基于生理分析和物质分配模拟的番茄微小根域栽培体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番茄(Solanum lycopersicum)具有较高的营养价值,是世界上最重要的蔬菜之一。针对目前温室番茄栽培中存在的缺少适宜无土栽培系统的问题,本文对新型微小基质栽培系统(Substrate Mini Culture System,SMCS)的研制、温室环境因子(温度、光照、基质水分含量等)及栽培管理措施(灌溉方式和密度)等对番茄生长发育、产量和品质的影响等进行了研究,旨在明确相关机理并优化栽培环节,为实际生产提供技术支持,为温室番茄精准化、数字化生产体系的构建提供数据参考。
     本文的主要研究结果如下:
     1.研制开发了微小根域基质栽培系统,基质厚度降至12cm,单株基质用量降低至1.63L。以番茄作为实验材料,分别于2010年秋季和2011年春季研究了其在微小根域基质栽培和盆栽两种栽培系统中的生长及产量品质。结果表明,微小根域基质栽培系统中的番茄植株长势、产量及品质显著优于盆栽;与盆栽(21L)相比,该系统的可节省基质222%、省水40~67%。
     2.研究了微小根域基质栽培系统中不同灌溉方式和栽培密度对番茄生长、生理特性、产量、品质的影响。结果表明:在该系统中,渗灌处理的番茄植株茎粗和叶面积显著高于滴灌处理,叶绿素含量略高于滴灌处理;低密度处理的番茄植株地下部分,如根体积及表面积优于高密度处理。低密度渗灌处理的单果重最大(185.62g)及单株产量最大(706.86g),果实品质中的含糖量和糖酸比高于其他;高密度渗灌处理的预期公顷产量最高(60.81t)。与盆栽对照相比,微小根域栽培番茄植株地上部分生长较快并显著改善果实品质,植株干物质分配系数差异显著。通过与盆栽对照的比较和从果实产量和品质方面综合考虑,在微小根域低密度(5.2株/m2)基础上进行合理密植的渗灌栽培为生产上的适宜选择。
     3.研究了不同栽培系统、栽培密度和灌溉方式对番茄光合特性和产量的影响。结果表明:试验四个处理光响应曲线的大小顺序为SFL>SDL>SFH>PDL,且作物产量和最大光合效率呈极显著正相关关系(P<0.01)。四个处理光饱和点大小顺序为SFL>SDL>SFH>PDL,光补偿点大小顺序为PDL>SFH>SDL>SFL,其中SFL处理日光合累计值和日蒸腾累计值最大。4个处理Ci日变化情况为U型曲线(SFL>SDL>SFH>PDL),Ls曲线则相反(PDL>SFH>SDL>SFL),其可能原因为SFL根系温度相对适宜,叶肉细胞光合能力高于其他处理。因此,微小根域渗灌低密度栽培番茄的光合能力和产量优于其他。此外,试验PDL处理水分利用率(A/E)最高,可通过减少微小根域栽培的灌溉量和灌溉次数提高水分利用率。
     4.以不同栽培系统、灌溉方式和栽培密度的试验资料所测得的叶面积指数和分配系数作为模型的输入参数,构建了不同处理进行了叶面积指数、干物质生产和分配模型,并对不同处理的模拟值和实测值进行比较。结果表明,该模型能较好地模拟不同处理条件下番茄叶面积指数和干物质分配,模拟值和实测值的相关系数均在0.9以上。叶面积指数的大小与植株生长速率和最终产量密切相关。4个处理叶面积指数、总干物质积累量和果实干物质积累量以及相对生长速率大小顺序均为SFH>SFL>SDL>PDL。通过不同处理间比较,发现微小根域高密度渗灌处理下番茄叶面积指数和干物质生产及分配优于3个低密度栽培处理,可为今后番茄工厂化生产中的合理密植及灌溉方式提供理论依据。
Tomato (Solanum lycopersicum), which has high nutritional value, is one of the world's most important vegetables. In order to solve the problem of lack of feasible soilless cultivation system for tomato in the current greenhouse production, this thesis focused on researching and developing new substrate mini culture system(SMCS), effects of environment factors (temperature, light, water content and matrix) and management of cultivation (irrigation methods and density) on the yield and quality of tomato. Totally, it aims to clearify the mechanism and optimizing cultivation system, providing the technical support for practical production and data reference for the digital and precision tomato cultivation in greenhouse.
     The main results were followed:
     1. A new-style substrate mini cultivation system (SMCS) was developed and was applied to tomato production. The substrate thickness was reduced to 12 cm and substrate dosage for per plant was reduced to 1.63 L with this system. According to the experiments in 2010 and 2011, we could find that SMCS get better results not only on growth and development, but also yield and quality. Compared with potted plants(21L), the system can save up 222% of the substrate and 40 to 67% of water.
     2. Effects of different irrigation methods and planting density on growth, fruit yield and quality of tomato were studied in the condition of mini cultivation. Results showed that stem diameter and leaf area of those plants watered by Filtration irrigation were significantly higher than that in drip irrigation, chlorophyll content slightly above the plant of drip irrigation; underground parts of plants in low density, such as root volume and surface area gave a better performance than those in high density. Plants of low density and filtration irrigation with the biggest weight (185.62g) of single fruit per plant also had the largest yield (706.86g). Meanwhile, its fruit qualities such as the sugar content and sugar-acid rate were higher than any other. The largest yield (60.81t) per hectare was got in treatment of low density and filtration irrigation. Compared with potting plant, aboveground parts of the plants in mini pot and its fruit quality were better. The difference in dry matter partitioning between the two pot-systems was significant. Compared with growing in potting, together with fruit yields and quality, the advantageous method for production is cultivation in mini pot integrated with filtration irrigation and reasonable close planting based on low density (5.2 plants/m2).
     3. Effects of different cultivation system, planting density and irrigation methods on the photosynthetic characteristics and tomato yield were studied. Results showed that: the secquence of four photosynthesis curves of light intensity was: SFL > SDL > SFH > PDL, and yields had direct correlativity with maximum photosynthetic efficiency (P < 0.01). The secquence of four treatments with light saturation point was SFL > SFH > SDL > PDL, while the secquence of four treatments with light compensation point was PDL > SFH > SDL > SFL. Photosynthetic accumulative value and transpiration accumulative value got to the peak in treatment SFL. Daily change of Ci appeared as U type curve (SFL > SDL > SFH > PDL) while the daily change of Ls totally different from Ci’s (PDL > SFH > SDL > SFL). The possible reason was that mesophyll cells of SFL plants in photosynthetic capacity were better than the other treatments due to the appropriate root temperature. Therefore, photosynthetic capacity and output of tomatos planted in mini root cultivation system with low density and infiltrating irrigation were better than others. In addition, the highest water use efficiency was got in treatment PDL. People could improve water use efficiency by reducing water amount and irrigation times in mini root cultivation system.
     4. The model for LAI, dry matter producing and partitioning was built based on data of different cultivation systems, irrigation methods, densities, and compared the simulated and measured results among 4 treatments. The results showed that the model could simulate tomato LAI and dry matter distribution appropriately under different treatments and the correlation coefficients were all more than 0.9. LAI was closely related to plant growth rate and final yield. The sequence of 4 treatments in LAI, total dry matter accumulation and fruit dry matter accumulation and relative growth rates was the same: SFH > SFL > SDL > PDL. Through the comparison between different treatments, we found LAI, dry matter production and distribution of tomatos planted in mini root cultivation system with high density and infiltrating irrigation were better than others. It could provide theory basis in reasonable density irrigation methods for factory production of tomato.
引文
[1]马淑萍,王戈,李建伟.我国设施园艺产业发展对策研究[J].长江蔬菜,2010,3:1-5.
    [2]邢如义,刘长江,刘洪家.寒区外向型设施蔬菜产业化模式的研究与探讨[J ].农机化研究,2002,11(4) :52-53.
    [3]李文荣.论设施农业的创新与发展[ J] .农机化研究, 2007(8):184-186.
    [4]何芬,齐飞,鲍顺淑,等.当前中国设施园艺发展存在的主要问题和建议[J].北方园艺.2010(15):29-32.
    [5]农业部种植业管理司.科学规划规范推进促进设施蔬菜持续健康发展(上) [J ].温室园艺,2009(6) :26-29.
    [6]周长吉.我国设施农业的新发展[ EB/ OL]. http:// www.amic.agri.gov.cn/DesktopModules/ Infos11/ Infos/ ThisInfo. aspx ? ItemID = 80656 &c= 216. 200928212.
    [7]廖桂平.作物智能化栽培管理系统的现状与发展[ J].中国农学通报,2000,16(5):34-37
    [8] Mckinion J.M. Baker D.N. Application of the GOSSYM/COMAX system to cotton crop management[ J].Agricultural System,1989,31:31-55
    [9]高亮之,金之庆,黄耀,等.水稻栽培计算机模拟优化决策系统[M].北京:中国农业科技出版社,1992,21-48
    [10]张桃林.中国农业机械化发展重大问题研究[M].北京:中国农业出版社,2009 :278.
    [11]鲍顺淑,齐飞,魏晓明,等.中国设施园艺发展的意义和作用[J].北方园艺.2010(15):25-28.
    [12]冯素伟,陈利.作物栽培专家系统的应用与发展[J ].安徽农业科学,2007,35(10):3120-3121
    [13]郭银巧,郭新宇,李存东.基于知识模型的玉米栽培管理决策支持系统[J ].农业工程学报,2006,22(10):163-166
    [14]肖荧南,戴逸民,胡锡宁,等.基于模拟模型的棉花生产管理系统研究[J ].农业工程学报,2002,18(6):161-164
    [15]朱艳,曹卫星,王绍华,等.小麦栽培管理知识模型系统的设计与实现[J ].南京农业大学学报,2002,25(3):12-16
    [16] Heuvelink, E. Tomato growth and yield: quantitative analysis and synthesis[D]. The Netherlands: Wageningen Agricultural University,1996
    [17]牛庆良.基于生理分析和生长模拟的甜瓜薄层基质生产系统构建[D].上海:上海交通大学生命科学与技术学院,2007.
    [18]苗子胜.当前我国设施农业建设中存在的问题及宏观管理[ J] .现代农业科技, 2008,19: 117-119.
    [19]陈杰,杨祥龙,周胜军,等.中国设施园艺研究现状与发展趋势[ J] .中国农学通报,2005, 21(1) :236-238.
    [20]郭世荣.无土栽培学[M].北京:中国农业出版社,2003,443.
    [21]邢禹贤.世界无土栽培及发展趋势[J].农业新技术新方法,1997(3):17-22.
    [22]王化.中国蔬菜无土栽培发展历史的初步探讨[J].上海蔬菜,1997(1):11-12.
    [23]柴晓芹.无土栽培及其发展趋势[J].甘肃农业科技,1999(1):4-5.
    [24]田吉林,汪寅虎.设施无土栽培基质的研究现状\存在问题与展望[J].上海农业学报,2000,16(4),87-92.
    [25]孙中华,李远新.蔬菜无土栽培技术的发展[J].辽宁农业科学,2004(4):34-35.
    [26]蒋卫杰,刘伟,余宏军,等.Development of soilless culture in mainland China.农业工程学报,2001,17:11-17.
    [27]徐永艳.我国无土栽培发展的动态研究[J].云南林业科技,2002,3:90-95.
    [28]李程,冯志红,李丁仁,等.蔬菜无土栽培发展现状及趋势[J].北方园艺,2002,6:9-11.
    [29]蒋卫杰.我国无土栽培的现状与展望[J].温室园艺,1997(7):2.
    [30]邢禹贤.无土栽培原理与技术[M].北京:农业出版社,1990:80-85.
    [31]王皓生.花卉蔬菜无土栽培技术[M].长沙:湖南科学技术出版社,1997:2-31.
    [32]徐伟忠,王利炳,詹喜法,等.一种新型栽培模式——气雾培的研究[J].广东农业科学,2006,7:30-34.
    [33]黄宇翔,贾芬,陈希.气培对黄瓜生理特性影响的初报.长江蔬菜,1996,4:35-37.
    [34]吴吉仁,程意意,张智勇,等.NFT栽培下不同营养液对提高蔬菜营养的作用.上海师范大学学报(自然科学版),1996,25(4):59-64.
    [35]王玉彦,史影辉,陶正平,等.DFT无土栽培系统的改进及其应用效果.吉林蔬菜,1997,6:4-5.
    [36]寿伟林,徐志豪,陈杰,等.FCH中双层根际湿毡对樱桃番茄生长发育的影响.浙江农业科学,2004,1:4-5.
    [37]段彦丹,樊力强,吴志刚,等.蔬菜无土栽培现状及发展前景[J].北方园艺,2008,8:63-65.
    [38]谭学文,刘培鑫.甜瓜基质栽培技术及生产成本的研究[J].北京农业科学,1995,13(4):29-30
    [39]蒋卫杰,刘伟,余宏军.我国有机生态型无土栽培技术研究[J].生态农业研究,2000,8(3):17-21
    [40]卜崇兴,李式军.无土栽培新装置根区环境温、湿度及设施内地表湿度变化[J].上海农业学报,2003,19(3):83-86
    [41]龚颂福,李止正.立柱无土栽培研究初报[J].应用与环境生物学报,1995,2(2):187-188
    [42]牛庆良,卜崇兴,黄丹枫.甜瓜基质栽培主要管理技术图解.农村实用工程技术[J].温室园艺,2005,1:37-41
    [43]徐培培.薄层基质无土栽培技术及其简化应用[J].长江蔬菜,1998,12:28-30.
    [44]周跃华,聂艳丽,赵永红,等.国内外固体基质研究概况[J].中国农业生态学报.2005,13(4):40-43.
    [45]王世平,张才喜,罗菊花,等.果树根域限制栽培研究进展[J].果树学报. 2002,19:298-301.
    [46]于克辉,韩凤珠,赵岩,等.限根技术在果树设施栽培的应用[J].北方果树. 2004,(z1):61-62.
    [47] Bar-Tal,A.,Pressman,E., Root restriction and potassium and calcium soIution con centrations affect dry-matier Production,cation uptake,and blossom-end rot in greenhouse tomato[J].Amer.Soc.Hort.Sci.1996,121:649-655.
    [48] Zhu,L.N.,Wang,S.P.,Yang,T.Y.,etal.Vine growth and nitrogen metabolismof’Fujiminori’grapevines in respense to root restriction[J].Sci.Hort.2006,107(2):143-149.
    [49] De Grazia,J.,Tittonell,P.,Chiesa,A..Pepper(Capsicum annuum L.) transplant growth as affected by growing medium compression and cell size[J].Agronornie.2002,22(5):503-509.
    [50] Imai,S.,Okamaoto,G.,Endo,M..Effect of dense planting and root system control on attaining greater early production and fruit stability of tetraploid grapes[J].Bull.Hiroshima Fruit Tree Expt.Sta.1987,12:1-9.
    [51] Mandre,O.,Rieger,M.,Myers,S.C.,etal.Interaction of root confinement and fruting in peach[J].Amer.Soc.Hort.Sci.1995,120:228-234.
    [52] Anon. Root restriction improves nutritional va1ues of hydroponicaIly cu1tured leafy vegetables[J].Hortscience.2005,40:1055-1055.
    [53]戚昌翰.作物生长模拟的研究进展[J].作物杂志, 2002, 5(2):9-15.
    [54]孙忠富,陈人杰.温室园艺作物生长发育模型研究现状与发展趋势[J] .园艺学报, 2001, 28(增刊):700-704.
    [55] Heuvelink E. Growth, development and yield of a tomato crop:periodic destructive measurements in a greenhouse. Scientia Horticulturae, 1995, 61: 77-99.
    [56] Jang H.G.C. Ultivar differences in production irregularity in sweet pepper. Department of Horticulture. Wageningen Agricultural University, 1998, (48): 221-243.
    [57] Acock B. Crop modeling in the USA. Acta Hort., 1989, 248: 356-372.
    [58]李娟,郭世荣,罗卫红等.温室黄瓜光合生产与干物质积累模拟模型.[J]植物生态学报, 2005, 22(2):129-133.
    [59]倪纪恒,罗卫红,李永秀等.温室番茄叶面积与干物质生产的模拟.[J]中国农业科学, 2005, 38(8):1629-1635.
    [60] Marcelis L.F.M. Simulation of biomass allocation in greenhouse crops-a review[J].Acta Hortic.1993(328):49-67.
    [61]赵凌侠,李景富.番茄起源、传播及分类的回顾[J].中国种业,1999(3):29-31
    [62] World Processing Tomato Council,World Tomato Production Estimate,20th October,2008.
    [63]陈火英,张建华,钟建江,等.野生番茄耐盐性研究及其利用[J].华东理工大学学报,2001.27(1):51-55.
    [64]李君明,宋燕,朱彤,等.番茄耐盐分子育种研究进展.分子植物育种2006,4(1): 111-116.
    [65]中国农业科学院农业经济与发展研究所.灌溉水资源节约利用研究[ EB/ OL].2008.09. http://www.iae.org.cn/yanjiudt/xmbg/doc/1/2007YWF1%A3%AD04%A3%AD4%C1%F5%BE%B2.pdf,pp37.
    [66] FAOSTAT.http:// faost at.fao.org/site/567/DesktopDefault.aspx?PageID= 567.
    [67]庞胜群,王祯丽,张润,等.新疆加工番茄产业现状及发展前景[J].中国蔬菜,2005(2):39-41.
    [68]余庆辉,赵得提,韩启新,等.加工番茄生产技术创新战略研究[J].新疆农业科学.2006,43(S1):1-4.
    [69]舒海波.有机土栽培方式影响温室栽培番茄产量和品质的研究[D].呼和浩特:内蒙古农业大学.2009.
    [70] Yu J Q,Mstsui Y.Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings[J].J.Chem.Eco1.,1997,23:817-827
    [71]吴彤东.设施番茄连作障碍的生态控制关键技术研究[J].苏州:苏州大学园艺学院.2009.
    [72]胡元森,李翠香,杜国营,等.黄瓜根分泌物中化感物质的鉴定及其化感效应[J].生态环境,2007,16(3):954-957.
    [73]周晓芬,杨军芳.不同施肥措施及EM菌剂对大棚黄瓜连作障碍的防治效果[J].河北农业科学,2004,8(4):89-92.
    [74]冯红贤,杨暹,李欣允,等.蔬菜连作对土壤生物化学性质的影响[J].长江蔬菜,2004,(11):40-43.
    [75]陈章良.植物基因工程研究.北京:北京大学出版社,1993.
    [76]党建友,陈永杰,雷振字.两种有机肥及氮磷钾配施对塑料大棚番茄产量的影响[J].陕西农业科学,2006,(1):28-29.
    [77]张春兰,吕卫,袁飞,等.生物有机肥减轻设施栽培黄瓜连作障碍的效果[J].中国农学通报,1999(15):67-69.
    [78]喻景权,杜尧舜.蔬菜设施栽培可持续发展中的连作障碍[J].沈阳农业大学学报,2003,31(1):24-126.
    [79]林岩,马源,吴娟.蔬菜无土栽培技术发展概况[J].现代农业科技.2008,19:143-144.
    [80]皮广洁.农业资源利用与管理·面向21世纪课程教材[ M].北京:中国林业出版社, 2000.
    [81]李亚灵.番茄生产水分利用效率研究进展[J].北方园艺.2011,9:205-207.
    [82]宛成刚.工厂化农业——新世纪中国农业的希望[J].南京农专学报.2001,17(1):25-30.
    [83]黄丹枫,牛庆良.现代化温室生产效益评析[J].沈阳农业大学学报.2000,31(1):18-22.
    [84]陈国辉,郭艳玲,宋文龙.温室发展现状及我国温室需要解决的主要问题[J].林业机械与木工设备.2004,3(2):11-12.
    [85]牛庆良,黄丹枫.网纹甜瓜薄层基质无土栽培[J].温室园艺.2005,7:34-37.
    [86]韩道杰.基质配方对有机基质栽培番茄生长、生理特性及产量品质的影响[D].泰安:山东农业大学园艺学院.2008.
    [87]刘清华.西瓜番茄红素的测定及遗传效应分析[D].乌鲁木齐:新疆农业大学林学与园艺学院.2009.
    [88]霍建芳.不同番茄品种果实性状比较[J].安徽农业科学,2006.34(11):2376-2379.
    [89]莫豪葵.浅析环境因子对番茄生长的影响[J].吉林农业.2011,7:157-158.
    [90]李爱卓.秦王川灌区日光温室番茄自压微水头软管微孔灌膜下调亏灌溉研究[D].兰州:甘肃农业大学工学院.2009.
    [91]冯玉龙,刘恩举,张宝友.根系温度对番茄的影响(Ⅰ)[J].植物研究. 1996,16(1):133-140.
    [92]宋敏丽,温祥珍,李亚灵.根际高温对植物生长和代谢的影响综述[J].生态学杂志.2010,29(11):2258-2264.
    [93]王世平,张才喜,罗菊花等.果树根域限制栽培研究进展[J].果实学报, 2002,19(5):298-301.
    [94] Ne Smith D. S., John R. D.. The effect of container size[J].HortTechnology.1998,8(4):495-498.
    [95]谢兆森,李勃,许文平等.根域限制对葡萄果实发育和主要营养物质含量的影响[J].植物生理学通讯.2008.44(5):927-930
    [96] Ronchi C.P., DaMatta F.M., Karine D.B et al. Growth and photosynthetic down-regulation in coffea Arabica in response to restricted root volume[J]. Functional Plant Biology.2006,33(11):1013-1023
    [97] De Grazia J., Tittonell P., Chiesa A. Pepper(Capsicum annuum L.)transplant growth as affected by growing medium compression and cell size[J].Agronomie.2002,22(5):503-509
    [98]徐进,齐艳花,李红岭等.不同栽培密度与留果数对秋大棚番茄生长发育及产量的影响[J].北京农业, 2009, (12):41-44.
    [99]刘明池,刘向莉.不同灌溉方式对番茄生长和产量的影响[J].华北农学报,2005.20(1):93-95.
    [100]朱晋宇,温祥珍,李亚灵.基于源库生长单位的温室番茄干物质生产-分配模拟[J].生态学报.2009.29(12):6527-6533
    [101]韩道杰.基质配方对有机基质栽培番茄生长、生理特性及产量品质的影响[D].泰安:山东农业大学园艺学院.2008.
    [102]刘清华.西瓜番茄红素的测定及遗传效应分析[D].乌鲁木齐:新疆农业大学林学与园艺学院.2009.
    [103]张承林, Bravdo B.A..根系限制对酿酒葡萄生长发育的影响[J].园艺学报.2001,28(5):448-450.
    [104]李灵芝,李海平,弓志青,等.现代化温室番茄植株各器官鲜物质和干物质分配规律的研究[J].江西农业大学学报.2003,25(4):553-557.
    [105]杨洪强,李林光,接玉玲.园艺植物的根系限制及其应用[J].园艺学报.2001,28(增刊):705-710.
    [106]霍建芳.不同番茄品种果实性状比较[J].安徽农业科学,2006.34(11):2376,2379
    [107] Webster A.D., Vaughan S.P., Lucas A.S. et al. Effects of tree age at planting, root manipulation and trickle irrigation on growth and cropping of apple(Malus pumila) cultivar Queen Cox on M.9 rootstock[J].Journal of horticultural science & biotechnology.2003,78(5):680-688.
    [108] Zhu LN, Wang SP, Yang TY, et al. Vine growth and nitrogen metabolism of 'Fujiminori' grapevines in response to root restriction[J].Scientia Horticulture.2006,107(2),143-149.
    [109]舒英杰,周玉丽.蔬菜植物光合作用研究进展[J].长江蔬菜.2005,10:34-41.
    [110] Elizabeth T M, Charles S V, Scott W D. Containerized muskmelon transplants: cell volume effects on pretransplanting development and subsequent yield[ J ]. Hortscience, 1996, 31(1):58-61.
    [111]师恺.果菜类蔬菜根系限制下能量代谢变化及其调控机制[D].杭州:浙江大学农业与生物技术学院.2007.
    [112]潘静娴,黄丹枫,王世平等.根域体积对甜瓜幼苗生长及光合特性的影响[J].西北植物学报.2001,21(4):637-643.
    [113]梁宇,高玉葆,陈世苹,等.干旱胁迫下内生真菌感染对黑麦草实验种群光合、蒸腾和水分利用的影响[J].植物生态学报,2001,25(5):537-543.
    [114]李英才,薛琳,孙福荣,等.加工番茄光合日变化及影响因子的研究[J].北方园艺.2009(4):4-7.
    [115]蔡时青,许大全.大豆叶片C02补偿点和光呼吸的关系[J].植物生理学报.2000,26(6):545—550.
    [116]李玉巧,桑艳鹏,姜红,等.加工番茄光合特性的研究[J].安徽农业科学.2007,35(15):4436-4437.
    [117]李英才,薛琳,孙福荣,等.加工番茄光响应特征及其与产量的相关性研究[J].安徽农业科学.2009,37(7):2853-2588.
    [118]许大全.光合速率、光合效率与作物产量[J].生物学通报,1999,34(8):8-9.
    [119]潘瑞炽.植物生理学[M].北京:高等教育出版社.1979:95-101.
    [120]张振贤,周绪元,陈利平等.主要蔬菜作物光合和蒸腾特性研究[J].园艺学报.1997,24(2):155-160.
    [121]徐俊增,彭世彰,丁加丽等.控制灌溉的水稻气孔限制值变化规律试验研究[J].水利学报.2006,37(4):486-492.
    [122] Huitzimengari Campos, Carlos Trejo, Cecilia B,et al. Effect of partial rootzone drying on growth, gas exchange, and yield of tomato (Solanum lycopersicum L.)[J].scientia horticulturae.2009,12:493-499.
    [123]赵玉萍,邹志荣,杨振超,等.不同温度和光照对温室番茄光合作用及果实品质的影响[J].西北农林科技大学学报(自然科学版).2010,38(5):125-131.
    [124] L.F.M.Marcelis,E.Heuvelink,J.Goudriaan.Modelling biomass production and yield of horticultural crops:a review[J].Scientia Horticulturae,1998,74:83–111.
    [125] Boote KJ.Analysis of spatial yield variability using a combined crop model-empiricalapproach[J]. Transactions of the American society of Agricultural and Biological Engineers,2006,49(3):811-818.
    [126]肖申根.温室番茄干物质优化分配与苗期生长模拟研究[D].长沙:湖南农业大学.2004.
    [127]倪继恒,罗卫红,李永秀等.温室番茄叶面积与干物质生产的模拟[J].中国农业科学. 2005,38(8):1629-1635.
    [128] Heuvelink E, Dry matter production in tomato: measurement and simulation[J]. Annals of Botany,1995,75:369-379.
    [129] Heuvelink E.BUISKOOL R.P.M, Influence of sink-source interaction on dry-matter production in tomato[J].Annals of Botany,1995.75:381-389.
    [130] Heuvelink E. Dry matter production in tomato: validation of a dynamic simulation model[J].Annals of Botany,1996,77:71-80.
    [131]王尧.温室黄瓜干物质积累经验模型的构建及其与机理模型的比较[D].北京:中国农业大学农学与生物技术学院.2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700