用户名: 密码: 验证码:
空间非合作目标飞行器在轨交会控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类探索、开发和利用外层空间的深入,对交会对接技术提出了更高的要求,诸如故障航天器的在轨捕获与维修、空间垃圾清除等课题已成为航天技术发展需要面对和解决的课题,而非合作目标的交会与捕获技术是解决这些问题必需的关键技术。空间非合作目标飞行器一般泛指一类不能提供有效合作信息的空间物体,包括故障或失效卫星、空间碎片等。本学位论文针对空间非合作飞行器交会控制问题进行了深入的研究,主要研究内容包括:
     建立了航天器轨道动力学模型,近圆轨道相对运动模型和在视线坐标系下的相对运动模型以及基于四元素的绝对、相对动力学模型。绝对运动模型为考虑J 4项轨道摄动的精确轨道模型。近圆轨道相对运动模型为C-W方程,在忽略轨道摄动,并且追踪航天器无控制加速度的情况下可以得到相对运动的解析解。以惯性坐标系为基准的视线坐标系下相对运动模型,在相对加速度为零的情况下可以得到解析解,可以用于交会精度的分析。建立航天器间基于四元素的相对姿态运动模型。
     研究了几种空间交会制导方法。首先研究了基于C-W方程的双脉冲交会方法,应用遗传算法针对伴飞航天器由共面椭圆伴飞轨道不同位置出发,与中心航天器进行直接碰撞交会和软交会的燃料最优问题进行了研究,应用多元线性回归分析得到了直接碰撞最优交会问题的解析表达式。然后研究了视线制导方法,并进行数学仿真分析。研究了航天器相对姿态控制问题,给出了数学仿真结果。
     研究了航天器运动于偏心率较大的大椭圆轨道时,基于视线角的相对导航问题。所建立的相对导航模型,考虑了地球扁率摄动J 2项。提出了通过追踪航天器在垂直于轨道平面方向进行轨道机动,解决仅有视线角信息的相对导航系统由于缺少相对距离信息带来的可观性不足的问题,并通过数学仿真和理论分析证明了通过追踪航天器的轨道机动可以使系统可观,提高相对导航精度。
     研究了在轨捕获空间慢速翻滚目标的控制问题。假设追踪航天器利用短机械臂捕获目标航天器,要求追踪航天器接近并同步跟踪目标航天器的捕获目标点,首先针对质心运动控制目标设计了反馈控制律,研究了避免碰撞的燃料最优交会问题,并根据研究结果,从保证交会过程安全无碰撞和节省燃料的角度改进了反馈控制律。最后,根据所设计的改进反馈控制律,提出了相对姿态控制方案。
     研究了考虑工程约束情况下,单个微型航天器和微型航天器群与空间非合作目标的交会问题。研究中,假设微型航天器上的捕获装置为附着捕获装置。首先针对微型航天器的各种星载设备受限的情况,基于C-W方程,设计了空间交会初制导律,此种初制导律可节省航天器燃料消耗并为末制导提供良好的交班条件;由在视线坐标系内的相对运动方程出发,设计了自寻的末制导律,以保证足够的交会精度。然后研究了微型航天器群与非合作目标的交会问题,设计了群体编队队形,提出了队形初始化和队形保持的控制方法。
There is a demand for the ability to autonomously inspect or rendezvous with noncooperative target due to the continuous increase of orbit activity. This technique may be used for servicing a malfunctioning satellite, re-fueling a powerless satellite, or collecting and removing space debris. This dissertation deeply studies the control methods for rendevous with noncooperative target in spece. The main contents of this dissertation are as follows:
     Fuel optimization for rendezvous between formation flying spacecraft with one or two impulses is studied. Optimal rendezvous time is calculated by genetic algorithm. Resolution expression of rendezvous with one impulse is founded by processing results of calculation with multivariate linear regression method. A controller for terminal approach is derived from relative motion equation founded in line of sight frame. The method of relative attitude control is designed. Angles-only relative navigation model considering J2 perturbation is presented for tracking and rendezvous with noncooperative target in highly elliptical orbit. For there are inherent problems in the ability of angles-only relative navigation system to determine the range to the Target, impulsive out-of-plane maneuvers of the Chaser are used to improve the navigation accuracy. The simulation results and theoretical analysis show that angles-only relative navigation with chaser vehicle maneuvers to improve observability is effective.
     To rescue the control-deficient target spacecraft, the chaser spacecraft are demanded to track the capture point at first. Fuel optimal control for capture of a free tumbling target considering collision avoidance is studied. The proportional-integral-derivative (PID) control method is used, and is improved to avoid collision between two spacecraft and to reduce fuel consume. The relative attitude controller are designed to meet the demand of relative attitude during Chaser tracking Target by the approved PID controller. According to the simulation results, the improved PID control method and the relative attitude control method are effective.
     The micro-satellite with limited capacity is demanded to capture noncooperative target. An initial control method and an end control method are designed to allow the micro-satellite to meet the demand. The initial control method based on C-W equations could save the fuel of micro-satellite and make a good initial condition for end control. The end control is derived from the relative motion equation in line of sight frame. The sufficient condition for success end approach is given. In order to improve the probability to capture target, the formation flying of micro-satellites is designed, and the control methods to initialize and keep the formation are derived. The simulation results show that the control methods designed are effective.
引文
1李金宗,逯仁贵等.空间交会对接技术.哈尔滨工业大学出版社,1997.
    2唐国金,罗亚中等.空间交会对接任务规划.科学出版社,2008.
    3林来兴.空间交会对接技术.国防工业出版社,1995.
    4 S.J. Welsh, K. Subbarao. Adaptive Synchronization and Control of Free Flying Robots for Capture of Dynamics Free-Floating Spacecrafts. AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Providence, Rhode Island, 2004.
    5 D. Zimpfer, P. Kachmar, S. Tuohy. Autonomous Rendezvous, Capture and In-Space Assembly: Past, Present and Future. 1st Space Exploration Conference: Continuing the Voyage of Discovery. 30 January -1 February 2005, Orlando, Florida. AIAA 2005-2523.
    6 J. Ross. D. Musliner, T. Kreider, J. Jacobs, M. Fisher. Configurable Spacecraft Control Architectures for On-orbit Servicing and Upgrading of Long Life Orbital Platforms. Aerospace Conference Proceedings, USA, 2004.
    7 R.W. Madison. Micro-Satellite Based, On-orbit Servicing Work at the Air Force Research. Aerospace Conference Proceedings, USA, 2000:215-225.
    8 P. Huang, Y. Xu, B. Liang. Tracking Trajectory Planning of Space Manipulator for Capturing Operation. International Journal of Advanced Robotic Systems, 2006,3(3):211-218.
    9郭继峰,王平,崔乃刚.大型空间结构在轨装配技术的发展.导弹与航天运载技术.2006,3:28-35.
    10刘涛,解永春.非合作目标交会相对导航方法研究.航天控制, 2006,24(2):48-53.
    11陈统,徐世杰.非合作式自主交会对接的终端接近模糊控制.2006,27(3):416-421.
    12王峰,曹喜滨.受约束在轨服务航天器近距离交会制导算法.系统工程与电子技术. 2006,28(10):1578-1582.
    13王峰,曹喜滨,耿云海.椭圆轨道上在轨服务航天器绕飞轨道设计及控制.吉林大学学报. 2006, 36(3): 410-416.
    14 G.. Budris. Integrating Secondaries on Delta II(Overview of XSS-10).Aerospace Conference Proceedings, USA, 2004.
    15 D.A. Barnhart, R.C. Hunter, A.R. Weston, V.J. Chioma. XSS-10 Micro-Satellite Demonstration. American Institute of Aeronautics and Astronautics, USA, 1998:339-346
    16 N. Inaba, M. Oda. Autonomous Satellite Capture by a Space Robot. International Conference on Robotics & Automation, San Francisco, 2000
    17 S. Matsumoto, S. Jacobsen, S. Dubowsky, and Y. Ohkami. Approach planning and guidance for uncontrolled rotating satellite capture considering collision avoidance. Proc. of 7th Symposium on Artificial Intelligence, Robotics and Automation in Space. NARA, Japan, 2003.
    18 S. Matsumoto, S. Dubowsky, S. Jacobsen, and Y. Ohkami. Fly-by Approach and Guidance for Uncontrolled Rotating Satellite Capture. Proc. of the AIAA Guidance, Navigation, and Control Conference, Austin, TX, August, 2003.
    19朱仁璋.航天器交会对接技术.国防工业出版社,2007.
    20 D.R. Wings. Orbital Recovery's Responsive Commercial Space Tug for Life Extension Missions. AIAA Space 2004 Conference and Exhibit, San Diego, California, September, 28-30, 2004, AIAA-2004-6118.
    21 W.H. Cloheesy, R.S. Witshire. Terminal guidance system for satellite rendezvous. Journal of the Aerospace Science. 1960,27(9):653-674.
    22 D.J. Jezewski, J.D. Donaldson. An Analytic Approach to Optimal Rendezvous Using Clohessy-Wiltshire Equations. The Journal of the Astronautical Sciences. 1979, 27(3):293-310.
    23 D.J. Jezewski. Primer Vector Theory Applied to the Linear Relative-Motion Equations. Optimal Control Applications and Methods. 1980, 1:387-401.
    24林来兴,王立新.空间交会对接的双脉冲最优控制.航天控制, 1996,(1):12-18.
    25谌颖,王旭东.多冲量最优交会.航天控制,1992,10(1):25-32.
    26陈新海,陈文胜.航天器四冲量固定时间最优交会.宇航学报,1994,15(4):71-79.
    27许伦挥,徐建闽,周其节.交会对接远距离接近段制导研究.飞行力学,1998,16(2):90-96.
    28荆武兴,耿云海,杨旭,吴瑶华.空间交会的最优轨道机动.中国空间科学技术,1998,18(2):22-27.
    29向开恒,肖业伦.空间交会中脉冲变轨燃料消耗研究.中国空间科学技术,1999,19(3):9-15.
    30齐映红,曹喜滨.三脉冲最优交会问题的解法.吉林工业大学学报,2006,36(4):608-612.
    31王旭东,潘科炎,谌颖.空间交会最优控制理论和方法的研究进展.航天控制,1993,11(4):26-31.
    32王华,唐国金.用遗传算法求解双脉冲量最优交会问题.中国空间科学技术,2003,23(1):26-30.
    33李晨光,肖业伦.多脉冲C-W交会的优化方法.宇航学报,2006,27(2):172-176.
    34 C.L. Karr, L.M. Freeman and D.L. Meredith. Genetic-algorithm-based Fuzzy Control of Spacecraft Autonomous Rendezvous. Engineering Applications of Artificial Intelligence,1997,10(3):293-300.
    35 J.U. Park, K.H. Choi and S. Lee. Orbital Rendezvous Using Two-Step Sliding Mode Control. Aerospace Science and Technology, 1999,3(4):239-245.
    36 A. Richards, J. How. Performanace Evaluation of Rendezvous Using Model Predictive Control. AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, Texas, August, 11-14, 2003, AIAA-2003-5507.
    37 K.M. Soileau, S.A. Sternt, Path-Constrained, Rendezvous: Necessary and Sufficient Conditions. Journal of Spacecraft and Rockets, 1986,23(5):492-498.
    38吴美平,吴瑞林.约束条件下水平冲量多弧段交会机动方案设计.航天控制,2001,19(4):53-58.
    39 Y.Z. Luo, G.J. Tang and H.Y. Li. Optimization of Multiple-Impulse Minimum-Time Rendezvous Using a Hybrid Genetic Algorithm. Aerospace Science and Technology,2006,10(6):534-540.
    40 Y.Z. Luo, Y.J. Lei, G.J. Tang. Optimal of Multi-objective Nonlinear Rendezvous. AIAA Journal of Guidance, Control and Dynamics, 2007,30(4):994-1002.
    41 Y.Z. Luo, G.J. Tang, Y.J. Lei. Optimal of Multi-objective Linlinear Rendezvous. AIAA Journal of Guidance, Control and Dynamics, 2007,30(2):383-389.
    42 Y.Z. Luo, Y.H. Yang, G.J. Tang. Hybrid Approach to Optimize a RendezvousPhasing Strategy. AIAA Journal of Guidance, Control and Dynamics, 2007,30(1):185-191.
    43 D.F. Lawden. Optimal Trajectories for Space Navigation. Butterworths. London, 1963.
    44 P.M. Lion, M. Handelsman. Primer Vector on Fixed-time Impulsive Trajectories. AIAA Journal, 1968,6(1):127-132.
    45 D.J. Jezewski, H.L. Rozendaal. An Efficient Method for Calculating Optimal Free-Space N-Impulse Trajectories. AIAA Journal, 1968,6(11):2160-2165.
    46 J.E. Prussing, J.H. Chiu. Optimal Multiple-Impulse Time-Fixed Rendezvous Between Circular Orbits. Journal of Guidance Control and Dynamics, 1986,9(1):17-22.
    47 J.A. Kechichian. Optimal Low-Thrust Transfer Using Variable Bounded Thrust. Acta Astronautica. 1995, 36(7):357-365.
    48 J.A. Kechichian. Optimal Low-Thrust Rendezvous Using Equinoctial Orbit Elements. Acta Astronautica. 1996, 38(1):1-14.
    49 J.E. Prussing. A Class of Optimal Two-Impulse Rendezvous Using Multiple-Revolution Lambert Solutions. The Journal of the Astronautical Sciences, 2000,48(2):131-148.
    50 H.J. Shen, P. Tsiotras. Optimal Two-Impulse Rendezvous Using Multiple-Revolution Lambert Solutions. Journal of Guidance Control and Dynamics, 2003,26(1):50-61.
    51雷勇,汤国建,王旭东.联盟TM交会对接的地面远程导引段制导方法分析与研究.航天控制,1999,17(4):51-57.
    52郭海林,曲广吉.航天器空间交会过程综合变轨策略研究.中国空间科学技术,2004,24(3):60-67.
    53韩潮,段彬,付红勋.远程导引段可行飞行方案寻求算法研究.中国空间科学技术,2002,22(1):47-52.
    54韩潮,谢华伟.空间交会中多圈Lambert变轨算法研究.中国空间科学技术,2004,24(5):9-13.
    55 H.J. Shen. Optimal Scheduling for Satellite Refuelling in Circular Orbits. PhD thesis, Georgia Institute of Technology,2003.
    56于绍华.自主交会的直线运动模式.宇航学报. 1992,(1):22-27.
    57于绍华.航天器自主交会运动轨迹的控制.宇航学报.1993,(1):44-51.
    58于绍华.全方位自主交会的控制方法.宇航学报. 1993,14(3):10-17.
    59于绍华,杨林娜.空间交会的末端控制模式.宇航学报. 1998,19(3):16-22.
    60 S.H. Yu. Autonomous Rendezvous in Elliptical Orbits. Acta Astronautica. 1997,41(2):95-101.
    61 S.H. Yu. Control Schemes for Terminal Space Rendezvous. Acta Astronautica. 1998,43(7):349-354.
    62邓子辰.空间拦截最优末端导引规律研究的新方法.计算结构力学及其应用研究. 1994,11(3):279-282.
    63程龙,陈勇.一种拦截轨道的确定方法.航天控制. 2005, 23(1): 65-68.
    64王颍,吴宏鑫,解永春.基于视线制导的交会停靠控制方法.航天控制. 2004, 12(6): 21-24.
    65王颍,吴宏鑫,解永春.空间交会停靠的变结构控制.中国空间科学技术. 2001, 21(3): 1-5.
    66朱仁璋,汤溢,李颐黎,林彦.航天器交会飞行设计方法研究.中国空间科学技术. 2006,26(1):9-16.
    67朱仁璋,尹艳,汤溢.空间交会最终平移段控制策略.中国空间科学技术. 2005,25(4):31-38.
    68朱仁璋,汤溢.空间交会接近与绕飞设计.中国空间科学技术. 2005,25(1):7-14.
    69 C. Li, B. Liang and W.F. Xu. Autonomous Trajectory Planning of Free-Floating Robot for Capturing Space Target. Proceedings of the 2006 IEEE/RSJ, International Conference on Intelligent Robots and Systerms, Beijing,China, October,9-15,2006.
    70 S. Ueno, V.J. Modi. Optimal Controller for a Space Platform Based Manipulator Capturing a Satellite. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Boston, MA, Aug,10-12,1998, AIAA-98-4474.
    71 K. Yoshida, D. Dimitrov, H. Nakanishi. On the Capture of Tumbling Satellite by a Space Robot. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,Beijing, China,October,9-15,2006.
    72 K. Yoshida, H. Nakanishii, H. Ueno, et al. Dynamics, Control and Impedance Matching for Robotic Capture of a Non-cooperative satellite. Adavanced Robotics.2004,18(2):175-198.
    73 Z.H. Ma, O. Ma, N. Shashikanth. Optimal Control for Spacecraft to Rendezvous with a Tumbling Satellite in a Close Range. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,Beijing,China, October,9-15,2006.
    74 S. Nakasuka, T. Fujiwara. New Method of Capturing Tumbling Object in Space and Its Control Aspects. International Conference on Control Applications, Hawaii, 1999.
    75 G. Rouleau, I. Rekleitis, et al. Autonomous Capture of a Tumbling Satellite. Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, May,2006.
    76朱仁璋,林彦.航天器交会绝对导航向相对导航过渡阶段的分析与设计.中国空间科学与技术. 2006,26(5):64-70.
    77 R.J.V. Chari. Autonomous Orbital Rendezvous Using Angles-Only Navigation. Master's thesis, Massachusetts Institute of Technology, May 2001.
    78 R.J.V. Chari. Autonomous Orbital Rendezvous Using Angles-Only Navigation. AAS,2001.
    79 D.C. Woffinden.On-Orbit Satellite Inspection Navigation andΔv Analysis. Massachusetts Institute of technology, Master's thesis, September,2004.
    80 D.C. Woffinden. Observability Criteria for Angles-Only Navigation. AAS/AIAA Astrodynamics Specialist Conference,Mackinac Island,Michigan, August,19-23,2007.
    81 G. Rouleau, S. Verma and I. Shart. Vision-Based Tracking and Trajectory Generation for Robotic Capture of Objevts in Space. AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, August,15-18,2005.
    82 K. Subbarao, J. McDonald. Multi-Sensor Fusion Based Relative Navigation for Synchronization and Capture of Free Floating Spacecraft. AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, August,15-18,2005.
    83 I. Kawano, H. Ueno, Y. Ishijima, et al. Study on Laser Rangefinder for Non-cooperative Rendezvous. Proceeding of the 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Nara, Japan,May, 19-23, 2003.
    84 R.D. Jr. Habbit, R.O. Nellums, A.D. Niese, J.L. Rodriguez. Utilization of Flash Ladar for Cooperative and Uncooperative rendezvous and capture. Proceedings of SPIE. Volume:5088, 2003.
    85 K. Isao, I. Yoshiyuki. Research on a Nean-range Rendezvous Sensor using the Image Processing. 46th Proceedings of the Space Sciences and Technology Conference, 2002.
    86刘林.航天器轨道理论.国防工业出版社, 2000.
    87 L. Breger, J.P. How. Gauss's Variational Equation-based Dynamics and Control for Formation Flying Spacecraft. Journal of Guidance, Control, and Dynamics 30:22, 2007: 437-448.
    88 G. Gomez, M. Marcote, J.J. Masdemont, J.M. Mondelo. Natural Configurations and Controlled Motions Suitable for Formation Flying. Advances in the Astronautical Sciences, 2006, 123: 1513-1530.
    89 G.T. Huntington, A.V. Rao. Optimal Configuration of Spacecraft Formations Via a Gauss Pseudospectral Method. Advances in the Astronautical Sciences, 2005, 120: 33-50.
    90 Y. Tsuda. Global Optimization of Maneuver Schedule for Multiple Spacecrafts Flying in Formation. 55th International Astronautical Congress, Vancouver, Canada, IAC-04-A.2.01, 2004.
    91 C. Sultan, S. seereeram, R.K. Mehra. Minimization and Equalization of Energy for Formation Flying Reconfiguration. Proceedings of Intl .Conference of Robotic and Automation.2004.
    92 C. Sultan, S. Seereeram, R. Mehra, and F. Hadaegh. Energy Optimal Reconfiguration for Large Scale Formation Flying. Proceedings of the American Control Conference, July 2004: 2986-2991.
    93 H.C. Lim, H.C. Bang, K.D. Park, W.K. Lee. Optimal Formation Trajectory Planning Using Parameter Optimization Technique. J. Astron. Space Sci.,2004,21(3):209-220.
    94 P. Sengupta, S.R. Vadali. A Lyapunov-Based Controller for Satellite Formation Reconfiguration In the Presence of J2 Perturbations. Advances in the Astronautical Sciences. 2004,AAS-04-253.
    95 C.Y. Xia and P.K.C. Wang. Optimal Formation Reconfiguration of Multiple Spacecraft with Docking and Undocking Capability. AIAA Guidance,Navigation and Control Conference and Exhibit, San Francisco, California, 15-18 August 2005.
    96 D.J. Zanon, M.E. Campbell. Optimal Planner for Spacecraft Formations in eccentric orbits. Journal of Guidance, Control, and Dynamics, 2006,26(1):161-171.
    97 M.E. Campbell, D. Zanon, J. Kulkarni. Cluster Planning And Control For Spacecraft Formations. Advances in the Astronautical Sciences, 2004,AAS 04-254.
    98 D. Dumitriu, S. Marques, P. Lima, B. Udrea. Decentralized Low Communication State Estimation and Optimal Guidance of Formation Flying Spacecraft. 16th AAS/AIAA spacecraft flight mechanics conference, Tampa, Florida. January 22-26, 2006.
    99 S.G. Kim, J.L. Crassidis, Y. Cheng, et al. Kalman Filtering for Relative Spacecraft Attitude and Position Estimation. Journal of Guidance Control and Dynamics. 2007,30(1):133-138.
    100 J.K.Whiting. Orbital transfer Trajectory Optimization,Master’s thesis, Massachusetts Institute of Technology, February 2004
    101 M.F. Machula, G.S. Sandhoo. Rendezvous and Docking for Space Exploration. AIAA Paper 2005-2715.
    102 J.L. Goodman. History of Space Shuttle Rendezvous and Proximity Operations. Journal of Spacecraft and Rockes,2006,43(5):944-959.
    103 J.L. Goodman. Knowledge Capture and Management-Key to Ensuring Flight Safety and Mission Success. AIAA Space 2005 Conference Long Beach, California. 30 August, 2005,AIAA 2005-6634.
    104 R.J.M. Benn is, Q.P. Chui, J.A. Mulder. Adaptive Fuzzy Control for Rendezvous and Docking by Reinforcement Learning. AIAA Guidance,Navigation,and Control Conference and Exhibit, Montreal, Canada, 6-9,August,2001,AIAA-2001-4354.
    105 H.B. Hablani, M. Tapper, D.D. Bashian. Guidance Algorithms for Autonomous Rendezvous of Spacecraft with a Target Vehicle in Circular Orbit. AIAA Guidance,Navigation,and Control Conference and Exhibit, Montreal, Canada, 6-9,August,2001,AIAA-2001-4393.
    106 B.S. Keller, S.S.K. Tadikonda, J. Mapar. Autonomous Acquisition,Rendezvous, &Docking Using a Video Guidance Sensor:Experimental Tested Results. AIAA Guidance,Navigation,and Control Conference and Exhibit, Monterey, California, 5-8,August,2002,AIAA-2002-4846.
    107 B.S. M.S. C.D. Olsen, Characterization of the Relative Motion of Rendezvous Between Vehicles in Proximate, Highly Elliptic Orbits. Dissertation of the University of Texas at Austion,May,2001.
    108 I. Lopez, C.R. McInnes. Autonomous rendezvous using artificial potential function guidance. Journal of Guidance Control and Dynamics, 1995, 18(2):237-241.
    109 N. Edelbaum. Minimum Impulse Transfer in the Near Vicinity of a Circular Orbit. AIAA Journal, 1967,5(1):66-73.
    110张玉锟.卫星编队飞行的动力学与控制技术研究.国防科学技术大学博士论文,2002.
    111 K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation, 2002,6(2):181-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700