小卫星追踪拦截制导问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小卫星具有成本低、重量轻、研制周期短和发射灵活等优点,利用小卫星平台作为空间攻防武器具有明显的优势。本文以攻防小卫星的追踪拦截制导为研究背景,针对小卫星的特点,对天基拦截的远程导引段、中制导段和末制导段的轨道优化设计和精确制导等关键技术进行了深入研究。
     首先对小卫星平台用于空间攻防时所具备的功能进行了分析,归纳了小卫星攻防任务的轨道机动模式;然后基于系统工程思想对小卫星攻防任务进行规划,明确了攻防任务的飞行阶段划分、组成元素及关键技术,通过分析给出了可行的拦截方案;最后建立了系统级的拦截任务模型。本章内容为后续的研究奠定了基础。
     针对小卫星平台的推力和燃料受限等因素,主要研究天基拦截远程制导律的设计方法。建立了两圆轨道之间Lambert拦截问题的初始条件、转移时间和燃料消耗量之间的关系,提出了燃料、时间以及交会角等约束条件下的多脉冲拦截问题求解方法,并设计了减少燃料消耗和缩短拦截时间的远程制导策略及交会角受限情况下的最优多脉冲拦截问题的求解算法,显著降低了约束情况下的天基拦截燃料消耗和拦截时间。
     针对攻防小卫星共轨式追踪拦截方式的远程制导问题,建立了考虑J2摄动影响下的有限推力轨道转移问题的准最优解析方法。在自由滑行段采用开普勒轨道改进解析方法,提出了求解追踪拦截问题的迭代制导算法;基于逐次消除终端零控脱靶量的思想,并采用遗传算法对点火时刻、关机时刻和推力方向进行优化,设计了一种多次推力弧段的制导算法,显著降低了有限推力制导问题的计算量。
     对几种典型零控拦截流形的精度进行了数值仿真,分析了中制导结束时刻的必要条件;推导了以零控拦截流形为终端约束的最优中制导律的表达式;在此基础上,考虑小卫星平台特殊的发动机布局,设计了通过调整相对距离、相对距离的一阶导数和视线角速度将拦截器导引到零控拦截流形上的中制导律,能够满足中、末制导的交班条件。
     设计了末制导段的模糊模型参考学习控制(FMRLC)算法。在该算法中采用了基于动态聚焦(DFL)机制的模糊控制方法和模糊规则的自适应学习,改进了自学习过程中学习区域过小的问题,增强了末制导系统对干扰的适应能力,有效地提高了末制导律的鲁棒性和制导控制精度。
Small satellites have several advantages including lower mission cost, smaller size, built and launched more guickly, and so on, which make small satellites predominant to be the platform of space weapons. In this paper, the tail-case intercept mission scenario utilized a smallsatellite as an interceptor is the research background. The key technologies including the optimal trajectory planning and precision guidance technology are systematically studied. The long-range guidance scheme, midcourse and terminal guidance law are designed and analyzed based on the characteristic of small satellites.
     Firstly, the operation functions of small satellites worked as the platforms of space weapons are introduced. Then, the operation mission based on small satellites is planned with system view, and the components and key technologies are defined, and also the flight phases of the whole rendezvous trajectory are demonstrated. At last, the mission model is established. This research work is the basis of the following research.
     The long-range guidance law considers the situation that the fuel the smallsatellite holds and the transfer time are limited. The relation of characteristic velocity, transfer time, and initial angle for Lambert’s transfer problem between two circular orbits is analyzed by both analytical and numerical methods. The solution methods of the optimal intercept problem under the constraints of fuel, transfer time, and rendezvous angle are investigated, at the same time, the method decreasing the fuel expenditure and transfer time is given. The simulation results prove the long-range guidance law is effective.
     For the problem of small satellite co-orbital maneuver, the analytical guidance method with J2 perturbation based on the homogenious central force field is derived. The iterative guidance arithmetic to solve the tail-case intercept problem is present, in which the analytical solutions are substituted by the orbit papameters of Keplerian orbit. An approach to solve multiple-thrust transfer problem is investigated by use of the design idea of every thrust eliminating a part of the position miss at the terminal time. Genetic algorithm is utilized to optimize the ignition time, thrust time and thrust direction. Simulation results test that the fuel expenditure is decreased.
     The quantitative precision analysis for several classic zero-effort-intercept manifolds is made, and the necessary conditions at the burnoff time of the midcourse phase are deduced from the simulation results. The optimal midcourse guidance with the terminal constraints being the zero-effort-intercept manifold is derived. A midcourse guidance scheme by regulating the relative distance, the first order derivative of the relative distance, and the sightline angle speed is given, which can satisfy the initial requirety of the terminal guidance phase.
     Fuzzy Model Reference Learning Control (FMRLC) is designed. In the algorithm, dynamically focused learning (DFL) strategy based fuzzy control and adaptive learning of fuzzy rules are adopted. The problem of too small learning region in the learning is overcomed. The ability to adapt the disturbance and the control precision are improved.
引文
1 M. Bille. Future Military Applications of Small Satellites. AIAA Defense and Civil Space Programs Conference and Exhibit, Huntsville, 1998: 28-30
    2 M. Bille, R. Kane. Military Microsatellites-Matching Requirements and Technology. AIAA Space 2000 Conference and Exposition, Long Beach, CA: 19-21
    3 F. Jr. Morring. Smallsats Grow up. Avitation Week & Space Technlogy. 2003, 159(23): 46-50
    4 P. W. Kervin, J. L. Africano, et al. Small Satellite Characterization Technologies Applied to Orbital Debris. Advances in Space Research. 2005, 35(7):1214-1225
    5 A. S. Curriel. Advanced Small Satellite Constellations to Meet Challenging Earth Science Missions. 57th International Astronautical Congress, Valencia, Spain, 2006: 2-6
    6 D. Zimpfer, P. Kachmar, S. Tuohy. Autonomous Rendezvous, Capture and In-Space Assembly: Past, Present and Future. 1st Space Exploration Conference: Continuing the Voyage of Discovery, Oriando, Florida, 2005:234-245
    7 J. Shoemaker, M. Wright. Orbital Express Space Operations Architecture Program. Proceedings of SPIE-The International Society for Optical Engineering, Orlando, FL, United States, 2004: 57-65
    8 D. A. Barnhart, R. C. Hunter, A. R. Weston, et al. XSS-10 Micro-satellite Demonstration. AIAA Defense and Civil Space Programs Conference and Exhibit, Huntsville, AL, 1998: 28-30
    9 XSS 11. http://space.skyrocket.de/doc_sdat/xss-11.htm
    10 J. Lewis. Autonomous Proximity Operations: A Coming Collision in Orbit. http://www.cissm.umd.edu/papers/files/autonomous_ proximity. pdf
    11林来兴.从深度撞击探测器看空间拦截技术的发展.航天控制. 2006, 24(1): 92-96
    12林来兴.微小卫星空间攻防的轨道构型与动力学. 863航天航空技术. 2006(5): 22-32
    13王佳,于小红.轨道机动作战中的待机轨道研究.航天控制. 2005, 23(5):17-22
    14黄思勇,徐培德.空间武器平台潜伏轨道分布模型研究.航天控制. 2007, 25(3): 53-56
    15 K. Galabova, G. Bounova, et al. Architecting a Family of Space Tugs Based on Orbital Transfer Mission Scenarios. AIAA Space 2003 Conference and Exposition, Long Beach, California: 23-25
    16 J. R. Doll, F. W. Gobetz. Survey of Impulsive Trajectories. AIAA Journal. 1969, 7(5): 801-834
    17 J. D. Griggith, L. Singh, et al. Optimal Microsatellite Cluster Design for Space-Based Tracking Missions. AIAA Guidance, Navigation, and Control Conference, South Carolina, 2007: (2266-2277)
    18郭海林,曲广吉.航天器空间交会过程综合变轨策略研究.中国空间科学技术. 2004(3): 60-67
    19王旭东,李新峰等.中国巴西地球资源卫星的轨道捕获和轨迹交会控制.航天控制. 2000(3): 50-55
    20 R. H. Battin. An Introduction to the Mathematics and Methods of Astrodynamics. AIAA, Washington DC, 1987: 568-600
    21 P. Joonhyung, R. G. Rhinehart, et al. Miss Analysis in Lambert Interceptions with Application to a New Guidance Law. Proceedings of the American Control Conference, Chicago, IL, 2000(2): 1344-1348
    22 S. L. Nelson, Z. Paul. Alternative Approach to the Solution of Lambert's Problem. Journal of Guidance Control and Dynamics. 1992, 15(4): 1003-1009
    23 I. Dario. Lambert's Problem for Exponential Sinusoids. Journal of Guidance Control and Dynamics. 2006, 29(5): 1242-1245
    24 S. P. Burns, J. J. Scherock. Lambert Guidance Routine Designed to Match Position and Velocity of Ballistic Target. Journal of Guidance Control and Dynamics. 2004, 27 (6 ): 989-996
    25 P. Chandeok, G. Vincent, et al. Solving Optimal Continuous Thrust Rendezous Problems with Generating Functions. Journal of Guidance Control and Dynamics. 2006, 29(2):321-331
    26 J. E. White. A Lambert Targeting Procedure for Rocket Systems that Lack Velocity Control. AIAA Guidance, Navigation and Control Conference,Boston, MA, 1989: 146-154
    27 J. E. White. Guidance and Targeting for the Strategic Target System. Journal of Guidance Control and Dynamics. 1992, 15(6): 1313-1319
    28贾沛然,汤建国.运用速度增益制导实现对目标卫星的拦截.国防科技大学学报. 1992, 14(2): 72-77
    29 J. E. JR. Cochran, D. A. Haynes. Constrained Initial Guidance Algorithm. Journal of Guidance Control and Dynamics. 1990, 13(2): 193-197
    30 D. F. Lawden. Rocket Trajectory Optimization: 1950-1963. Journal of Guidance Control and Dynamics. 1991, 14(4): 16-23
    31 D. J. Jezewski, H. L. Rozendaal. An Efficient Method for Calculating Optimal Free-Space N-Impulsive Trajectories. AIAA Journal. 1968, 6(11):2160-2165
    32 M. Handelsman, P. M. Lion. The Primer Vector on Fixed-Time Impulsive Trajectories. American INST of Aeronautics and Astronautics, Aerospace Sciences Meeting, STH, New York, 1967: 23-26
    33 C. A. Lambeck, J. E. Prussing. Optimal Impulsive Intercept with Low-thrust Rendezvous Return. Journal of Guidance Control and Dynamics. 1993, 16(3): 426-433
    34 J. E. Prussing, L. J. Wellnitz. Optimal Impulsive Time-Fixed Direct-Ascent Interception. Journal of Guidance Control and Dynamics. 1989, 12(4): 487-494
    35 S. Y. Park, K. H. Choi. Optimal Low-Thrust Intercept/Rendezvous Trajectories to Earth-Crossing Objects. Journal of Guidance Control and Dynamics. 2005, 28(5): 1049-1055
    36 R. Bevilacqua, M. Romano. Fuel-Optimal Spacecraft Rendezvous with Hybrid On-Off Continuous and Impulsive Thrust. Journal of Guidance Control and Dynamics. 2007, 30(4): 1175-1178
    37 J. T. Betts, W. P. Huffman. Path-Constrained Trajectory Optimization Using Sparse Sequential Quadratic Programming. Journal of Guidance Control and Dynamics. 1993, 16(1):59-68
    38 B. R. Haufler, D. J. Jezewski. Operational Constraints in Optimal Impulsive Rendezvous Trajectories. Advances in the Astronautical Sciences. 1993, 82(1): 515-536
    39 N. X. Vinh, P. Lu, et al. Optimal Interception with Time Constraint. Journal of Optimization Theory and Applications. 1990, 66(3): 361-390
    40 D. R. Taur, V. C. Coverstone, J. E. Prussing. Optimal Impulsive Time-Fixed Orbital Rendezvous and Interception with Path Constraints. Journal of Guidance Control and Dynamic. 1995, 18(1):54-60
    41韩潮,段彬等.远程导引可行飞行方案寻求算法研究.中国空间科学技术. 2002(1): 47-52, 63
    42 Y. H. Kim, D. B. Spencer. Optimal Orbital Rendezvous Using Genetic Algorithms. Advances in the Astronautical Sciences. 2002 (109): 2479-2496
    43王石,祝开建等.用EA求解非固定时间轨道转移和拦截问题.国防科技大学学报. 2001, 23(5): 1~4
    44 Y. Z. Luo, G. J. Tang. Optimization of Multiple-Impulse, Multiple-Revolution, Rendezvous-Phasing Maneuvers. Journal of Guidance Control and Dynamics. 2007, 30(4): 946-952
    45 Y. Z. Luo, Y. J. Le. Optimal Multi-Objective Nonlinear Impulsive Rendezvous. Journal of Guidance Control and Dynamics. 2007, 30(4): 994-1000
    46 Y. Z. Luo, G. J. Tang. Optimization of Perturbed and Constrained Fuel-Optimal Impulsive Rendezvous Using a Hybrid Approach. Engineering Optimization. 2006, 38(8): 959-973
    47 N. Yokoyama, S. Suzuki. Modified Genetic Algorithm for Constrained Trajectory Optimization. Journal of Guidance Control and Dynamics. 2005, 28(1): 139-144
    48蔡远文,于小红.服务型航天器共轨式轨道机动方式研究.航天控制. 2007, 25(5): 7-12
    49 H. Shen, P. Tsiotras. Optimal Scheduling for Servicing Multiple Satellites in a Circular Constellation. AIAA/AAS, Astrodynamics Specialists Conference, Monterey, CA, 2002: 1560-1564
    50 H. Shen, P. Tsiotras. Peer-to-Peer Refueling for a Satellite Constellation. 42nd IEEE Conference on Decision and Control, Maui Hi, 2003: 4345-4350
    51 Y. Gao. Advances in Low-Thrust Trajectory Optimization and Flight Mechanics. University of Missouri-Columbia, 2003: 1-20
    52 G. Menqali, A. A. Quarta. Fuel-optimal, Power-Limited Rendezvous withVariable Thruster Efficiency. Journal of Guidance Control and Dynamics. 2005, 28(6): 1194-1199
    53 J. T. Betts. Survey of Numerical Methods for Trajectory Optimization. Journal of Guidance Control and Dynamics. 1998, 21(2): 193-207
    54 C. L. Ranieri, C. A. Ocampo. Optimization of Roundtrip, Time-Constrained, Finite-Burn Trajectories via an Indirect Method. Journal of Guidance Control and Dynamics. 2005, 28(2): 775-781
    55 A. J. Trask, W. J. Mason. Optimal Interplanetary Trajectories Using Constant Radial Thrust and Gravitational Assists. Journal of Guidance Control and Dynamics. 2004, 27(3): 503-506
    56 Z. C. Hong, F. C. Hsu, J. S. Chen.Vertical Ascent to Geosynchronous Orbit with Constrained Thrust Angle. Journal of Spacecraft and Rockets. 2000, 37(1): 64-70
    57 I. Y. Vasiliev, B. N. Kiforenko, et al. Averaging of Equations of Optimal Motion in Strong Central Gravitational Field with Constant and Controllable Thrust. Journal of Automation and Information Science. 2005, 37(10): 29-37
    58 O. M. Kamel, M. K. Ammar. Velocity Corrections in Generalized Coplanar Coaxial Hohmann and Bi-elliptic Impulsive Transfer Orbits. Acta Astronautica. 2006, 58(5): 243-250
    59 M. R. Akella, R. A.Broucke. Anatomy of the Constant Radial Thrust Problem. Journal of Guidance Control and Dynamics. 2002, 25(3): 563-570
    60荆武兴,吴瑶华,王学孝.小卫星三轴稳定模式下的有限推力轨道转移.中国空间科学技术. 1996, (5): 51-57
    61 A. A. Sukhanov, A. A. Prado. Constant Tangential Low-thrust Trajectoris near an Oblate Planet. Journal of Guidance Control and Dynamics. 2001, 24(4): 723-731
    62 Y. Gao, C. A. Kluever. Analytic Orbital Averaging Technique for Computing Tangential-Thrust Trajectories. Journal of Guidance Control and Dynamics. 2005, 28(6): 1320-1323
    63韩京清.拦截问题中的导引律.北京:国防工业出版社, 1977: 61-75
    64 M. A. Massoumnia. Optimal Midcourse Guidance Law for Fixed-Interval Propulsive Maneuvers. Journal of Guidance Control and Dynamics. 1998, 18(3): 465-470
    65 A. R. Deihoul. A Near Optimal Midcourse Guidance Law Based on Spherical Gravity. AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California, 2002:5-8
    66 V. C. Lam. Acceleration-Compensated Zero-Effort-Miss Guidance Law. Journal of Guidance Control and Dynamics. 2007, 30(4): 1159-1163
    67 S. H. Jalali-Naini. Modern Midcourse Guidance Law with High-Order Dynamics. AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, Texas, 2003: 11-14
    68 S. H. Jalali-Naini, B. Ebrahimi. Modified Guidance with N-Fixed-Interval Propulsive Maneuvers. AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California, 2002: 5-8
    69 F. K. Yeh, H. H. Chien, L. C. Fu. A Midcourse Guidance Law for Missiles with Thrust Vector Control. Proceedings of the American Control Conference, Arlington, VA, 2001: 2357-2362
    70 B. Newman. Strategic Intercept Midcourse Guidance using Modified Zero Effort Miss Steering. Journal of Guidance Control and Dynamics. 1996, 19(1): 107-112
    71 B. Newman. Spacecraft Intercept Guidance Using Zero Effort Miss Steering. AIAA, 1993: 1701-1706
    72 B. Newman. Robust Conventional Based Midcourse Guidance for Spacecraft Intercepts. Proceedings of the American Control Conference, Seattle, Washington, 1995, 5: 3116-312
    73刘世勇,吴瑞林.大气层外拦截弹中段制导研究.宇航学报. 2005, 26(2): 156-163
    74 D. Zes. Exoatmospheric Intercept using Modified Proportional Guidance with Gravity Correction for Coast Phase.Aerospace Sciences Meeting and Exhibit, 32nd, Reno, NV, 1994: 10-13
    75 D. Zes. Exo-Atmospheric Intercept with J2 Correction. AIAA Guidance, Navigation, and Control Conference and Exhibit, Boston, MA, 1998: 10-12
    76汤建国,贾沛然.运用比例导引实现对目标卫星的拦截.系统工程与电子技术. 2001, 23(2): 25-27
    77刘卫东,高立娥等.基于零控曲面的拦截导引方法.系统仿真学报. 2005, 17(8): 1803~1819
    78 E. J. Song, M. J Tahk. Three-Dimensional Midcourse Guidance using Neural Networks for Interception of Ballistic Targets. IEEE Transactions on Aerospace and Electronic Systems. 2002, 38(2): 404-414
    79 E. J. Song, M. J. Tahk. Real-time Neural-Network Midcourse Guidance. Control Engineering Practice. 2001, 9(10): 1145-1154
    80 H. L. Choi, M. J. Tahk, et al. Neural Network Guidance Based on Pursuit-Evasion Games with Enhanced Performance. Control Engineering Practice. 2006 (14): 735-742
    81 A. L. Smith. Proportional Navigation with Adaptive Terminal Guidance for Aircraft Rendezvous. Journal of Guidance Control and Dynamics. 2008, 31(6): 1832-1835
    82 T. Takehira, N. X. Vinh, et al. Analytical Solution of Misssile Terminal Guidance. Journal of Guidance Control and Dynamics. 1998, 21(2): 342-348
    83 Y. Ulybyshev. Terminal Guidance Law based on Proportional Navigation. Journal of Guidance Control and Dynamics. 2005, 28(4): 821-824
    84 P. K. Menon, V. R. Iragavarapu. Blended Homing Guidance Law using Fuzzy Logic. AIAA Guidance, Navigation, and Control Conference and Exhibit, Boston, MA, 1998:10-12
    85 P. J. Yuan, M. G. Chen, et al. Extended Proportional Navigation. AIAA Guidance, Navigation, and Control Conference and Exhibit, Denver, CO, 2000:14-17
    86 A. V. Savkin, P. N. Pathirana, et al. Problem of Precision Missile Guidance: LQR and H ? Control Framework. IEEE Transactions on Aerospace and Electronic Systems. 2003, 39(3): 901-910
    87 O. Belapolsky, J. Z. Ben-Asher. On Two Formulations of Linear Quadratic Optimal Guidance. AIAA Guidance, Navigation, and Control Conference and Exhibit, Denver, CO, 2007:20-23
    88康长赓,陈光权,刘新民等.某型导弹模型参考自适应控制系统设计.弹箭与制导学报. 2000, 20(3):16-19
    89陈光权.驾束制导导弹模型参考自适应控制系统研究.北京,北京理工大学博士论文, 2000: 78-92
    90 L. Ping, D. B. Doman, et al. Adaptive Terminal Guidance for Hypervelocity Impact in Specified Direction. Journal of Guidance Control and Dynamics.2006, 29(2): 269-278
    91 Y. Chen. Design of Fuzzy Logic Guidance Law against High Speed Target. Journal of Guidance Control and Dynamics. 2000, 23(1):17-25
    92 C. S. Shieh. Nonlinear Rule-Based Controller for Missile Terminal Guidance. IEE Proc. Control Theory Apply. 2003, 150(1): 45-48
    93 Y. D. Lu, M. Yang, et al. Design of Fuzzy-Logic-Based Terminal Guidance Law. Proceedings of the Fourth International Conference on Machine Learning and Cyberbetics, GuangZhou, China, 2005: 18-21
    94 C. L. Lin, H. W. Su. Intelligent Control Theory in Guidance and Control System Design: an Overview. Proceeding of the National Science Coucil, Republic of China, Part A: Physical Science and Engineering. 2000, 24(1): 15-30
    95 K. S. AI-Olimat, A. A. Ghandakly, et al. Induction Motor Speed Control via Fuzzy Logic Modification of Reference Model. IEEE Power Engineering Society General Meeting, Tampa, FL, 2007: 35-39
    96 V. Adimurthy, M. Y. Prasad, S. K. Shivakumar. Space Mission Planning and Operations. Current Science. 2007, 93(12): 1791-1811
    97 P. S. Gill, D. Garcia, W. W. Vaughan. Engineering Lessons Learned and Systems Engineering Applications. 43rd AIAA Aerospace Sciences Meeting and Exihibit, Reno, Nevada, 2005: 10-13
    98 H. McManus. Understanding the Orbital Transfer Vehicle Trade Space. AIAA Space 2003 Conference and Exposition, Long Beach, California, 2003: 23-25
    99 K. Rosebush, T. lee, et al. Laboratory to Le-Science and Technology in Air Force Space Command Strategic Planning. AIAA Space Technology Conference and Exposition, Albuqueque, NM, 1999: 28-30
    100孙俊堂.一个天基拦截器寻的制导的综合方法.现代防御技术. 1991 (5): 36~43
    101周克强,高晓光,白奕.反卫星卫星攻击方式研究.飞行力学. 2006, 24(4): 80~83
    102林晓辉,张锦绣,曹喜滨.基于平均轨道要素的轨道修正方法.吉林大学学报(工学版). 2005, 35(5):556-561
    103 M. Pachter, G. B. Chatterji. An Integrated Approach for Homing Guidance ofSpace Based Interceptors. American Control Conference, San Diego, CA 1990: 2863-2868
    104任萱.人造地球卫星轨道力学.国防科学技术大学出版社,长沙, 1988: 125-133
    105 D. J. Jezewski, J. M. Stoolz. A Closed-Form Solution for Minimum-Fuel, Constant-Thrust Trajectories. AIAA Journal. 1970, 8(7): 1229-1234
    106 P. Zarchan. Tactical and Strategic Missile Guidance, Fourth Edition. American Institute of Aeronautics and Astronautics, 2002: 168-192
    107 D. J. Jezewski. An Optimal, Analytic Solution to the Linear-Cravity, Constant-Thrust Trajectory Problem. AIAA Journal. 1971, 8(7):793-796
    108杨颖波,李忠应.反战术弹道导弹的模糊末制导.现代防御技术. 1998, 26(5):23-31
    109 J. R. Layne, K. M. Passino. Fuzzy Model Reference Learning Control. Journal of Intelligent and Fuzzy Systems. 1996, 4(1):33-47
    110 W. A. Kwong, K. M. Passino. Dynamically Focused Fuzzy Learning Control. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics. 1991, 26(1):53-74
    111 Y. Ulybyshev. Direct High-Speed Interception: Analytic Solutions, Qualitative Analysis, and Applications. Journal of Spacecraft and Rockets. 2001, 38(3): 351-359

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700