可见光活性纳米磁性复合材料的制备与催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固液光催化体系的发展和推广应用一直以来存在两个关键点:一是如何提高催化活性;二是催化剂的分离和回收以及重复使用性。具有金属对金属电子转移metal-to-metal charge transfer(MMCT)性能的杂双金属氧化物复合材料是一种高效的光吸收激发材料,可以在可见光激发下催化有机化合物的氧化还原反应。因此,根据实际需要和金属的氧化还原电势,选择合适的金属物种和适宜的制备方法,在双金属或多金属氧化物复合材料上构建金属-金属电子转移(MMCT)中心,制备出在可见光激发下能够催化有机污染物氧化还原降解反应的新型催化剂,成为了一个新的热点研究领域。将光诱导催化活性中心固载于磁性纳米粒子上,可以采用用磁分离方法,十分便利地解决纳米催化剂的分离和回收的问题。
     本文在大量调研文献的基础上,采用Stober法制备了核壳结构的SiO_2-Fe_3O_4纳米复合粒子,并将Ti~(4+)/M~(n+)(MMCT)固载在SiO_2-Fe_3O_4粒子上,用XRD、TEM、UV-Vis和IR等手段对制备的磁性纳米复合材料样品进行了表征,并以苯酚和亚甲基蓝的氧化降解为模型反应,考察了材料在可见光下的催化性能。主要内容如下:
     1、综述了纳米材料的制备和特性、光催化材料的发展及其在有机污染物催化降解领域中的应用。
     2、采用Stober法制备了核壳结构的SiO_2-Fe_3O_4磁性纳米复合材料,并将Ti~(4+)/Sn~(2+)(MMCT)固载在SiO_2-Fe_3O_4上制备得到了Sn/Ti-SiO_2-Fe_3O_4纳米复合材料,对样品进行了表征,考察了其在苯酚的光降解反应中的催化性能,以及外界条件对样品催化效能的影响。研究发现样品磁响应性好,呈纳米形态(粒径约为80nm),在可见光区表现出MMCT吸收。在通氧气和常温条件下,当pH为4,以Sn含量为4 wt%的Sn/Ti-SiO_2-Fe_3O_4的磁性纳米催化剂,在可见光激发下催化苯酚的氧化降解反应,苯酚降解率达到了83.96%。
     3、把Ti~(4+)/Ce~(3+)(MMCT)固载在纳米SiO_2-Fe_3O_4上,制备了磁性纳米复合材料,考察了Ce/Ti-SiO_2-Fe_3O_4纳米复合材料在不同条件下对苯酚氧化降解反应的催化性能。研究发现所得的磁性纳米复合材料磁响应性好,在可见光区表现出很强的MMCT吸收,对苯酚光降解反应具有良好的可见光催化降解活性。常温通氧条件下,当pH为4时,以Ce含量为2 wt%的Ce/Ti-SiO_2-Fe_3O_4为催化剂,在可见光下对苯酚光降率达到了91.43%。催化剂易回收,重复使用性好。
     4、将Ce/Ti-SiO_2-Fe_3O_4磁性纳米复合材料作为催化剂,应用到模拟染料废水处理当中,催化氧化分解亚甲基蓝染料。研究了染料浓度,pH值,添加H_2O_2含量等因素对亚甲基蓝脱色率的影响,并对反应机理进行了探讨。结果表明,pH=8,初始浓度为60 mg/L的亚甲基蓝溶液,外加H_2O_2的投加量为1.5 mL/L时,复合Ce/Ti-SiO_2-Fe_3O_4磁性纳米材料对亚甲基蓝氧化降解的催化效率最高,且在循环使用三次后催化活性依然保持良好。
In the development and application of solid-liquid photocatalytic systems,two key problems should be paid attention to.One is the enhancement of the photocatalytic activity and the other is the separation,recovery,and reuse of the catalysts.Composites of two metal oxides,which are of metal-to-metal charge transfer character(MMCT),areconsidered to be effective photo absorbent and photo-inducing agents which can be used as catalysts for redox reaction of organic compounds in visible light.It is newly developed hot field to prepare novel catalyststo meet the actual demands of the degradation of organic pollutants by choosing a suitable pair of metals for constructing MMCT.Immobilization of photo-induced catalytic species onto nano-magnetic particles will facilitate the separation of catalysts with the utilization ofmagnetic feature and the recovery of the catalytic activity.
     On the basis of related literatures,SiO_2-Fe_3O_4 nanoparticle composite with core-shell structure was prepared in Stober way.And Ti~(4+)/M~(n+)(MMCT)was assembled on the magnetic SiO_2-Fe_3O_4 nanoparticles.The resultant magnetic nanocomposites were characterized with XRD、TEM、UV-Vis spectrum and IR spectrum.The photocatalyticperformance of the resultant materials was investigated by using thedegradation of phenol and methylene blue under visible light as themodel reactions.Concrete contents of this work are as follows:
     1、This dissertation reviewed the properties and thesynthetic methods of nanoparticles,the developments ofphoto-induced catalytic materials and their applications inthe field of the degradation of organic pollutants.
     2、SiO_2-Fe_3O_4 nanoparticle composite with core-shell structure was prepared in Stober way.And Ti~(4+)/Sn~(2+)(MMCT)was assembled on the magnetic SiO_2-Fe_3O_4 nanoparticles.The resultantnanocomposite was characterized XRD、TEM、UV-Visspectrum and IR spectrum..The photo-catalyticperformances of the materials were characterized byphenol degradation.The results show that the obtainedcomposites have the nanoparticle morphology(80 nm)and respond well to the magnetic field.Under visiblelight,the composite exhibits relative strong MMCT absorption.When Sn/Ti-SiO_2-Fe_3O_4 composite with Sncontent of 4 wt% was used as catalyst,83.96% of phenolin aqueous solution of pH=4 was degraded whileirradiated with sunlight at room temperature inpresenting of O_2.
     3、Ti~(4+)/Ce~(3+) was assembled on the magnetic SiO_2-Fe_3O_4 nanoparticle.The obtained nanocomposites were characterized in the same way as above.The Thephoto-catalytic performances of the materials in theoxidation degradation of phenol under differentconditions were examined.The research shows that the obtained composites respond well to magnetic field andare highly capable to catalyze the oxidation degradationof phenol in aqueous solution under visible light.Byusing Ce/Ti-SiO_2-Fe_3O_4 composite with Ce content of 2wt%,91.43% of phenol in aqueous solution of pH=4 wasdegraded while irradiated with sunlight at room temperature in presenting of O_2.The catalytic activity ofnanocomposites are easy to be recoveried and thus thecatalyst could be reused.
     4、The Ce/Ti-SiO_2-Fe_3O_4 nanocomposites was also used as a catalyst in the photodegradation of methylene blue under visible light.The effects of the initial concentration of methylene blue,the concentration of H_2O_2 and the pH value on the photodegradation of methylene blue performance were studied.The results show that theoptimum conditions for the visible light induceddegradation of methylene blue in aqueous solution arepH=8,the initial concentration of methylene blue is 60mg/L,and the concentration of H_2O_2 is 1.5 mL/L.The catalytic activity retained well after the catalyst beingreused for 3 times.
引文
[1] 张志现,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000.
    
    [2] 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    
    [3] 薛群基,徐康.纳米化学[J].化学进展,2000,12(4):431-444.
    
    [4] P.Reimer,R.Weissleder.Development and experimental application ofreceptir-specific MR contrast media[J].Der Radiologe,1996,36(2):153-158.
    
    [5] Y.C.Choul,D.Pouliquen,et al.Development of superparamagneticnano-particles for MRI:effect of particles size,charge and surface nature onbiodistribution[J].J Microencapsulation,1996,13(3):245-255.
    
    [6] T.Kubo,T.Sugita,S.Shimose,et al.Targeted deliveryof anticancer drugswith intravenously administered magnetic liposomes in osteosarcoma bearinghamsters[J].Int J Oncol,2000,17(2):309-315.
    
    [7] S.C.Goodwin,C.A.Bittner,C.L.Peterson,et al.Single-dose toxicity studyof hepatic intra-arterial infusion of doxorubicin coupled to a novelmagnetically targeted drug carrier[J].Toxical Sci,2001,60(1):177-183.
    
    [8] 王永康,王立.纳米材料科学与技术[M].浙江:浙江大学出版社,2002.
    
    [9] 师昌绪.材料大辞典[M].北京:化学工业出版社,1994.
    
    [10] 张立德.纳米材料科学[M].沈阳:辽宁出版社,1994.
    
    [11] 张立德.开拓原子和物质的中间领域-纳米微粒与纳米固体[J].物理,1992, 21(3):167-172.
    
    [12] 刘忠范,朱涛,张锦.纳米化学[J].大学化学,2001,16(5):1-10.
    
    [13] 吴人洁.复合材料[M].天津:天津大学出版社,2002.
    
    [14] Y.W.Zhao,T.Zhang,Q.John.Explosion compacted FeCo particles coatedwith ferrites:A possible route to achieve artificial soft ferrites[J].J.Appl.pHys,2003,93(10):8014-8016.
    
    [15] 余声明.纳米磁性材料技术[J].世界产品与技术,2000,3:52-53.
    
    [16] 韦勇强.纳米Fe_3O_4磁粉及磁液的制备与性能研究[D].四川大学,2003.
    
    [17] J.R.Liu,M.Itoh,K.Machida.Electromagnetic wave absorption properties of??α-Fe/Fe[sub3]B/Y[sub2]O[sub3]nanocomposites in gigahertz range[J].Appl.Phys.Lett,2003,83(19):4017-4019.
    
    [18] S.Watson,D.Beydoun,R.Amal.Synthesis of a novel magnetic photocatalystby direct deposition of nanosized TiO_2 crystals onto a magnetic core[J].Journal of Photochemistry and Photobiology A:Chemistry,2002,148(1-3):303.
    
    [19] Micic,Barton,B.Smith,Arthur,J.Nozik.Core-Shell Quantum Dots ofLattice Matched ZnCdSe_2 Shell on InP Cores.Experiment.J.Phys.Chem.B,2000,104,12149-12156.
    
    [20] D.Gerion,F.Pinaud,S.C.Williams,et al.Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor QuantumDots[J].J.PHys.Chem.B,2001,105(37):8861-8871.
    
    [21] Y.Tian,T.Newton,N.A.Kotov,D.M.Guldi,J.H.Fendler.CoupledComposite CdS-CdSe and Core-Shell Types of(CdS)CdSe and(CdSe)CdSNanoparticles[J].J.Phys.Chem.1996,100(21):8927-8939.
    
    [22] B.Schreder,T.Schmidt,V.Ptatschek,U.Winkler,et al.CdTe/CdS Clusterswith "Core-Shell" Structure in Colloids and Films:The Path of Formation andThermal Breakup[J].J.Phys.Chem.B,2000,104(8):1677-1685.
    
    [23] G Hota,S.Jain,K.C.Khilar.Synthesis of CdS-Ag2S core-shell/compositenanoparticles using AOT/n-heptane/water microemulsions[J].Colloids andSurfaces A:Physicochemical and Engineering Aspects,2004,232(2-3):119-127.
    
    [24] A.R.Loukanov,C.D.Dushkin,et al.Photoluminescence depending on theZnS shell thickness of CdS/ZnS core-shell semiconductor nanoparticles[J].Colloids and Surfaces A:Physicochem.Eng.Aspects,2004,245(1-3):9-14
    
    [25] 李凤生,杨毅.纳米/微米复合技术及应用[M].北京:国防工业出版社,2002.
    
    [26] 侯万国,王果庭.超细材料的制备、表面改性及应用[J].化工进展,1992,(5):21-26
    
    [27] Sudaryanto,T.Nishino,M.Ueno,et al.Interfacial and mechanical properties??of γ-Fe_2O_3/segmented polyurethane/poly(vinyl chloride)composites [J].J.Appl.Polym.Sci,2001,82(12):3030-3035.
    
    [28] B.Z.Tang,Y.H.Geng,J.Wing,et al.Processible Nanostructured Materialswith Electrical Conductivity and Magnetic Susceptibility:Preparation andProperties of Maghemite/Polyaniline Nanocomposite Films[J].Chem.Mater,1999,11(6):1581-1589.
    
    [29] V.G Pol,D.N.Srivasava,O.Palchik,V.Palchik,et al.SonochemicalDeposition of Silver Nanoparticles on Silica Spheres[J].Langmuir,2002,18(8):3352-3357.
    
    [30] D.Y.Geng,Z.D.Zhang,W.S.Zhang,et al.Al_2O_3 coated a-Fe solid solutionnanocapsules prepared by arc discharge[J].Scripta Materialia,2003,48(5):593-598.
    
    [31] I.Srnova-Sloufova,F.Lednicky,A.Gemperle,J.Gemperlova.Core-Shell(Ag)Au Bimetallic Nanoparticles:Analysis of Transmission ElectronMicroscopy Images[J].Langmuir,2000,16(25):9928-9935.
    
    [32] Y.Kong,S.Kim,H.Kim.Reinforcement of Hydroxyapatite Bioceramic byAddition of ZrO_2 Coated with Al_2O_3[J].J Am.Ceram.Soc,1999,82(11):2963-2968.
    
    [33] M.Z.Xu,Y.S.Choi,Y.K.Kim,et al.Synthesis and characterization ofexfoliated Poly(styrene-co-methyl methacrylate)/clay nanocomposites viaemulsion polymerization with AMPS[J].Polymer,2003,44:6387-6395.
    
    [34] Y.S.Choi,I.J.Chung.An explanation of silicate exfoliation in polyacrylonitrile/silicate nanocomposites by in situ polymerization using aninitiator on silicate[J].Polymer,2004,45:3827-3834.
    
    [35] Y.S.Choi,H.T.Ham,I.J.Chung.Polymer/silicate nanocomposites synthesized with potassium persulfate at room temperature:Polymerizationmechanism,charade-rizaion and mechanical properties of nanocomposites [J].Polymer,2003,44:8147-54.
    
    [36] E.Donath,G B.Sukhorulov,F.Caruso,et al.Novel hollow polymer shells byColloid-templated assembly of polyelectrolytes[J].Angew.Chem.Int.Ed,??1998,37:2201.
    
    [37] Y.Zhang,X.Qian,H.Xi,J.Yin,Z.Zhu,preparation of polystyrenecoremesoporous silica nanoparticles shell composite[J].Materials Letters,2003,58:222-225.
    
    [38] Y.Gao,N.R.Choudhury,N.Dutta,J.Matisons,M.Reading,L.Delmotte.Organic-Inorganic Hybrid from Ionomer via Sol-Gel Reaction[J].Chem.Mater,2001,13(10):3644-3652.
    
    [39] H.Sertchook,D.Avnir.Submicron Silica/Polystyrene Composite ParticlesPrepared by a One-Step Sol-Gel Process[J].Chem.Mater,2003,15(8):1690-1694.
    
    [40] R.C.Plaza,J.D.G Duran,A.Quirantes,M.J.Ariza,A.V.Delgado.SurfaceChemical Analysis and Electrokinetic Properties of Spherical HematiteParticles Coated with Yttrium Compounds[J].J Colloid Interface Sci,1997,194(2):398-407.
    
    [41] F.Yuan,P.Hu,C.Yin,S.Huang,J.Li.Preparation and properties of zincoxide nanoparticles coated with zinc aluminate[J].J.Mater.Chem,2003,13(3):634-637.
    
    [42] 陈洪龄,王延儒,时均.单分散超细二氧化钛颗粒的制备及粒径控制[J]. 物理化学学报,2001,17(8):713-717.
    
    [43] 孙静,高濂,张青红.制备具有光催化活性的金红石相纳米氧化钛粉体[J]. 化学学报,2003,16(1):74-77.
    
    [44] 段明华,蒋祉刚等.超细二氧化钛的开发研究现状[J].钒钛,1998,19(2): 47-51
    
    [45][45] Lawrence H E,Andreas M G.Role of Particle Substructure in the Sintering of Nanosized Titania.J Am.Ceram.Soc,1988,71(1):225-235.
    
    [46] 马运柱,黄伯云,范景莲等.离心式喷雾干燥制备纳米晶粉末的工艺原理 及其影响因素[J].硬质合金,2002,19(1):173-176.
    
    [47] A.Rachel,M.Sarakha.Comparison of several titanium dioxide for the photocatalytic degradation of benzensulfonic acids[J].Applied Catalysis B:Environmental,2002,(37):293-300
    
    [48] M.Okamoto,S.Morita,H.Taguchi,et al.Synthesis and structure of smecticclay/poly(methylmethacrylate)and clay polystyrene nanocomposites via insitu intercalative polymerization[J].Polymer,2004,41:3887-3890
    
    [49] Y.W.Zhao,C.Y.Ni,D.Kruczynski,et al.Exchange-Coupled Soft MagneticFeNi-SiO_2 Nanocomposite[J].Phys Chem B,2004,108(12):3691-3693.
    
    [50] M.A.Ermakova,D.Y.Ermakov,S.V.Cherepanova,et al.Synthesis of Ultradispersed Nickel Particles by Reduction of High-Loaded NiO-SiO_2 Systems Prepared by HeteropHase Sol-Gel Method[J].Phys Chem B,2002,106(46),11922-11928.
    
    [51] H.Y.Jiang,W.Zhong,X.L.Wu,et al.Direct and alternating current magneticproperties of FeNi particles coated with SiO_2[J].J Alloys & Comps,2004,384(1-2):264-267.
    
    [52] M.W.Noh,D.C.Lee.Synthesis and characterization of PS-clay nanocomposite by emulsion polymerization[J].Polym Bull,1999,42:619-626.
    
    [53] F.L.Gong,M.Feng,C.Q.Zhao,et al.Thermal properties of poly(vinylchloride)/montmorillonite nanocomposites[J].Polym Degra Stab,2004,84:289-294.
    
    [54] X.Tong,H.C.Zhao,T.Tang,et al.Preparation and Characterization ofPoly(ethylacrylate)Bentonite Nanocomposites by In Situ Emulsion Polymerization[J],J.Polm Sci,Part A:Polym Chem,2000,40:1708-1711.
    
    [55] S.H.Hong,B.H.Kim,J.W.Kim,et al.Polypyrrole-montmorillonite nanocomposites synthesized by emulsion polymerization[J].Current Appl.Phy.2001,1:447-450.
    
    [56] Y.W.Chang,S.H.Ryu,W.D.Kim,et al.Preparation and properties ofacrylonitrile-butadiene copolymer hybrid nanocomposites with organoclays[J].Polym Int,2003,52:1359-1364.
    
    [57] S.Varghese,J.K.Kocsis.Melt-compounding nature rubber nanocompositeswith pristine and organophilic layered silicate of natural and synthetidorigin[J].J.Appl.Polym.Sci,2004,91:813-819.
    
    [58] A.Fujishima,K.Honda.Electrochemical photolysis of water at semi-??conductor electrode[J].Nature,1972,238:37.
    
    [59] Y.Ma,J.N.Yao.Photodegradation of Rhodamine B catalyzed by TiO_2 thinfilms[J],Journal of Photochemistry and Photobiology A:Chemistry,1998,116:167-170.
    
    [60] M.R.Hoffman,S.T.Martin,W.Choi,et.al.Envrionmengtal Applications ofSemiconductor Photocatalysis[J],Chem.Rev,1995,95(1):69-96.
    
    [61] D.F.Ollis,H.A.Ekabi.Photocatalystic Purification and Treatment of Waterand Air[M],Elsevier,Amsterdam,1993.
    
    [62] C.Hu,Y.Z.Wang,H.X.Tang.Preparation and characterization of surfacebond-conjugated TiO_2/SiO_2 and photocatalysis for azo dyes[J].Appl Catal B:Environ,2001,30(3-4):277-285.
    
    [63] H.M.Colemtan,B.R.Eggins,J.A.Byrne,et al.Photocatalytic degradationof 17-β-oestradiol on immobilised TiO_2[J].Appl Catal B:Environ,2000,24(1):L1-L5.
    
    [64] P.V.Kamat.Photochemistry on Nonreactive and Reactive(Semiconductor)Surfaces[J].Chem.Rev,1993,93:267-300.
    
    [65] 郑红,汤鸿宵,王怡中.有机污染物半导体多相催化氧化机理及动力学研 究进展[J].环境科学进展,1996,4(3):1-17.
    
    [66] A.Mills,R.H.Davies,D.Worsley.Water Purification by SemiconductorPhotocatalysis[J].Chem.Soc.Rev,1993,22(6):417-425.
    
    [67] I.Llabres,F.Xamena,P.Calza,et al.Enhancement of the ETS-10Titanosilicate Activity in the Shape-Selective Photocatalytic Degradation ofLarge Aromatic Molecules by Controlled Defect Production[J].J.Am.Chem.Soc,2003,125(8):2264-2265.
    
    [68] 程萍,顾明元,金燕苹.TiO_2光催化剂可见光化研究进展[J].化学进展, 2005,1:9-14.
    
    [69] K.Maeda,T.Takata,M.Hara,et al.ZnO Solid Solution as a Photocatalyst forfor Visible-Light-Driven Overall Water Splitting[J].J.Am.Chem.Soc,2005,127(23):8286-8287.
    
    [70] I.Tsuji,H.Kato,H.Kobayashi,A.Kudo.Photocatalytic H_2 Evolution??Reaction from Aqueous Solutions over Band Structure-Controlled(AgIn)_xZn_(2(1-x))S_2 Solid Solution Photocatalysts with Visible-Light Responseand Their Surface Nanostructures[J].J.Am.Chem.Soc,2004,126(41):13406-13413.
    
    [71] O.C.Miner.Kinetic Analysis of Photoinduced Reactions at the WaterSemiconductor Interface[J].Catalysis Today,1999,57(3):205-213.
    
    [72] R.Matthews.Hydroxylation Reaction Induced by Near-ultraviolet Photalysisof Aqueous Titanium Dioxide Suspenions[J].J Chem Soc Faraday Trans,1998,80(2):457-468.
    
    [73] O.Teruhisa,T.Fumihiro.PHotocatlytic oxidation of water by visible lightusing ruthenium-doped titanium dioxide powder[J].Jounal of Photochemistryand Photobiolgy A:Chemistry,1999,127:107-110.
    
    [74] D.Amy,P.V.Kamat.Semiconductor-Metal Nanocomposites PhotoinducedFusion and Photocatalysis of Gold-Capped TiO_2TiO_2/Gold)Nanoparticles[J].J Phys Chem B,2001,105(5):960-966.
    
    [75] 刘守新,王岩,张世润.载银光催化剂Ag-TiO_2合成及光催化性能研究[J]. 东北林业大学学报,2001,29(6):456-462.
    
    [76] 周成.四苯基卟啉氧钒/酞菁复合光电导材料的研究[D].浙江:浙江大学 化学系,2001.
    
    [77] 邓慧华,毛海舫,沈耀春等.卟啉、酞菁共敏化二氧化钛纳米电极[J].化学 学报,1999,57:1199-1205.
    
    [78] R.B.Koehorst,G K.Boschloo,T.J.Savenjie,et al.Spectral sensitization ofTiO_2 substrates by monolayers of porphyrin heterodimers[J],J.PHys.Chem.B,2000,104:2371-2377.
    
    [79] A.Nogueira,L.Furtado,A.Formiga,et al.Sensitization of TiO_2 bysupramolecules containing Zinc porphyrins and Ruthenium-Polypridylcomplexes[J],Inorg.Chem,2004,43:396-398.
    
    [80] F.Odobel,E.Blart,M.Lagree,et al.Porphyrin dyes for TiO_2 sensitization[J].J.Mater.Chem,2003,13:502-510.
    
    [81] O.Shea,E.Kevin,P.Enrigue,et al.The influence of mineralization products??on the coagulation of TiO_2 photocatalyst[J].Langmuir,1999,15(6):2071-2076.
    
    [82] G Blasse.Structure and Bonding,1991,76:153.
    
    [83] Y.J.Kyeong,B.P.Seung.Photoactivity of SiO_2/TiO_2 and ZrO_2/TiO_2 mixedoxides prepared by sol-gel method[J].Mater.Letters,2004,58(22-23):2897-2900.
    
    [84] P.Cheng,M.P.zheng,Y.P.Jin,et al.Preparation and characterization ofsilica-doped titania photocatalyst through sol-gel method[J].Mater.Letters,2003,57(20):2989-2994.
    
    [85] 刘鑫,刘福田,张宁,王冬至.可见光活性纳米TiO_2光触媒研究进展[J],陶瓷学报,2006,27(1):139-144.
    
    [86] W.Lin,H.Frei.Anchored Metal-to-Metal Charge-Transfer Chromophores ina Mesoporous Silicate Sieve for Visible-Light Activation of TitaniumCenters[J].J.PHys.Chem.B,2005,109(11):4929-4935.
    
    [87] R.Nakamura,A.Okamoto,H.Osawa,et al.Design of All-InorganicMolecular-Based Photocatalysts Sensitive to Visible Light:Ti(Ⅳ)-O-Ce(Ⅲ)Bimetallic Assemblies on Mesoporous Silica[J].J.Am.Chem.Soc.,2007,129(31):9596-9597.
    
    [88] Y.Lu,Y.D.Yin,et al.Modifying the Surface Properties of SuperparamagneticIron Oxide Nanoparticles through A Sol-Gel Approach[J].Nano Lett,2002,2(3):183-186.
    
    [89] D.Beydoun,R.Amal,et al.Occurrence and prevention of pHotodissolution atthe pHase junction of magnetite and titanium dioxide[J].J.Mol.Catal.A:Chem,2002,180(1-2):193-200.
    
    [90] 黄汉生.日本TiO_2光催化剂环境净化技术开发动向[J].现代化工,1998,18(12):39-42.
    
    [91] J.Andrei,M.Aurelia,R.Heana,et al.Influence of the silica based matrix onthe formation of iron oxide nanoparticles in the Fe_2O_3-SiO_2 system,obtainedby sol-gel method[J].J.Mater.Chem,2002,12(5):1401-1407.
    
    [92] T.Maschmeyer,F.Rey,G.Sankar,J.M.Thomas.Heterogeneous catalysts??obtained by grafting metallocene complexes onto mesoporous silica[J].Nature,1995,378:159.
    
    [93] 李鸿,朱宝林,郑修成,王淑荣.包覆型磁性二氧化钛的制备及其光催化 性能的研究[J].分子催化,2006,20(5):429.
    
    [94] J.C.Yu,J.G Yu,et al.Effects of F(?)Doping on the Photocatalytic Activity andMicrostructures of Nanocrystalline TiO_2 Powders[J].Chem.Mater,2002,14(9):3808-3816.
    
    [95] J.Schwitzgebel,J.G Ekerdt,H.Gerisher,A.Heller.Role of the OxygenMolecule and of the Photogenerated Electron in TiO_2-Photocatalyzed AirOxidation Reactions[J].J.PHys.Chem,1995,99(15):5633-5638.
    
    [96] W.Lin,H.Frei.PHotochemical and FT-IR Probing of the Active Site ofHydrogen Peroxide in Ti Silicalite Sieve[J].J.Am.Chem.Soc,2002,124(31):9292-9298.
    
    [97] X.Q.Liu,J.M.Xing,Y.P.Guan,et al.Synthesis of amino-silane modifiedsuperparamagnetic silica supports and their use for protein immobilization[J].Collioid Surface A:Phys Eng Aspects,2004,238(1-3):127-131.
    
    [98] M.R.Haffman,et al.Environmental application of semiconductor photocalalysis[J].Chem.Rev,1991,95(1):59.
    
    [99] 段柏华,钟宏,用紫外分光光度法测定苯酚.贵州环保科技[J],1999,5(4): 25-27.
    
    [100] M.Tasbihi,C.R.Ngah,et al.Lifetime and Regeneration Studies of VariousSupported TiO_2 Photocatalysts for the Degradation of Phenol under UV-CLight in a Batch Reactor[J].Ind.Eng.Chem.Res,2007,46(26):9006
    
    [101] S.W.Zou,C.W.How,J.P.Chen.Photocatalytic Treatment of WastewaterContaminated with Organic Waste and Copper Ions from the SemiconductorIndustry[J].Ind.Eng.Chem.Res,2007,46:6566
    
    [102] G M.Sandra,S.F.Renato,D.Nelson.Degradation an toxicity reduction oftextile effluent by combined photocatalytic and ozonation processes[J].ChemospHere,2000,40:369-373.
    
    [103] S.Ledakowics,M.Solecka,R.Zylla.Biodegradation,decolourisation and??detoxification of textile wastewater enhanced by advanced oxidationprocesses[J].J.Biotechnol,2001,89:175-184.
    
    [104] 候亚奇,庄大明,张弓等.影响TiO_2薄膜光催化降解亚甲基篮的因素[J]. 催化学报,2004,25(2):96-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700