锐钛矿型纳米二氧化钛的中试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO_2微粒具有大的比表面积,其表面原子数、表面能和表面张力随粒径的下降急剧增加,由于其尺寸的细微化,表现出来的小尺寸效应,表面效应、量子尺寸效应及宏观量子隧道效应等特性导致纳米TiO_2微粒的热、光、敏感特性和表面稳定性等方面不同于常规粒子,这就使得它在环境、信息、材料、能源、医疗与卫生等领域有着广阔的应用前景。纳米TiO_2的附加值非常高,在近20年来引起工业发达国家的极大关注,并得到了蓬勃发展,其生产地区主要集中在西欧和北美,亚洲的日本与韩国也有较大的生产量,我国也进行了大规模的研究,有些企业已经进行了中试放大研究甚至规模化生产。纳米TiO_2粉体的工业化已经成为纳米材料科学研究的一个热点。
     目前,全世界对纳米TiO_2粉体的制备问题进行了广泛的研究,得到的制备方法有很多,但是大部分只是局限于实验室阶段,适合工业化生产的方法相对较少。现在工业上纳米TiO_2的生产主要为气相法和液相法,其工艺或操作较复杂。气相法反应速度快,得到的纳米二氧化钛粉体纯度高、分散性好、团聚少、表面活性大,性能高,但是气相法反应是在高温下瞬间完成,要求反应物料在极短的时间内达到微观上的均匀混合,对反应器的型式、设备的材质、反应加热方式、进料方式均有很高的要求。目前,气相法在我国还处于小试阶段,欲达到工业化大规模生产,还需要解决一系列工程问题和设备材质问题;而液相法的原料来源广泛、成本较低、设备简单、便于大规模生产。其中以TiCl_4为原料进行液相研究的报道已有很多,但是它们的反应物浓度较低,反应时间较长,而且得到的产物形貌为类球形或针形,粒径分布较宽,需要高温煅烧才能得到晶化较好的纳米二氧化钛粉体。鉴于现有纳米TiO_2工业生产方法的优劣,我们实验室以TiCl_4为原料,采用沸腾回流强迫水解的液相方法进行纳米TiO_2的制备研究已经有几年了,此方法具有原料价廉易得、操作方
    
    便、反应条件温和的特点。在实验室小试阶段,我们可以控制反应产物
    的晶型、粒径与形貌,得到理想的产物。为了验证小试条件的放大效果
    和为进一步工业化生产提供理论和实践依据,我们进行了中试研究,这
    也是我论文的主要内容。
     本论文详细研究了纳米二氧化钦制备条件的优化,考察了不同因素
    对产品结果的影响,并模拟工业化生产进行了整套工艺的研究,主要工
    作详述如下:
    (l)中试设备的选型与安装
     根据生产工艺、纳米 TIO:的性质、中试规模、中试车间的空间及经
    济上的考虑,在借鉴同行业的实际情况,我们对所需设备进行了选型。
    我们所用设备的材质为不锈钢和塑料,选用内衬搪瓷的间歇反应釜作为
    反应器,无机陶瓷膜洗涤设备去除中试反应所得沉淀中的氯离子,采用
    沉降式离心机进行固液分离,利用闪蒸干燥设备对经过预烘干的物料进
    行干燥,得到粉体。根据中试需要,选择了一套纯水系统制备蒸馏水。
    将各设备安装后,进行了试车。
    (2)中试研究
     对小试阶段的最佳反应条件进行了中试放大,放大规模为小试的
    1000倍,总反应体积为50L,CT*e,4=l.omol几,HZSO4为添加剂,
    CTicl4:CHZso4=40:1。此过程中系统研究了加料速率、升温速率及搅拌对产
    品晶型、粒径和形貌的影响。实验证明在控制一定温度的情况下,加料
    速率越快,对产品越有利;油浴加热,升温速率较慢,反应体系温度不
    均匀,改为提前预热到适当温度,缩短了升温时间,得到了较理想的结
    果;桨式搅拌的搅拌范围小,体系不均匀,改用锚式搅拌后,得到较均
    匀的球形纳米二氧化钦。
     我们采用工业级TIC14为原料,反应体系中含有了大量的Cl一离子,
    由于Cl一离子的危害性,需要去除它。因为纳米TIO:的颗粒细小,一般
    的过滤方法容易出现穿滤或堵塞滤孔的问题,我们选用无机陶瓷膜洗涤
    设备将Cl一离子洗净。由于溶液的电导率与其离子的种类、浓度有关,
    通过描绘不同pH值下的电导率与cl一离子浓度的关系曲线,利用电导率
    
    仪监视渗透液的电导率,从而判断Cl一离子浓度的大小。在洗涤过程中
    利用0.01%AgNo3溶液辅助检验Cl一离子浓度。
     闪蒸干燥是一种典型的气流干燥。利用热空气在料仓内进行涡流上
    升,从而带动经过输送轴粉碎的二氧化钦,相互摩擦,含水分少月颗粒
    小的颗粒__仁升到顶端,重的颗粒留在料仓继续干燥,最后得到粉体。通
    过控制加料口温度、出料口温度及出口风量,控制产品。实验证明,加
    料温度大于250℃为宜,出口风量最小较为合适。
     经过闪蒸干燥的粉体,进一步锻烧可使粉体的水分减小,晶化更好。
    实验证明,400℃锻烧lh就可得理想产品,如温度过高,时间过长,则
    得到了混晶甚至金红石纯相。
    (3)纳米TIO:的主要特性指标及分析检验
     作为一种产品,就要有其特性指标,这也是各行业的标准。纳米TIOZ
    的指标项目主要有纯度、晶型、比表面积、杂质含量、含水量、烧失重、
    pH、表观密度和团聚指数等。本论文对这些指标项目进行了总述,并且
    简要叙述了它们测定方法。
    (4)纳米二氧化钦晶体的表征
     利用透射电子显微镜、X射线衍射仪、激光粒度分布仪、
Recently, because special physics and chemistry properties of nanosized TiO_(2) particles such as heat, light, sensitive properties and surface stability were quite different from general materials, they were intensively applied in the environment, information, material, sources of energy, medical treatment and hygiene etc. The surface atom number, surface ability and surface tension of nanosized TiO_(2) particles with high surface area were sharply increased along with the degression of the diameter with high additional value, great concern and striking development were caused in industry-advanced countries over 20 years. Their production districts focus in Western Europe and the northern America, and another bigger output in Japan and Korea. A wide range of research has been carried out in our country, and some enterprises also have much effort in pilot studying and scope production. The industrialization of nanometer TiO_(2) powder has become a hot aspect of nanometer material science research.
    At present, the preparation of nanometer TiO_(2) powder has always been one of the most important subjects of research in the whole world. Lots of methods of preparation had been developed, but most of them restricted the industrial production. As far as we know, only gas and liquid phase methods can be applied in the industry in spite of complicated technology and operation. The nanometer TiO_(2) powder from the gas method with fast rate has many characterists, such as higher purity, nice dispersity, little agglomeration, higher surface activity and high properties, As the gas reaction was accomplished temporarily at the high temperature, the mould type of reaction devices, material nature of equipment and the way of heating
    
    
    
    and charge-in were highly required. Up to now, the gas method in our country is still under the experimental stage. In order to realize an industrial scale, a series of engineering and equipment problems have to be solved. While the liquid phase method has been developed to product on a large scale because of low cost, and simple equipment. Of all the reports, TiCl_(4) often serve as a source of liquid phase research. But with lower reactant concentration and longer reaction time and high temperature calcinations, they can just achieve psendospherical or needle-type particles with broad size distribution. In view of the advantage and disadvantage of available methods of nanometer TiO_(2) industry production, we prepared nanometer TiO_(2) powder from TiCl_(4) as the raw material through forced hydrolysis under the boiling reflux method in our laboratory over several years. The method has some outstanding characteristics, such as simple equipment, high initial concentration, short reaction time, low reaction temperature, uniform distribution of particle size etc. The morphology, size and crystal structure can be controlled. In order to verify the magnifying effect of experimental conditions and provide theory and practice basis to realize the industrialization, we make the pilot scale research.
    In this paper, I have studied the optimization of preparing condition of nanometer titania in detail, and investigated the influence of different factors to the resulting product, and imitated complete set technology of industrialization. The main research aspects are as follows: (1) Selecting and installing of equipment
    According to the production technology, properties of nanometer TiO_(2), capacity of the pilot scale experimental, the scope of work place and economical factors, we select the appropriate equipments in the workshop. We choose intermission vitreous enamel reactor as the reaction devices, use the inorganic ceramic membrane to wash the chlorine ion, use the sedimentation centrifuge to separate the solid and liquid phase, and utilize
    
    
    
    flash vaporization drying equipment, we got the TiO_(2) powder in the end. According to the basis needs, we have selected a set of pure water system to prepare the distilled water. After each equipment was installed, we had co
引文
1.高濂,郑珊,张青红,著.[M].纳米氧化钛光催化材料及应用,化学工业出版社,北京,2002.
    2.方芳.[J].香料香精化妆品,1998,1:28-30.
    3. [P]. JPn. 97110639.
    4. Oregan B., Gratzel M., [J]. Nature, 1991, 353(24): 737-739.
    5. Depero L.E., Sangaletti L., Allierietal. B., [J]. J.Crystal. Grow., 1999, (198/199), 516-520.
    6. Trentler T.J., Denier T.E., Bertone. J.F., et.al., [J]. J.Am.Chem.Soc., 1999, 121,1613-1614.
    7. Yamazaki, S., Matsunaga, S., Hori, K., [J]. Water Research, 2001, 35(4): 1577-1583.
    8. Fujishima, A., Rao, T.N., Tryk, D.A., [J]. Electrochemical Acta., 2000, 45(28):4683-4690.
    9. Kishimoto H., Takahama K., Hashimoto N., [J]. J.Mater.Sci.Lett., 1998, 8(9):2019-2024.
    10.祖庸,雷闫盈,李晓娥,等.[J].现代化工,1999,19(8):46.
    11. Japan Chemical Week, 1998, 1(1): 7.
    12.桥本和仁,藤岛昭,等.[J].Nature,1997,388:431-432.
    13.刘平,王心晨,付贤智.[J].无机材料学报,2000,15(1):88-92.
    14. Yamazaki-Nishida, Fu X.Z., Anderson M. A., et.al., [J].J.Photochem. Photobiol.A Chem.1996, 97(3): 175-179.
    15. Morooka S., Yasutakae T., Kubota A. et.al., [J]. International Chemical Engineering, 1989, 29(1): 119-126.
    16. Okuyama K., Kousaka Y., Wu J. J., et. al., [J]. AICHE Journal, 1986, 32(12): 2010-2019.
    17.李晓娥,祖庸.[J].西北大学学报,1995,25(4):319-323.
    18.傅鹤鉴,汪庆华,马洪,等.[J].四川大学学报(自然科学版),1996,33(5):564-567.
    19. Oya H. et. al., [J]. Japan. J.Appl.Phys.1982, 21(3): 554.
    
    
    20. Terwilliger C.D., Chiany Y.M.,[J]. Mater.Res.Soc.1993 (1): 15.
    21.八谷繁树.[J].固体物理,1977,12(4):231.
    22. Averback R.S., Hofler H.J., Tao R., [J]. Mater.sci.Eng., 1993.. A166.
    23.卫忠贤,李晓娥,祖庸.[J].无机盐工业,1998,5:5-7.
    24. E.Haro-Poniatouski, R.Rodriguez-Talavera, Mdela Cruz Heredia, et.al., [J]. J. Mater.Res.1994, 9(8): 2102-2108.
    25. Ding X. Z., Xing L.H., [J]. Mater. Sic. Eng., 1997, A224: 210-215.
    26. Zhu Y. J., Qian Y. T., Huang H. et. al., [J]. Mater. Lett., 1996, 28: 259-261.
    27.梁长海.[J].功能材料,1997,28(1):10-14.
    28.董国利,高荫本,陈诵英.[J].燃料化学学报,1998,26(3):225-229.
    29.张敬畅,曹维良,于定新等.[J].无机材料学报,1999,14(1):29-35.
    30.赵文宽,方龄,张开诚.[J].无机材料学报,1998,13(4):608-612.
    31.陈代荣,孟永德,樊悦朋.[J].无机化学学报,1995,11(3):228-231.
    32. Komarneni S. Roy R., Li Q. H. [J]. Mater. Res. Bull., 1992, 27: 1393.
    33.张密林,赵华,李茹民.[J].功能材料,1996,27(3):202-205.
    34.沈兴海,高宏成.[J].化学通报,1995,11:6-9.
    35. Manjari L., Vishal C., Pushan A., [J]. J. Mater. Res., 1998,13(5): 1249-1254.
    36.于网林,杨平,徐秋云.[J].高等学校化学学报,1994,15(1):1686-1689.
    37.武瑞涛,魏雨.[J].无机材料学报,1999,14(3):461.
    38.高濂,陈锦元,黄军华.[J].无机材料学报,1995,10(4):423-427.
    39. Kazumichi Y., yuichi Y., Qi F., et. al., [J]. J. Mater. Res., 1998, 13(4) 825-829.
    40.任莉,祖庸.[C].96年中国材料研讨会论文集,北京:化学工业出版社,1997.
    41.王晓慧,王子忱,李熙,等.胶溶法合成TiO_2超微粒子,[J].材料科学进展,1992,6(6):533-537.
    42.赵敬哲,王子忱,刘艳华,等.液相一步合成金红石型超细TiO_2,[J].高等学校化学学报,1999,20(3):467-469.
    43.杨少凤 ,赵纯,宋利珠,等.异相晶核法液相合成金红石型TiO_2纳米晶,[J].高等学校化学学报,2001,22(6):980-983.
    44. Qian Yi-tai, Chen Qian-wang, Che Zu-yue, et.al., [J]. J.Mater.Chem.,1993, 3(2): 203.
    
    
    45. Sridhar Komarneni, et.al., [J]. Mater.Res.Bull., 1992, 27(12): 1393.
    46. Chhor K., Bocquet J.F., Pommier C. [J]. Mater.Chem.Phys. (Switzerland), 1993, 32.
    47.陈士仁,邵艳群,唐电,[J].中国有色金属学报,1998,8(2):250.
    48.杨宗志.[J].现代化工,1994(1):38.
    49.段波,赵兴中,李星国,等.[J].材料工程,1994(6):5.
    50. Suchitra Sen., M. L. Ram. S. Roy., et al., [J].J. Mater. Res., 1999, 14(3): 841-848.
    51.闫同英.[J].化工新型材料,2002,30(8):20-22.
    52.张青红,高濂,郭景坤.四氯化钛水解法制备纳米氧化钛超细粉体,[J].无机材料学报,2000,15(1):21-25.
    53.高荣杰,杜敏.TiCl_4水解法制备金红石型TiO_2纳米粉,[J].青岛海洋大学学报,2001,31(3) 415-419.
    54.陈洪龄,王延儒,时钧.四氯化钛络合法制备单分散纳米二氧化钛,[J].无机材料学报,2002,17(1):149-153.
    55. Hee-Dong Nam, Byung-Ha Lee, Sun-Jae Kim, et.al., Preparation of Ultrafine Crystalline TiO_2 Powders from Aqueous TiCl_4 Solution by Precipitation, [J]. Jpn.J.Appl.Phys., 1998, 37,(8): 4603-08.
    56.杨海堃.气相氢氧焰水解法生产超细二氧化钛,[J].中国粉体技术,2000,6(1):30-34.
    57.段明华,蒋祉刚,谢兵.超细二氧化钛的开发研究现状,[J].钢铁钒钛,1998,19(2),47-51.
    58. Casey J. D., Haggerty J. S., [J]. J. Mater. Sci., 1987, 22: 4307.
    59.姚超,朱毅青,成庆堂,等.纳米级二氧化钛粉体的制备方法和发展趋势,[J].现代化工,20(7):20.
    60.陈声宗编.[M].化工设计,化学工业出版社,北京,2001:58、11.
    61.梁川瑾编.[M].反应釜,高等教育出版社,北京,1992:1.
    62.Mulder Marcel著.李琳译.[M].膜技术基本原理,清华大学出版社,北京,1999:3、188、292、299.
    63.裴润,等编.[M].硫酸法钛白生产,化学工业出版社,北京,1982:281、296、299、324、454.
    
    
    64.刘道德,等编.[M].化工设备的选择与工艺设计,中南工业大学出版社出版,1996:52、63、202、206.
    65.闻瑞梅,等编.[M].高纯水的制备及检测技术,科学出版社,北京,1996:15、40、66、128、145.
    66. Ozaki M., Kratohvil S., Matijevic E., [J].J. Colloid Interface Sci. 1984, 102(2):146
    67.张青红,高濂,郭景坤.四氯化钛水解法制备二氧化钛纳米晶的影响因素,[J].无机材料学报,15(6):992.
    68. Matijevic E., Budnik M.and Meites L., Preparation and Mechanism of Formation Titanium Dioxide Hydrosols of Narrow Size Distribution. [J] J. Colloid Interface Sci.61 (2):303.
    69.华中师范大学,东北师范大学,陕西师范大学,编.[M].分析化学,高等教育出版社,北京,1996:270.
    70.雷闫盈,卫志贤,祖庸,等.年产20t纳米ZnO中试研究及发展,[J].功能材料,32(4):410.
    71.卫志贤,雷闫盈,祖庸,等.纳米氧化锌中试研究,[J].无机盐工业,31(5):8.
    72.张克从,张乐惠.[M].晶体生长,科学出版社,北京,1981:64,137.
    73.钟璟,赵宜江.化学法超细粉洗涤方法的改进,[J].涂料工业,2000,3:23.
    74.邢卫红,童金忠,徐南平.陶瓷微滤膜回收钛白粉水洗液TiO_2颗粒中试与现场考核,[J].化学工程,29(3):44.
    75.郑树亮,黑恩成,著.[M].应用胶体化学,华东理工大学出版社,上海,1996:68.
    76.王国庭著.[M].胶体稳定性.科学出版社,北京,1990:22.
    77.金国森著.[M].化工设备设计全书——干燥设备设计,上海科学技术出版社出版,上海,1986:2.
    78.张喜梅,陈玲,李琳,等.纳米材料制备研究现状及其发展方向,[J].现代化工,20(7):13.
    79.张立德,牟季美编.[M].纳米材料与纳米结构,科学出版社,北京,2001:146.
    80.中国标准出版社第二编辑室编.[M].涂料与颜料标准汇编,中国标准出版社(下),北京,1998:469.
    
    
    81.丛秋滋 著.[M].多晶二维x射线衍射,科学出版社,北京,1997:74.
    82.JCPDS索引(PDF):21—1276.
    83.JCPDS索引(PDF) 21—1272.
    84.祖庸,雷闫盈,俞行,新型防晒剂—纳米二氧化钛,[J].化工新型材 料1998,(6):26.
    85.中华人民共和国专业标准.非颜料用二氧化钛,ZB G13 004-90.
    86.唐振宁.化纤用二氧化钛的制备,[J].涂料工业,1996,(6):19.
    87.陈新坤编.[M].原子发射光谱分析原理,天津科学技术出版社,天津,1991:76.
    88.宋国艾,杨根源,张宝旭编.[M].化妆品原料技术规格,中国轻工业出版社,北京,2000:502、885、886、889.
    89.郑星泉编.[M].化妆品卫生检验,天津大学出版社,天津,1994,32—55.
    90.中国标准出版社第二编辑室编.[M].涂料与颜料标准汇编,中国标准出版社(上),北京,1998:727、748.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700