processes. FASEB J,2008,22(12):4146-53.
    87. Japp AG, Cruden NL, Amer DA, et al. Vascular effects of apelin in vivo in man. J Am Coll Cardiol,2008,52(11):908-13.
    88. Leeper NJ, Tedesco MM, Kojima Y, et al. Apelin prevents aortic aneurysm formation by inhibiting macrophage inflammation. Am J Physiol Heart Circ Physiol,2009,296(5):H1329-35.
    89. Han S, Wang G, Qi X, et al. Involvement of a Stat3 binding site in inflammation-induced enteric apelin expression. Am J Physiol Gastrointest Liver Physiol,2008,295(5):G1068-78.
    90. Daviaud D, Boucher J, Gesta S, et al. TNFalpha up-regulates apelin expression in human and mouse adipose tissue. FASEB J,2006,20(9):1528-30.
    91. Schaffler A, Ehling A, Neumann E, et al. Adipocytokines in synovial fluid. JAMA,2003, 290(13):1709-10.
    92. Otero M, Lago R, Gomez R, et al. Changes in plasma levels of fat-derived hormones adiponectin, leptin, resistin and visfatin in patients with rheumatoid arthritis. Ann Rheum Dis,2006, 65(9):1198-201.
    93. Ning L, Ishijima M, Kaneko H, et al. Correlations between both the expression levels of inflammatory mediators and growth factor in medial perimeniscal synovial tissue and the severity of medial knee osteoarthritis. Int Orthop,2010, DOI:10.1007/s00264-010-1045-1.
    94. Hu PF, Tang JL, Chen WP, et al. Increased apelin serum levels and expression in human chondrocytes in osteoarthritic patients. Int Orthop,2010, DOI:10.1007/s00264-010-1100-y.
    95. Nishimura A, Hasegawa M, Kato K, et al. Risk factors for the incidence and progression of radiographic osteoarthritis of the knee among Japanese. Int Orthop,2010, DOI: 10.1007/s00264-010-1073-x.
    96. Xie H, Tang SY, Cui RR, et al. Apelin and its receptor are expressed in human osteoblasts. Regul Pept,2006,134(2-3):118-25.
    97. Xie H, Yuan LQ, Luo XH, et al. Apelin suppresses apoptosis of human osteoblasts. Apoptosis, 2007,12(1):247-54.
    98. Tang SY, Xie H, Yuan LQ, et al. Apelin stimulates proliferation and suppresses apoptosis of mouse osteoblastic cell line MC3T3-E1 via JNK and PI3-K/Akt signaling pathways. Peptides,2007, 28(3):708-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700